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1. Introduction. In this paper we study Dirichlet polynomials of the
form

(1.1) D(s, χ) =
∑

n≤N

anχ(n)n−s

where χ(n) is a Dirichlet character, s = σ + it is a complex variable, and
an are (complex) coefficients. Such Dirichlet polynomials are an important
tool in multiplicative number theory and there is a vast literature on the
subject. In particular, one often needs estimates for mean values of the form

∑

χ∈H

T\
−T

∣∣∣
∑

N<n≤2N

Λ(n)χ(n)n−it
∣∣∣ dt,

where Λ(n) is the von Mangoldt function and the outer summation is over
some family of characters, possibly to various moduli. Our main result is
Theorem 1.1 below, which deals with the most common types of such aver-
ages.

Let m ≥ 1, r ≥ 1, and Q ≥ r. We consider a set H(m, r,Q) of characters
χ = ξψ modulo mq, where ξ is a character modulo m and ψ is a primitive
character modulo q, with r ≤ q ≤ Q, r | q, and (q,m) = 1. Our result is as
follows.

Theorem 1.1. Let m ≥ 1, r ≥ 1, Q ≥ r, T ≥ 2, N ≥ 2, and H(m, r,Q)
be a set of characters as described above. Then

(1.2)
∑

χ∈H(m,r,Q)

T\
−T

∣∣∣
∑

N<n≤2N

Λ(n)χ(n)n−it
∣∣∣ dt≪ (N +HN11/20)LC ,
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where C is an absolute constant ,

H = mr−1Q2T and L = logHN.

Remark 1. A possible choice for C is C = 1100, and we have organized
the proof as to make this obvious. On the other hand, we have spent no
effort to optimize our estimates in that regard, because it is clear that our
method will never yield a result with a “respectable” value of C, such as
C = 10, or even C = 100.

Remark 2. Under the Generalized Riemann Hypothesis (GRH), we
have

∑

χ∈H(m,r,Q)

T\
−T

∣∣∣
∑

N<n≤2N

Λ(n)χ(n)n−it
∣∣∣ dt≪ NL+HN1/2L2,

where the term NL on the right side occurs only when the set H(m, r,Q)
contains a principal character. In contrast, because Theorem 1.1 is derived
from a general result on bilinear forms (see Theorem 2.1 below), the first
term on the right side of (1.2) occurs independent of the presence of a
principal character in H(m, r,Q).

Using Theorem 1.1, we can make progress in an additive problem with
prime variables. Consider the linear diophantine equation

(1.3) a1p1 + a2p2 + a3p3 = b

where a1, a2, a3, b are integers with a1a2a3 6= 0 and p1, p2, p3 are prime un-
knowns. Our goal is to prove the existence of solutions of (1.3) which do not
grow too rapidly as B = max{|a1|, |a2|, |a3|} → ∞. This problem was first
raised and investigated by Baker [1] and was later settled, at least qualita-
tively, by M. C. Liu and Tsang [8]. A necessary condition for the solubility
of (1.3) is

(1.4) a1 + a2 + a3 ≡ b (mod2).

Without loss of generality, we may also assume that

(1.5) (a1, a2, a3) = (b, ai, aj) = 1, 1 ≤ i < j ≤ 3.

M. C. Liu and Tsang [8] proved the following result.

Theorem 1.2. Suppose that a1, a2, a3, b are integers with a1a2a3 6= 0
and conditions (1.4) and (1.5) hold. Then there exists an absolute constant

A > 0 such that

(i) if a1, a2, a3 are all positive, then (1.3) has solutions in primes when-

ever b≫ BA;
(ii) if a1, a2, a3 are not all of the same sign, then (1.3) has solutions in

primes satisfying

(1.6) |aj |pj ≪ |b| +BA.
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It is not difficult to see that one cannot take the exponent A above arbi-
trarily small, so it remains to estimate the best possible value of A. The first
numerical upper bound for A was obtained by Choi [2], who showed that
A ≤ 4190. This bound was subsequently reduced to A ≤ 45 by M. C. Liu
and Wang [9] and to A ≤ 38 by Li [6]. Furthermore, Choi, M. C. Liu, and
Tsang [3] showed that under GRH one has A ≤ 5 + ε for any fixed ε > 0.

Recently, J. Y. Liu and Tsang [7] showed that when condition (1.5) is
replaced by the somewhat more restrictive

(1.7) (ai, aj) = (b, ai) = (b, aj) = 1, 1 ≤ i < j ≤ 3,

then one can take (essentially) A = 17/2. In the last section of this paper,
we obtain the following improvement on their result, thus reducing the value
of A further to A = 23/3.

Theorem 1.3. Suppose that a1, a2, a3, b are integers with a1a2a3 6= 0
and conditions (1.4) and (1.7) hold.

(i) If a1, a2, a3 are all positive, then (1.3) has solutions in primes when-

ever

b≫ (a1a2a3)
20/9B(logB)26.

(ii) If a1, a2, a3 are not all of the same sign, then (1.3) has solutions in

primes satisfying

|aj |pj ≪ |b| + (a1a2a3)
20/9B(logB)26.

Remark 3. The proof of Theorem 1.2 uses the circle method and the
Deuring–Heilbronn phenomenon to treat the major arcs, which need to be
taken significantly larger than in classical applications. Under condition (1.7)
in place of (1.5), one can show that the possible existence of Siegel zeros does
not have special influence, and hence the Deuring–Heilbronn phenomenon
can be avoided (see [7, Lemma 3.1]). As a result, better results can be obtained
without recourse to the heavy numerical computations needed in [2, 6, 9].

2. Mean values of products of Dirichlet polynomials. We derive
Theorem 1.1 from mean-value estimates for products of Dirichlet polynomi-
als of the form

(2.1) F (s, χ) =

3∏

i=1

{ ∑

Ni<n≤N ′

i

bi(n)χ(n)n−s
}
.

We assume that 1 ≤ Ni < N ′
i ≤ 2Ni and X = N1N2N3 ≥ 10. We also

assume that the coefficients bj(n) are subject to

(2.2) |b1(n)| ≤ τκ(n), |b2(n)| ≤ τν(n), |b3(n)| ≤ 1

for some integers κ, ν ≥ 2. Here, τκ(n) denotes the κ-fold divisor function.
The main result of this section is the following theorem.
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Theorem 2.1. Suppose that F (s, χ) is a Dirichlet polynomial as above

and H(m, r,Q) is a set of characters as in Theorem 1.1 and such that either

H(m, r,Q) contains no principal character , or it contains only the trivial

character χ0(n) = 1 for all n ≥ 1. Also, suppose that either

(i) max(N1, N2) ≪ X11/20 and b3(n) = 1 for all n ≤ 2N3, or

(ii) max(N1, N2) ≪ X11/20 and N3 ≪ X8/35.

Then

(2.3)
∑

χ∈H(m,r,Q)

T\
−T

|F (it, χ)| dt≪ (X +HX11/20)Lc(κ,ν),

where c(κ, ν) = 3max(κ2, ν2)+κ+ν+20, H = mr−1Q2T , and L = log 2HX.

The main tool in the proof of Theorem 2.1 are bounds for the cardinality
of a well-spaced set of points at which a Dirichlet polynomial of the form
(1.1) is large. In this context, a “point” is an ordered pair (t, χ), where t is a
real number such that |t| ≤ T and χ is a character from H(m, r,Q). We say
that the points (t1, χ1), . . . , (tR, χR) are well-spaced if |ti − tj | ≥ 1 whenever
χi = χj and i 6= j.

Lemma 2.2. Suppose that (t1, χ1), . . . , (tR, χR) are well-spaced and that

for all j = 1, . . . , R, ∣∣∣
∑

n≤N

anχj(n)n−itj
∣∣∣ ≥ V.

Then

R≪ (NV −2 +H min{V −2, NG2V −6})GL18,

where L = log 2HN and

G =
∑

n≤N

|an|
2.

Proof. When r = 1, the lemma is a direct consequence of [5, Theorems
9.16 and 9.18]. When r > 1, we need modifications of those results. The
modifications, however, are straightforward because of the following obser-
vations:

• the trivial bound for the cardinality of H(m, r,Q) is

|H(m, r,Q)| ≪ mr−1Q2;

• if 1 ≤ q1, q2 ≤ Q and r | (q1, q2), then [q1, q2] ≤ r−1Q2.

Lemma 2.3. Let N < M ≤ cN and define

(2.4) D(s, χ) =
∑

N<n≤M

χ(n)n−s.
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Suppose that (t1, χ1), . . . , (tR, χR) are well-spaced and that |tj| ≥ N when-

ever χj is principal. Then

(2.5)
R∑

j=1

|D(itj, χj)|
4 ≪ HN2L10.

Proof. Without loss of generality we may assume that the distances from
M andN to Z equal 1/2. For any character χ ∈ H(m, r,Q), Perron’s formula
(see [5, Proposition 5.54]) yields

D(it, χ) =
1

2πi

α+iT1\
α−iT1

L(it+ w,χ)
Mw −Nw

w
dw +O(1),

where T1 = 10HN and α = 1 + (log T1)
−1. The integrand is holomorphic

everywhere except possibly at w = 1 − it, where L(it + w,χ) has a simple
pole if χ is principal. Thus, we can move the integration to the contour C

consisting of the other three sides of the rectangle with vertices 1/2 ± iT1,
α± iT1. By the convexity bound

L(σ + it, χ) ≪ (mq(|t| + 2))(1−σ)/2+ε (0 ≤ σ ≤ 1),

the integrals over the horizontal parts of C contribute at most

sup
1/2≤σ≤α

{T−1
1 Nσ(mqT1)

(1−σ)/2+ε} ≪ 1.

Also, the residue at w = 1 − it is ≪ δχN(1 + |t|)−1, where δχ is 1 or 0
according as χ is principal or not. Hence, for any point (tj , χj), j = 1, . . . , R,
we have

D(itj, χj) ≪ N1/2
T1\
−T1

|L(1/2 + i(tj + u), χj)|
du

1 + |u|
+

δχjN

1 + |tj |
+ 1

≪ N1/2
T1\
−T1

|L(1/2 + i(tj + u), χj)|
du

1 + |u|
+ 1,

where the last inequality uses the hypothesis on points (tj, χj) with principal
characters. Appealing to Hölder’s inequality, we derive the estimate

|D(itj, χj)|
4 ≪ N2L3

T1\
−T1

|L(1/2 + i(tj + u), χj)|
4 du

1 + |u|
+ 1

≪ N2L3
2T1\
−2T1

|L(1/2 + iu, χj)|
4 du

1 + |u− tj|
+ 1,
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whence
R∑

j=1

|D(itj, χj)|
4 ≪ N2L3

R∑

j=1

2T1\
−2T1

|L(1/2 + iu, χj)|
4 du

1 + |u− tj|
+R.

This suffices, because

R∑

j=1

2T1\
−2T1

|L(1/2 + iu, χj)|
4 du

1 + |u− tj|

≪
∑

χ∈H(m,r,Q)

2T1\
−2T1

|L(1/2 + iu, χ)|4
{ R∑

j=1
χj=χ

1

1 + |u− tj |

}
du

≪ TL
∑

χ∈H(m,r,Q)

2T1\
−2T1

|L(1/2 + iu, χ)|4
du

T + |u|
≪ HL7,

where the final step uses the estimate for the fourth power moment of L(s, χ)
(see [10, Theorem 10.1]).

Proof of Theorem 2.1. Define the Dirichlet polynomials

Fi(s, χ) =
∑

Ni<n≤N ′

i

bi(n)χ(n)n−s (i = 1, 2, 3).

The proof is divided into four steps.

Step 1. First, we treat the case where max(N1, N2) ≥ X9/20. Suppose
that N1 ≥ N2. We recall the well known estimate (see [5, (1.80)])

∑

n≤x

τκ(n)ν ≪ x(log x)κν−1.

By [5, Theorem 9.12] and (2.2),

(2.6)
∑

χ∈H(m,r,Q)

T\
−T

|F1(it, χ)|2 dt≪ (N1 +H)N1L
κ2+2.

Similarly,

(2.7)
∑

χ∈H(m,r,Q)

T\
−T

|F̃2(it, χ)|2 dt≪ (N2N3 +H)N2N3L
ν2+2ν+3,

where F̃2(s, χ) = F2(s, χ)F3(s, χ) is a Dirichlet polynomial with coefficients

b̃2(n) subject to

|̃b2(n)| ≤
∑

n=uv

τν(u) ≤ τν+1(n).
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Using (2.6), (2.7), and the Cauchy–Schwarz inequality, we find that the left
side of (2.3) is bounded above by

(X1/2 + (HN1)
1/2 + (HN2N3)

1/2 +H)X1/2Lc1

≪ (X +H1/2X31/40 +HX1/2)Lc1 ≪ (X +HX11/20)Lc1 ,

where c1 = c1(κ, ν) = κ2 + ν2 + 4. Since an obvious modification of this
argument establishes (2.3) when N2 ≥ N1, we may assume for the remainder
of the proof that

(2.8) max(N1, N2) ≤ X9/20.

Step 2. Suppose that hypothesis (ii) holds. By a standard argument,

(2.9)
∑

χ∈H(m,r,Q)

T\
−T

|F (it, χ)| dt≪
R∑

j=1

|F (itj, χj)|,

where (t1, χ1), . . . , (tR, χR) are well-spaced points. The points (tj , χj) such
that

Fi(itj, χj) ≪ X−1 for some i = 1, 2, 3

contribute at most

RX−1X1.01 ≪ RX0.01 ≪ HX0.01

to the right side of (2.9). We divide the remaining points (tj, χj) into O(L3)
subsets so that for the points in a particular subset S(V1, V2, V3) we have

(2.10) Vi ≤ |Fi(itj, χj)| ≤ 2Vi (i = 1, 2, 3).

We obtain

(2.11)
∑

χ∈H(m,r,Q)

T\
−T

|F (it, χ)| dt≪ L3V1V2V3|S(V1, V2, V3)| +HX0.01

for some V1, V2, V3 subject to

(2.12) X−1 ≤ Vi ≤ NiL
κ+ν .

Thus, it suffices to show that

(2.13) Ξ|S(V1, V2, V3)| ≪ (X +HX11/20)Lc2+κ+ν ,

where Ξ = V1V2V3, c2 = c2(κ, ν) = 3max(κ2, ν2)+15. To derive this bound,
we apply Lemma 2.2 to F1(s, χ), F2(s, χ), and F3(s, χ)2 and find that

|S(V1, V2, V3)| ≪ min{N2
1V

−2
1 +HN1 min(V −2

1 , N3
1V

−6
1 ),(2.14)

N2
2V

−2
2 +HN2 min(V −2

2 , N3
2V

−6
2 ),

N4
3V

−4
3 +HN2

3 min(V −4
3 , N6

3V
−12
3 )}Lc2 .
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We now derive (2.13) from (2.8), (2.12), and (2.14) using a case-by-case
analysis. We write

Γi = N2
i V

−2
i , ∆i = min(V −2

i , N3
i V

−6
i ), ∆i(α) = N3α

i V −2−4α
i

and remark that ∆i ≤ ∆i(α) for all 0 ≤ α ≤ 1.

Case 1: Γ1 ≥ HN1∆1 and Γ2 ≥ HN2∆2. Then, by (2.12) and (2.14),

Ξ|S(V1, V2, V3)| ≪ Ξmin{Γ1, Γ2}L
c2 ≪ Ξ(Γ1Γ2)

1/2Lc2

≪ N1N2V3L
c2 ≪ XLc2+κ+ν .

Case 2: Γ1 ≤ HN1∆1, Γ2 ≤ HN2∆2, and Γ 2
3 ≥ HN2

3∆
2
3. By (2.14)

and the hypothesis N3 ≤ X8/35, we get

Ξ|S(V1, V2, V3)| ≪ Ξmin{HN1∆1, HN2∆2, Γ
2
3 }L

c2

≪ Ξ(HN1∆1(1/6))3/8(HN2∆2(1/6))3/8Γ
1/2
3 Lc2

≪ H3/4(X9N7
3 )1/16Lc2 ≪ (X +HX11/20)Lc2 ,

where the last step uses the fact that

H3/4(X9N7
3 )1/16 ≪ H3/4X53/80 = X1/4(HX11/20)3/4.

Case 3: Γ1 ≤ HN1∆1, Γ2 ≤ HN2∆2, and Γ 2
3 ≤ HN2

3∆
2
3. When N3 ≤

X1/5, then (2.14) yields

Ξ|S(V1, V2, V3)| ≪ Ξmin{HN1∆1, HN2∆2, HN
2
3∆

2
3}L

c2

≪ ΞH(N1∆1(1/22)N2∆2(1/22))11/24(N3∆3(1))1/6Lc2

≪ H(X25N7
3 )1/48Lc2 ≪ HX11/20Lc2 .

On the other hand, when N3 ≥ X1/5, (2.14) yields

Ξ|S(V1, V2, V3)| ≪ ΞH(N1∆1(1/6)N2∆2(1/6))3/8(N3∆3(0))1/2Lc2

≪ H(X9N−1
3 )1/16Lc2 ≪ HX11/20Lc2 .

Case 4: Γ1 ≥ HN1∆1, Γ2 ≤ HN2∆2, and Γ 2
3 ≥ HN2

3∆
2
3. By (2.8),

(2.14), and the hypothesis N3 ≤ X8/35,

Ξ|S(V1, V2, V3)| ≪ Ξmin{Γ1, HN2∆2, Γ
2
3 }L

c2

≪ Ξ(Γ1Γ3)
1/2(HN2∆2(1/2))1/4Lc2

≪ H1/4X5/8(N1N3)
3/8Lc2 ≪ (X +HX11/20)Lc2 ,

where the last step uses the fact that

H1/4X5/8(N1N3)
3/8 ≪ H1/4X197/224 ≪ X3/4(HX11/20)1/4.
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Case 5: Γ1 ≥ HN1∆1, Γ2 ≤ HN2∆2, and Γ 2
3 ≤ HN2

3∆
2
3. When N3 ≤

X1/5, then (2.14) yields

Ξ|S(V1, V2, V3)| ≪ Ξmin{Γ1, HN2∆2, HN
2
3∆

2
3}L

c2

≪ ΞΓ
1/2
1 (HN2∆2(1/10))5/12(HN2

3∆3(1)2)1/12Lc2

≪ H1/2(N11
1 N3

3 )1/24X13/24Lc2 ≪ (X +HX11/20)Lc2 ,

where the last step uses the fact that

H1/2(N11
1 N3

3 )1/24X13/24 ≪ H1/2X371/480 ≪ X1/2(HX11/20)1/2.

On the other hand, when N3 ≥ X1/5, by (2.14),

Ξ|S(V1, V2, V3)| ≪ ΞΓ
1/2
1 (HN2∆2(1/2))1/4(HN2

3∆3(0)2)1/4Lc2

≪ H1/2(X5N3
1N

−1
3 )1/8Lc2 ≪ (X +HX11/20)Lc2 ,

because

H1/2(X5N3
1N

−1
3 )1/8 ≪ H1/2X123/160 ≪ X1/2(HX11/20)1/2.

Case 6: Γ1 ≤ HN1∆1 and Γ2 ≥ HN2∆2. This case can be split into
two subcases that can be handled similarly to Cases 4 and 5.

This completes the proof under hypothesis (ii).

Step 3. Suppose that hypothesis (i) holds and H(m, r,Q) contains no
principal characters. If N3 ≤ X8/35, hypothesis (i) implies hypothesis (ii), so
we may assume that N3 ≥ X8/35. Then we follow the argument from Step 2
until we reach (2.12). Under the present assumptions, Lemma 2.3 and (2.10)
yield

|S(V1, V2, V3)| ≪ HN2
3V

−4
3 L10.

Thus, we may replace (2.14) by the bound

(2.15) |S(V1, V2, V3)| ≪ min{N2
1V

−2
1 +HN1 min(V −2

1 , N3
1V

−6
1 ),

N2
2V

−2
2 +HN2 min(V −2

2 , N3
2V

−6
2 ), HN2

3V
−4
3 }Lc2 .

We now embark on deriving (2.13) from (2.8), (2.12), (2.15), and the hy-
pothesis N3 ≥ X8/35. Let Γi and ∆i be as in Step 2. We consider four
cases.

Case 1: Γ1 ≥ HN1∆1 and Γ2 ≥ HN2∆2. Then we argue as in Case 1
of Step 2.

Case 2: Γ1 ≤ HN1∆1 and Γ2 ≤ HN2∆2. Then (2.15) yields

Ξ|S(V1, V2, V3)| ≪ ΞH(N1∆1(1/6)N2∆2(1/6))3/8(N3V
−2
3 )1/2Lc2

≪ H(X9N−1
3 )1/16Lc2 ≪ HX11/20Lc2 .
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Case 3: Γ1 ≥ HN1∆1 and Γ2 ≤ HN2∆2. By (2.15),

Ξ|S(V1, V2, V3)| ≪ ΞΓ
1/2
1 (HN2∆2(1/2))1/4(HN2

3V
−4
3 )1/4Lc2

≪ H1/2(X5N3
1N

−1
3 )1/8Lc2 ≪ (X +HX11/20)Lc2 ,

because

H1/2(X5N3
1N

−1
3 )1/8 ≪ H1/2X857/1120 ≪ X1/2(HX11/20)1/2.

Case 4: Γ1 ≤ HN1∆1 and Γ2 ≥ HN2∆2. This is similar to Case 3.

Step 4. Finally, suppose that hypothesis (i) holds and H(m, r,Q) con-
tains only the trivial character χ0(n). Again, we may assume that N3 ≥
X8/35. By [5, Corollary 8.11],

∑

N<n≤2N

n−it ≪ N(1 + |t|)−1 (|t| < N).

Using this bound and the trivial estimates for the sums over n1 and n2, we
get

N3\
−N3

|F (it, χ0)| dt≪ N1N2L
κ+ν−2

N3\
−N3

N3

1 + |t|
dt≪ XLκ+ν−1.

On the other hand, when N3 ≤ T , we may repeat Steps 1 and 3 above to
deduce that

(2.16)
\

N3≤|t|≤T

|F (it, χ0)| dt≪ (X + TX11/20)Lc3 ,

where c3 = c3(κ, ν) = 3max(κ2, ν2)+κ+ν+15. The only change occurs when
we have to appeal to Lemma 2.3 to obtain a variant of (2.15). Because of
the presence of a principal character, we now need to ensure that the points
in S(V1, V2, V3) satisfy |tj| ≥ N3. For the points appearing in the proof of
(2.16), however, this condition obviously holds.

We conclude this section with a technical lemma, which will be needed
in the next section.

Lemma 2.4. Suppose that 2 ≤ T ≤M < N and f : N
2 → C is a function

such that

(2.17)
∑

m

U\
−U

∣∣∣
∑

n≤N

f(m,n)nit
∣∣∣ dt ≤ A+BU

for all U ≥ 2. Then

(2.18)
∑

m

T\
−T

∣∣∣
∑

n≤M

f(m,n)nit
∣∣∣ dt≪ (A+BT ) log2N.
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Proof. Let g denote the indicator function of [−T, T ] and let h be the
function constructed in [5, Lemma 13.11] with z = N . Then

(2.19) |h(u)| ≪ min{logN, |u|−1, N |u|−2}

and ∞\
−∞

h(u)

(
m

n

)iu

du =

{
1 if m ≤ n,

0 if m > n,

for any pair of integers m,n such that 1 ≤ m,n ≤ N . Thus,
∑

n≤M

f(m,n)nit =

∞\
−∞

{∑

n≤N

f(m,n)ni(t+u)
}
h(u)M−iu du,

assuming (as we may) that M is an integer. It follows that the left side
of (2.18) does not exceed

∑

m

∞\
−∞

g(t)

∞\
−∞

|h(u)|
∣∣∣
∑

n≤N

f(m,n)ni(t+u)
∣∣∣ du dt

=
∑

m

∞\
−∞

∣∣∣
∑

n≤N

f(m,n)niτ
∣∣∣
{ ∞\
−∞

g(τ − u)|h(u)| du
}
dτ

≪ T (logN)
∑

m

∞\
−∞

∣∣∣
∑

n≤N

f(m,n)niτ
∣∣∣ min{T−1, |τ |−1, N |τ |−2} dτ,

where the last step uses (2.19) and the definition of g. The desired conclusion
now follows by a standard dyadic argument.

3. Proof of Theorem 1.1. In this section we deduce Theorem 1.1 from
Theorem 2.1 and Heath-Brown’s identity for Λ(n). We apply Heath-Brown’s
identity in the following form (see [4, Lemma 1] or [5, Proposition 13.3] with
k = 10): if n ≤ x, then

(3.1) Λ(n) =
10∑

j=1

(
10

j

)
(−1)j

∑

n=m1···m2j

m1,...,mj≤x1/10

µ(m1) · · ·µ(mj) logm2j.

First, we deal with the possibility that H(m, r,Q) may contain the prin-
cipal character χ0 modulo m. We have

∑

N<n≤2N

Λ(n)χ0(n)n−s =
∑

N<n≤2N

Λ(n)n−s +O(L2).

Hence, if χ0 ∈ H(m, r,Q), the left side of (1.2) does not exceed

∑

χ∈H(m,r,Q)
χ 6=χ0

T\
−T

∣∣∣
∑

N<n≤2N

Λ(n)χ(n)n−it
∣∣∣ dt+

T\
−T

∣∣∣
∑

N<n≤2N

Λ(n)n−it
∣∣∣ dt+ TL2.
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Thus, it suffices to establish (1.2) when H(m, r,Q) is of one of the two types
considered in Theorem 2.1.

By (3.1) with x = 2N and a standard splitting argument,
∑

N<n≤2N

Λ(n)χ(n)n−s ≪
∑

M

∣∣∣
∑

N<n≤2N

a(n;M)χ(n)n−s
∣∣∣,

where M runs over O(L19) vectors M = (M1, . . . ,M2j), j ≤ 10, subject to

M1, . . . ,Mj ≪ N1/10, N ≪M1 · · ·M2j ≪ N,

and

a(n;M) =
∑

n=m1···m2j

Mi<mi≤2Mi

µ(m1) · · ·µ(mj)(logm2j).

Hence, the left side of (1.2) is bounded above by

L19
∑

χ∈H(m,r,Q)

T\
−T

∣∣∣
∑

N<n≤2N

a(n;M)χ(n)n−it
∣∣∣ dt

for some fixed choice of M as above. Thus, if we show that

(3.2)
∑

χ∈H(m,r,Q)

T\
−T

∣∣∣
∑

n

a(n;M)χ(n)n−it
∣∣∣ dt≪ (N +HN11/20)L1020,

the desired result (with C = 1100) will follow by Lemma 2.4.

The Dirichlet polynomial on the left side of (3.2) is the product of 2j,
j ≤ 10, Dirichlet polynomials of the form (1.1) with coefficients an = µ(n),
an = 1, or an = logn. Furthermore, the single logarithmic weight can be
removed by partial summation. Therefore, we may assume that

a(n;M) = L
∑

n=m1···m2j

Mi<mi≤M ′

i

µ(m1) · · ·µ(mj),

where Mi < M ′
i ≤ 2Mi (in reality, M ′

i = 2Mi except for i = 2j). We may
now assume that Mj+1 ≤ · · · ≤M2j . We proceed to show that

a(n;M) = L
∑

n=n1n2n3

b1(n1)b2(n2)b3(n3),

where the coefficients on the right yield a Dirichlet polynomial (2.1) that
satisfies at least one of the hypotheses (i) or (ii) of Theorem 2.1. The analysis
involves several cases depending on the sizes of M1, . . . ,M2j .

Case 1: M2j ≫ N9/20. Assuming that j ≥ 2 (the case j = 1 is similar
and easier), we group the variables m1, . . . ,m2j into n1, n2, n3 as follows:

n1 = m3 · · ·m2j−1, n2 = m1m2, n3 = m2j.
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Since M1 · · ·M2j−1 ≪ N11/20, this yields a polynomial F (s, χ) satisfying
hypothesis (i) of Theorem 2.1.

Case 2: M2j ≪ N9/20 ≪ M1 · · ·MjM2j . Let i be the least integer for
which M1 · · ·MiM2j ≫ N9/20. Since Mi ≪ N1/10, we have

N9/20 ≪M1 · · ·MiM2j ≪ N11/20.

Hence, the choice

n1 = m1 · · ·mim2j, n2 = mi+1 · · ·m2j−1, n3 = 1

yields an F (s, χ) that satisfies hypothesis (ii) of Theorem 2.1.

Case 3: M1 · · ·MjM2j ≪ N9/20. Let ℓ be the least positive integer such
that

M1 · · ·MjMℓ · · ·M2j ≪ N9/20.

We consider three subcases.

Case 3.1: Mℓ−1 · · ·M2j ≪ N11/20. Then we can argue similarly to
Case 2 to find an i, 0 ≤ i ≤ j, for which

N9/20 ≪M1 · · ·MiMℓ−1 · · ·M2j ≪ N11/20.

Again, we will have F (s, χ) that satisfies hypothesis (ii) of Theorem 2.1.

Case 3.2: Mℓ−1 · · ·M2j ≫ N11/20 and Mℓ−1 ≪ N8/35. Then we define

n1 = m1 · · ·mjmℓ · · ·m2j, n2 = mj+1 · · ·mℓ−2, n3 = mℓ−1.

Since Mj+1 · · ·Mℓ−2 ≪ N9/20, we again get an F (s, χ) that satisfies hypoth-
esis (ii) of Theorem 2.1.

Case 3.3: Mℓ−1 · · ·M2j ≫ N11/20 and Mℓ−1 ≫ N8/35. This may occur
only with ℓ = 2j. Then

M1 · · ·M2j−2 ≪ NM−2
2j−1 ≪ N19/35 ≪ N11/20, M2j−1 ≪M2j ≪ N9/20.

We write

b1(n) =
∑

n=m1···m2j−2

µ(m1) · · ·µ(mj), n2 = m2j−1, n3 = m2j,

and we obtain an F (s, χ) that satisfies hypothesis (i) of Theorem 2.1.

The desired bound (3.2) follows on noting that the arising coefficients
satisfy (2.2) with κ, ν for which c(κ, ν) ≤ c(18, 2) = 1012.

4. Exponential sums twisted by characters. In this section we es-
timate the exponential sum

(4.1) W (β, χ) =
∑

N<p≤2N

(log p)χ(p)e(βpk),
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where k is a positive integer, β is “small”, and χ is Dirichlet character.
Such exponential sums arise in dealings with the major arcs in the Waring–
Goldbach problem and related questions. In particular, in the proof of The-
orem 1.3 we need the case k = 1 of our estimates.

Lemma 4.1. Suppose that N ≥ 2 and 0 ≤ ∆ ≤ N1−k. Suppose also that

H(m, r,Q) is a set of characters as in Theorem 1.1 and W (β, χ) is defined

by (4.1). Then

(4.2)
∑

χ∈H(m,r,Q)

max
∆≤|β|≤2∆

|W (β, χ)| ≪ T
−1/2
0 LC+1(N +HN11/20),

where T0 = 1 + ∆Nk, H = mr−1Q2T0, L = logN , and C is the constant

appearing in Theorem 1.1.

Proof. We first replace W (β, χ) by the exponential sum

W̃ (β, χ) =
∑

N<n≤2N

Λ(n)χ(n)e(βnk)

using the fact that

(4.3) W (β, χ) = W̃ (β, χ) +O(N1/2).

By Perron’s formula [5, Proposition 5.54], for N < M ≤ 2N ,

(4.4)
∑

N<n≤M

Λ(n)χ(n)

=
1

2πi

b+iT1\
b−iT1

F (s, χ)
M s −N s

s
ds+O

(
NL2

1 + T1‖M‖

)
,

where 0 < b < (logN)−1, T1 = (HN)10, ‖M‖ is the distance from M to the
nearest integer, and

F (s, χ) =
∑

N<n≤2N

Λ(n)χ(n)n−s.

Hence, by partial summation,

(4.5) W̃ (β, χ) =
1

2πi

b+iT1\
b−iT1

F (s, χ)V (s, β) ds+O(1),

where

V (s, β) =

2N\
N

ys−1e(βyk) dy.

By [5, Lemma 8.10], for ∆ ≤ |β| ≤ 2∆,

(4.6) V (σ + it, β) ≪ Nσ min{T
−1/2
0 , sup

N≤y≤2N
|t+ 2kπβyk|−1}.
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Combining (4.5) and (4.6) and letting b ↓ 0, we obtain

W̃ (β, χ) ≪ T
1/2
0

T1\
−T1

|F (it, χ)|
dt

T0 + |t|
+ 1.

Recalling (4.3), we deduce that the left side of (4.2) is bounded above by

(4.7) LT
1/2
0 T−1

∑

χ∈H(m,r,Q)

T\
−T

|F (it, χ)| dt+ |H|N1/2,

for some T in the range T0 ≤ T ≤ T1. The result now follows from (1.2).

We now define the exponential integral

(4.8) v(β;X) =

2X\
X

e(βyk) dy.

Lemma 4.2. Suppose that N ≥ 2, 1 ≤ Q ≤ N , and 0 ≤ ∆ ≤ N1−k. Let

W (β, χ) be defined by (4.1). Then, for any fixed A > 0 and δ > 0,

(4.9)
∑

Q<q≤2Q

∑∗

χ mod q

max
∆≤|β|≤2∆

|W (β, χ)| ≪ NQδL−A+Q2T
1/2
0 N11/20LC+1,

where T0 = 1 +∆Nk, L = logN , and C is the constant appearing in Theo-

rem 1.1. Furthermore, for any fixed A > 0 we have

(4.10) W (β, χ0) − v(β;N) ≪ NL−A + T
1/2
0 N11/20LC+1,

where v(β;N) is defined by (4.8) and χ0 is the trivial character. In both

(4.9) and (4.10) the implied constants may depend on A, and the implied

constant in (4.9) may also depend on δ.

Proof. The first claim follows from Lemma 4.1 and the Siegel–Walfisz
theorem in the form of [5, (5.79)]. Put B = (2+ δ−1)(A+C+1). If Q ≥ LB

or ∆ ≥ LBN−k, we have

NT
−1/2
0 LC+1 ≪ NQδL−A

and (4.9) follows from (4.2) with m = r = 1. On the other hand, if Q ≤ LB

and ∆ ≤ LBN−k, we find by partial summation that the left side of (4.9)
is bounded above by

L3B+1 max
N<N1≤2N

∣∣∣
∑

N<p≤N1

χ(p)
∣∣∣ ≪ NL−A,

by the aforementioned version of the Siegel–Walfisz theorem.
The proof of the second claim is similar, except that it appeals to the

case m = r = Q = 1 of Lemma 4.1 and to the prime number theorem (which
is why we need to include the term v(β;N) on the left side of (4.10)).
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Lemma 4.3. Suppose that N ≥ 2 and N−k ≤ ∆ ≤ N1−k. Suppose also

that H(m, r,Q) is a set of characters as in Theorem 1.1 and W (β, χ) is

defined by (4.1). Then

(4.11)
∑

χ∈H(m,r,Q)

{ ∆\
−∆

|W (β, χ)|2 dβ
}1/2

≪ N−k/2LC+1(N +HN11/20),

where H = mr−1Q2∆Nk, L = logN , and C is the constant from Theo-

rem 1.1.

Proof. By [10, Lemma 1.9], we have

∆\
−∆

|W (β, χ)|2 dβ ≪ ∆2
∞\
−∞

∣∣∣
∑

u(y)<p≤v(y)

(log p)χ(p)
∣∣∣
2
dy(4.12)

≪ ∆2Nk
∣∣∣

∑

M<n≤M+Y

Λ(n)χ(n)
∣∣∣
2
+∆2Nk+1,

where u(y) = max(N, y1/k), v(y) = min(2N, (y + (2∆)−1)1/k), and

(4.13) N < M ≤ 2N, Y ≪ ∆−1N1−k.

Without loss of generality, we may assume that the distance from M to the
nearest integer is 1/2 and that Y is an integer. We then appeal to Perron’s
formula to derive

∑

M<n≤M+Y

Λ(n)χ(n) ≪
∣∣∣
b+iT1\
b−iT1

F (s, χ)
(M + Y )s −M s

s
ds

∣∣∣ + 1,

where 0 < b < L−1, T1 = (HN)10, and F (s, χ) is the Dirichlet polynomial
appearing in the proof of Lemma 4.1. Hence, as in that proof,

(4.14)
∑

M<n≤M+Y

Λ(n)χ(n) ≪

T1\
−T1

|F (it, χ)|
dt

T0 + |t|
+ 1,

where T0 = ∆Nk. By (4.12) and (4.14), the left side of (4.11) is bounded
above by

∆Nk/2LT−1
∑

χ∈H(m,r,Q)

T\
−T

|F (it, χ)| dt+HN (1−k)/2,

where T is subject to T0 ≤ T ≤ T1. The result now follows from (1.2).

5. Proof of Theorem 1.3. Since the proof follows closely the proof of
the main result in [7], we only describe the necessary changes. Let N be a
large parameter chosen as in [7, Lemma 2.3] and set

(5.1) P = (N/B)9/20, L = logN, Q = N/(PL2).
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We note that the improvement on the result of Liu and Tsang arises from
the choice of P in (5.1): the respective choice in [7] is P = (N/B)2/5 (see
[7, (2.1)]). In order to justify the analysis in [7] for this larger value of P ,
we need appropriate variants of [7, Lemmas 3.2 and 3.3]. If we weaken the
bound in part (i) of [7, Lemma 3.3] to

Jj(R) ≪ τ(̟)R−1/9N |aj|
−1Lc,

then the modified lemma (which suffices for the proof of Theorem 1.3) holds
with P = (N/B)9/20.

Now, let Nj = N/|aj|, N
1/10 ≤ R ≤ P , and g,D be positive integers.

Define

Kj(g;R) =
∑

R<r≤2R

√
([g, r], D)

[g, r]

∑∗

χ mod r

( 1/(RQ)\
−1/(RQ)

|Wj(ajβ, χ)|2 dβ
)1/2

,

where Wj(β, χ) is the sum (4.1) with N = Nj and k = 1. In order to prove
[7, Lemma 3.2] with P as in (5.1), we need to show that

(5.2) Kj(g;R) ≪ g−1
√

(g,D) τ(gD)2NjN
−1/2Lc

for some absolute constant c. By [7, (5.20)],

(5.3) Kj(g;R) ≪

√
(g,D)

gR

∑

d|gD
d≤2R

dτ(d)K̃j(d;R),

where

K̃j(d;R) =
∑

χ∈H(1,d,2R)

( 1/(RQ)\
−1/(RQ)

|Wj(ajβ, χ)|2 dβ
)1/2

.

By Lemma 4.3 with k = 1,

K̃j(d;R) ≪ |aj |
−1/2

∑

χ∈H(1,d,2R)

( |aj |/(RQ)\
−|aj |/(RQ)

|Wj(β, χ)|2 dβ
)1/2

≪ N−1/2LC+1(Nj +HjN
11/20
j ),

where C is the constant appearing in Theorem 1.1 and

Hj = d−1R2(|aj |/(RQ))Nj ≪ d−1PRL2 ≪ d−1RN
9/20
j L2.

Thus,

K̃j(d;R) ≪ NjN
−1/2LC+3(R/d+ 1).

Clearly, this inequality and (5.3) imply (5.2). This completes the proof of
the theorem.
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