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1. Introduction and statement of results. For an odd prime p let A,
denote the real Dirichlet character modulo p given by the Legendre symbol
(5) Let L(s,x) be the Dirichlet L-function associated with a character .
The value distribution of L(s, Ap) for a complex number s with Res > 1/2 as
p varies over the odd primes is investigated e.g. in [El]. The main purpose of
the present paper is to study the functional distribution of L(s, Ap) on D, as
p varies over the primes in an arithmetic progression; here and henceforth
D denotes the strip {s € C | 1/2 < Res < 1}. More precisely, we shall
establish the so-called universality theorem for L(s, \p) in the p-aspect.

The universality theorem was first discovered by Voronin ([Vo], [KV])
for the Riemann zeta-function ((s) in the t-aspect; he showed the following.

THEOREM ([Vo]). Let 0 < r < 1/4 and h(s) be a continuous function on
the disk |s| < r which is holomorphic and has no zeros in |s| < r. Then for
any € > 0 there exists a real number t such that

max |((s+ 3/4 +it) — h(s)| < e.
Is|<r

The universality theorem for a Dirichlet L-function L(s,y) in the t¢-
aspect was obtained by Bagchi [B1], [B2], Gonek [Go] and Voronin (see
[KV, Chapter VII, Section 3]) independently; indeed, the joint universality
theorem was shown.

Furthermore, Bagchi [B1], Eminyan [Em] and Gonek [Go] independently
showed an analogous result for Dirichlet L-functions in another aspect. In
fact, they established the universality theorem for the family of L(s, x)’s as
x varies over the set of characters modulo ¢ with ¢ large.

We denote by R, R*, Z and N the set of all real numbers, positive real
numbers, integers and positive integers, respectively. For a discriminant d, let
X4 denote the real Dirichlet character modulo |d| defined by the Kronecker

2000 Mathematics Subject Classification: Primary 11M06, 41A30; Secondary 11R42.

[143]



144 H. Mishou and H. Nagoshi

symbol (Q)K Letting v stand for the plus sign or the minus sign, we define
DY . { {d > 0| d is a square-free integer, d =1 mod 8, d # 1} if vis +,
' {d < 0] d is a square-free integer, d = 1 mod 8} if vy is —,
and
D} :={deD||d <X} forXeR".

The authors [MN1] have recently obtained the following universality theo-
rem, which is an analogue of Bagchi, Eminyan and Gonek’s result above for
the family {L(s, xq) | d € D7} of L-functions associated with real characters
Xa: Let £2, h(s) and K be as in Theorem 1.1 below. Then for any € > 0 we
have

(1.1) lgnmf # il #{d e D} | maX]L(s xda) — h(s)] <e} > 0.

In the present paper we investigate the universality theorem for L(s, \p)
in the prime p-aspect, as mentioned above. Noting that L(s, \,) is equal
to L(s, xq) with a certain integer ¢ (see (3.3)), we will deal with L(s, xq)
instead of L(s, Ap). Throughout let v € {4+, —} and let m and a = a(7y) be
any fixed positive integers such that ged(m,a) = 1, 8| m, a = 1 mod 4 if ~
is + and a = 3 mod 4 if v is —. We define

{p | p is a prime, p = a mod m} if v is +,
PY(m,a) = : : .
{=p| pis aprime, p=amodm} if~yis—,
and
Py (m,a) :={qgeP'(m,a)|lqg <X} for X >0.
By the prime number theorem for arithmetic progressions,

1 X
1.2 7 ~N—_—— X
where ¢(m) denotes the Euler totient function. Every integer ¢ in P7(m, a)
is a prime discriminant (for its definition, see e.g. [Ay, p. 310], [Da, p. 41)).
In the following, the letter p will stand for a prime number and ¢ for a prime
discriminant.

THEOREM 1.1. Let v € {+,—}. Let m,a € N be as above. Let 2 be a
simply connected region in D which is symmetric with respect to the real axis.
Suppose that h(s) is a holomorphic function on {2 which has no zeros on {2
and is R" -valued on the set 2NR. Let K be a compact set in §2, and € > 0.
Then there ezist infinitely many q € P¥(m,a) such that maxscg |L(s, xq) —
h(s)| < €. More precisely, we have

(13) lminf ﬁ #(g € P(m,a) | max|L(s, xg) ~h(s)] < &} > 0.
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It should be noted that the results (1.1) and (1.3) do not directly imply
each other, because the density of the set PY(m,a) in D7 is 0 in the sense
that #PJ (m,a)/#D} — 0 as X — oo (see [MN1, Lemma 4.1] and (1.2)).

In the same way as in the present paper, we can generalize (1.1) to the
result in which d varies over the fundamental discriminants in the arithmetic
progression {km + a | k € Z}, where m,a € N are as in Theorem 1.1.

Theorem 1.1 yields the following corollaries, for example. First we get
a denseness result on values of L(s, x4)’s for fixed s € D and variable ¢ €
P7(m,a). This is analogous to Bohr-Courant’s result [BC] on values of the
Riemann zeta-function ((s).

COROLLARY 1.2.

(1) Let any so € D with Im sy # 0 be fized. Then the set {L(so,xq) | ¢ €
PV(m,a)} is dense in C. More precisely, for any zo € C and € > 0
we have

o 1
(14) lﬁyggfm #{q € P}(m, CL) ’ |L(507Xq) — ZO| < 5} > 0.

(2) Let 1/2 < 09 < 1 be fized. Then the set {L(og,xq) | ¢ € P (m,a)}
is dense in RT. More precisely, for any xog € RT and € > 0 we have

o 1
lggglof ) #{q € P} (m,a) | |L(oo, xq) — x| < €} > 0.

Next we have a non-vanishing result for L(s, x4)’s on D, and the following
stronger result.

COROLLARY 1.3. Let o, 3 be any positive real numbers with o < (3. Let
K be a compact set in D. Then

- 1
lgriglof m #{q € P}(m,a) | a < |L(s,xq)| < B

uniformly for s € K} > 0.

Noting that L(s, x4) is R-valued on the real segment (1/2, 1), we can ob-
tain a result concerning the horizontal distribution of zeros of the derivatives
L) (s,x,4) on (1/2,1) in the g-aspect.

COROLLARY 1.4. Let o, € R with 1/2 < a < 3 <1 and r',N € N.
Then there exist infinitely many q € PY(m,a) such that for every integer r
with 1 < r < ¢’ the rth derivative L(’”)(s,xq) has at least N zeros on the
interval o, 5] C R. More precisely,

1
h)?iio%f W #{q € PY(m,a) | L) (s,x,) has at least N zeros

on |, B] for everyr=1,...,7"} > 0.
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We shall also study the denseness result on values of L(s, x4) for a fixed
complex number s # 1 with Res = 1 and variable ¢ € PY(m, a).

THEOREM 1.5. Lett € R—{0} be fized. Then the set {L(1+it,xq) | q €
PY(m,a)} is dense in C. More precisely, for any zop € C and € > 0 we have

. 1 .
%?Lloréf m #{q € PY(m,a) | |L(1 +it,xq) — 20| <e} > 0.
In [MN2] the authors showed an analogue of Theorem 1.5 for L(1, X))
and deduced from it a quantitative result for a problem of Ayoub—Chowla—
Walum on certain character sums.

2. Denseness lemma. The purpose of this section is to show Proposi-
tion 2.3 below. For s € C we write s = o + 1t with o,¢ € R. The next lemma
is proved in [MN1, Proposition 2.4].

LEMMA 2.1. Let §2 be a simply connected region in D symmetric with
respect to the real axis, as in Theorem 1.1. Let U be a bounded, simply
connected region in {2 which is symmetric with respect to the real axis and
which satisfies U C §2, where U denotes the closure of U. Suppose that g(s)
s a holomorphic function on {2 which is R-valued on the interval 2NR. Let
y > 0 be fized. Then for any € > 0 there exist v € R and ¢, € {1,—1}, for
each prime p with y < p < v, such that

Vlgts)— > p—’;

U y<p<v

2
dodt < e.

The next lemma is a generalization of [Ti, p. 303, Lemma| and was
obtained in [MN1, Lemma 2.5].

LEMMA 2.2. Let U be a bounded region in C. Let K be a compact sub-
set of C such that K C U. Let B > 0. Suppose that f(s) is a holomor-
phic function on U satisfying §,;|f(s)|* dodt < B. Then maxsek |f(s)] <
b(U, K) B2 where b(U, K) is a certain positive constant depending only on
U and K.

PROPOSITION 2.3. Let {2 be a simply connected region in D symmetric
with respect to the real azis. Suppose that g(s) is a holomorphic function on
2 which is R-valued on 2 NR. Let K be a compact set in 2 and v, € RT
with vi > m+1. Let a, € {1, —1} for each prime p with p| m. Then for any
e > 0 there exist v > v and a, € {1, -1}, for each prime p with p < v and
pfm, such that

max

<eg,
seK

g(s) —log [ [ (1 - %) -

p<v




Universality of quadratic L-series 147

where

1ogH(1__> __Zlog<1__> ZZ

p<v p<v p<vn= 1

Proof. Take a bounded, simply connected region U in {2 which is sym-
metric with respect to the real axis and which satisfies K C U and U C £2.
Set o1 := min{Res | s € U} > 1/2. Let ¢ > 0 be arbitrary. Fix a real
number y satisfying y > vy and y1_2"1/(201 — 1) < e. Then we have

(2.1) I ZZ = T

npno1
p>y n=2 P p>y n= 2 p>y
1 201
< E < e.
n2‘71 201 -1
n>y,neN

Set a, = 1 for each prime p with p < y and ptm. From Lemma 2.1
it follows that there exist v > y and ¢, € {1,—1}, for each prime p with
y < p < v, such that

(o0 -5

p<yn= 1
This and Lemma 2.2 yield

do dt < 2.

-

y<p<v

(2.2) max

<UK €.
seEK v,

gs

P

p<y n= 1 y<p<v

For each prime p with y < p < v we set a, = ¢,. Then we obtain, by
(2.1) and (2.2),

mﬁj@--)l

max\|g
eK
s p<v
= o) - >3 ns—Z 3P
K n n
5€ p<y n=1 p y§p<u y<p<vn=2 p
< ma)o > e T S0
S €
s p<y n= l y<p<1/p s y<p<vn=2 np"
<<UK6+ZZn no1 &
p>y n=2

which completes the proof. =
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3. Approximation by finite Euler products. As usual, let m(X)
denote the number of primes not exceeding X € RT. For large X € R™, let
Rx denote the set

{s=oc+iteC|1/2+ (logloglogX)—1/2 <o <5/4,t < X1—13(20—1)}
and put
(3.1) hx = (loglog X)%.

The next lemma is obtained in [El, Lemma 8|.

LEMMA 3.1. For all large X and uniformly for s € Rx we have
> ’L(s A= 1 (1—A7‘—@>_12
s I\T ps

< m(X)h* (loghx)*(20 —1)~*
3<r<X p<hx

r: prime

Recall that for an odd prime r and a positive integer n we have the
relation (see e.g. [Ay, p. 290, Lemma 2.2])

<£> if r =1 mod 4,
n
(3.2) <ﬁ> - K
r —r
(—> if r = 3 mod 4,
n/x
and hence

<8)\):{L(S,Xr) if r =1 mod 4,

3.3
(8:3) L(s,x—r) if r =3 mod 4.

PROPOSITION 3.2. Let € > 0 and K be a compact set in the region
1/2 < Res < 5/4. Define Ay (m,a) = Ay (m,a,e,K) by
< }

Al (m,a) = {q € Py (m,a)

max
seK p<hx
Then )
#A§(m7 a) > 1 —¢
#Px(mv a)

if X is sufficiently large.

Proof. Take an open rectangle U of the form {s € C | 01 < Res < 09,
|Im s| < A} satisfying 1/2 < 01 < min{Res | s € K} < max{Res |s € K}
< 09 < 5/4 and max{|Ims| | s € K} < A. Then K C U. For large X € R"
we define X} (m,a) to be the set

e 1 (1-42)

2 52
do dt < 7}
p<hx

(3.4) {q € P} (m,a) (U, K )2
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where b(U, K) is the constant in Lemma 2.2. By Lemma 2.2,
(3.5) .Z;’((m,a) C Ak (m,a).

From Lemma 3.1, (3.2), (3.3), the prime number theorem, and (1.2), we
infer that for all large X,

~1
3o X fpeow- IT (142

q€PY (m,a) U p<hx

)

3<r<X U p<hx
r:prime

<y m(X)hY * (log hx)? (201 —1)™*

2
do dt

2
do dt

< p(m)#PL(m, a)hy > (log hx )3 (201 — 1)7%.

Since hi(_%l (loghx)? — 0 as X — oo, it follows from (3.6) that there exists
a large number Xy = Xy(e, U, K, m) such that for all X > X,

—-1,2
(3.7) AR | (1—Xq—(sm> do dt
q€PY (m,a) U p<hx P
53 ~
<y, FPx i)

Now assume that there exists a real number X > X such that #(P(m, a)
— A% (m,a)) > e#P¥(m,a). For this X we have, by (3.4),

12
> VLG - T (1—Xq—(sm) do dt
qg€P (m,a) U p<hx p
Xa@)\ |
= Z S‘L(SvXq)— H (1_(1_5) do dt
qeP% (m,a)—ﬂ}f( (m,a) U p<hx p

v g2 3 »

> _ .

However, this contradicts (3.7). Hence for any X > X, we have
#(PY(m,a) — Ak (m,a)) < e#P(m, a),
that is, #.Il}((m, a)/#P3%(m,a) > 1—e. This and (3.5) complete the proof.
4. Results on characters x, for prime discriminants g. The aim

of this section is to obtain Proposition 4.3. As before, the letter v denotes
the plus sign or the minus sign. For X € R we define Ix to be the interval



150 H. Mishou and H. Nagoshi

[0, X] if v is 4, and [—X, 0] if v is —. We define

1 ifryis +,
(4.1) §=10(y)= o
-1 ifvyis —.
LEMMA 4.1. Fiz a number v € R such that ©(v) > w(m). Let a, €
{1, -1} for each prime p satisfying p < v and ptm. Define P} ,(m,a) =
P (m,a,{ay}) to be the set

{g € P (m,a) | xq(p) = ap for every prime p with p < v and pfm},
and put Cy(m) = [],<) pim 1. Then

_ #Px,(m,a)
Xlgnoo #PY(m,a) Co(m).

Proof. In general, for n € N and b € Z, we denote by [b],, the set of all
integers x such that x = b mod n, that is, the residue class mod n which b
belongs to.

Let p be an odd prime. Let Q,, be the set of all residue classes [b], mod p
such that b is a quadratic residue mod p, other than the residue class [0],
and let Q) be the set of all residue classes [c], mod p such that c is a
quadratic non-residue mod p. It is well known that
(4.2) #0,=#, =11
In view of the definitions of Kronecker’s symbol and Legendre’s symbol,
a discriminant ¢ satisfies x4(p) = a, if and only if ¢ belongs to one of
residue classes in @, if a, = 1 and in Q; if a, = —1. From this, (4.2) and
the Chinese remainder theorem, it follows, for an integer r such that &r
is a prime number, that r satisfies r = da mod m (i.e. r € PY(m,a)) and
Xr(p) = ap for every prime p with p < v and p{m if and only if r belongs
to one of exactly [,<, ,um, (P — 1)/2 distinct residue classes mod @, where

Q=Qm,v):=m [[ »
p<v,ptm
and 0 is as in (4.1). Let RY = RY(m,a,v) denote the set of those residue

classes mod @, so that

(4.3) #r7 =[] p_;1.

p<v,ptm
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Thus
(44) Px,(m,a)={r € Ix | or is a prime, r = da mod m,

xr(p) = ap for every prime p with p < v and pfm}

= U {r € Ix | 0r is a prime, r = c mod Q}.

[c]oeRY
We note that if [c]g € RY then
(4.5) ged(e, Q) =1,
since [0], ¢ Q, and [0], ¢ Q) for all primes p with p < v and p{m, and
ged(a,m) = 1.

From (4.4) we have

#P}V m,a) Z Z Z Z 1.

[clgeRY re&lx,dr:prime [cloeRY p<X
r=c mod Q p=dc mod Q

By the prime number theorem for arithmetic progressions and (4.5),

1 X
(4.6) Z 1~ — as X — oo.
= p(Q) log X
p=dc mod Q

Note that the right-hand side of (4.6) is independent of [¢|g € R”. Therefore
for fixed v we have

#RY X

@D AP~ o g X
—( I 1) X Cm) X
R pSv,ermQ e(m)log X — ¢(m) logX

as X — oo, using (4.3) and the fact
(4.8) (@ =¢m) [[ e =vem) [] @-1.
p<v, ptm p<v, ptm
Thus (4.7) and (1.2) give us

Cu(m
#P;Y(,y(mv CL) o #P;(,y(m7 CL) Lp(g’n,)) logX Lp(%’n,) log(X

FPLmea) Gl X 7L X P (m,a)

— Cy(m)

as X — oo. This completes the proof. m

LEMMA 4.2. Fiz v € RY such that 7(v) > w(m). Let a, € {1,—1} for
each prime p with p < v and ptm. Let P} (m,a) and C,(m) be as in
Lemma 4.1, hx = (loglog X)? be as in (3.1), and o1 > 1/2. Then for all
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large X and uniformly for s € C with Res > o1 we have

(4.9) Z Z Xq(p)‘2 < v

ps 201 —1
qGP}’U(m,a) v<p<hx

1—207

Cy(m) #P%(m,a).

Proof. Let (Q and R” be as in the proof of Lemma 4.1. From (4.4) it
follows that

2 2
> 3 Xq(P) ) 3 >y Xr(p)
(4.10) p — =
q€P% , (m,a) v<p<hx [JoERY r€lX,dr: prime 'v<p<hx
' r=c mod @
2
-y 3 Xsu(P)
= E =
[doeRY u<X,u:prime 'v<p<hx

u=dc mod Q

For [c]g € RY we have

(4.11) >

u<X,u:prime
u=dc mod Q

_ ’X&u(p)P XJu(pl)X&L(p?)
> (Z P 2 )

pips
u<X,u:prime “v<p<hx P1,p2 : primes, p1#p2 1472
u=dc mod Q v<p1,p2<hx

. |p1|2 S )

v<p<hx <X, u:prime
u=dc mod Q

+ Z . Z X§u(p1)X5u<p2)

pivs
p1,p2 : primes, p1#p2 © 172 u< X, u:prime
v<p1,p2<hx u=dc mod Q

> )

v<p<hx

=51+ 5, say.

Using the prime number theorem for arithmetic progressions, we deduce
that for all s € C with Res > oy

(4.12) s 3 p2101 Y

v<p<hx u<X,wu:prime
u=dc mod Q
1 1 X
<<< 2 n?"l)so(cz) log X

n>v,neN
pl—201 1 X
< 201 — 1 ¢o(Q) log X~
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Next we shall consider the sum Sy. Fix two distinct primes p1, po satisfy-
ing v < p; < hx and v < ps < hx. Then by the definition of the Kronecker
symbol and the orthogonality relation for Dirichlet characters, we have

(413) Y xe)xem) = Y. (5—u)<5—u)

u< X, wu:prime u<X,wu:prime p1 p2
u=dc mod Q u=dc mod Q

R ) (S Eo IR

u<X,w:prime A mod @

) 6), 2,2 (i)(i)AW%

u<X,u:prime

where .4 o means the sum over all the Dirichlet characters A mod Q.
Since p1, p2 and @ are relatively prime in pairs, we find from the Chinese
remainder theorem that for any character A mod () the product ( ) (p‘2 ) A()
is a non-principal Dirichlet character mod pip2@Q. From this, the Siegel—
Walfisz theorem (see [Da, p. 132, (3)]) and partial summation, it follows, for
fixed v, that for all large X and all pairs of distinct primes (p1, p2) satisfying
v<pi <hyx and v < py < hx, we have

(4.14) Y <ﬁ> <3>A(u) < Xe bVioeX
u<X,u:prime p1 p2

where b is an absolute positive constant. From this and (4.13) we infer

1
(4.15) |Ss| < > | Y. XouP1)Xsu(p2)
P1,p2 : primes, p1#p2 P1 P2 u<X,u: prime
v<p1,p2<hx u=dc mod Q
1 —by/Tog X
- Y opee
p1,p2 : primes, p1#py * 1
v<p1,p2<hx
2
1
< (5 1) o0 g xe e
Pt
p<hx

— \log X /)

Consequently, for fixed v we find, from (4.11), (4.12) and (4.15), that for
all large X and uniformly for s € C with Res > oy,

1—201 1 X
(4.16) 3 X‘su ’ " e
u<X,wu:prime o1~ QP(Q) 08
u= JCmon

v<p<hx
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Note that the right-hand side of (4.16) is independent of [¢]g € R". Com-
bining (4.16), (4.10), ( 3), (4.8) and (1.2), we conclude that

2 1—201
X v 1 X
Z ZD <HRY 201 — 1 p(Q) log X
qEP}Wﬁnﬂ)V<p<hX
V1—20'1 @(m) 1—201
¥ v v
L #R 201 =1 9(Q) #Pi(m,a) < Cr— Cy(m)#Px(m,a).

This completes the proof. m

To obtain (4.14) we have used the Siegel-Walfisz theorem. We remark
that actually, instead of the Siegel-Walfisz theorem, a weaker result (e.g.
[Da, p. 123]) is sufficient since p1p2Q <, h% = (loglog X)*.

PROPOSITION 4.3. Let o1 > 1/2 and K be a compact subset of C such
that K C {s € C | Res > o1}. Let € > 0. Then there exists a large real
number vy = vy(o1, K,e,m) depending only on o1, K,e and m, and satisfy-
ing m™(vp) > m(m) and the following. Fiz any real number v > vy. Let a, €
{1, =1} for each prime p satisfying p < v and pfm. Let Py (m,a),Cy(m)
and hx be as in Lemma 4.2 for large X. Define BXV(m a) = B}(,V(m, a, e,

O-vi’{ap}) by
B, (m,a) == {q € Py, (m,a) Xq ‘ < 5}.

Hl

y<p<hX
Then for all sufficiently large X we have

#B% ,(m,a) 1

#PY(m,a) ~ 3

Proof. Set 02 =1+ sup{Res|s € K} and A=1+sup{|Ims||s e K}.

Let U be the open rectangle {s € C | o1 < Res < o2,|Ims| < A} in C,

and then U D K. Take a large real number vy = vy(o1, K, e, m) satisfying
m(vg) > m(m) and

Cy(m).

1—207 €2

1%
(4.17) (lsjldadt)c2001_1 S WU, K2

where ¢ is the absolute constant implied by the symbol < in (4.9), and
b(U, K) is the constant in Lemma 2.2. Note that vy depends only on o1, K, &
and m.

In the following we fix any v > vg. For large X we define

(4.18) B, (m.a)

S qu

U

62
d dt < ———— ».
? <b<U,K>2}

{qGPXVma

v<p<hx
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By Lemma 2.2,
(4.19) B, (m,a) C B, (m,a).
By Lemma 4.2 and (4.17), we have, for all large X,

(4.20) > 0y qu' do dt

qEP’Y ,(m,a) Uv<p<hx

1—207

§(§]1dadt) 2”01_1 L (m) #P (m, a)

82

—=C) i .
Now we assume that there exists a large number X such that
~ 1
#(Px,,(m,a) — B ,(m,a)) > 1 Cy(m) #P}(m,a).
Then for this X we have, using (4.18),

> oy ’dadt

q€P% , (m,a) U'v<p<hx
> Yy

g€PY , (m.a)~BY, (m,a) U'v<p<hx

da dt

1 €2
v
2 7 Cv(m) #Px(m, a) WU KR
However, this contradicts (4.20). Hence for all large X we have

(P (m,0) — B, (m,a)) < 7 Culm) #P% (. a),
=)
#BX L(m,a) #P}yy(m, a) 1
#Py(m.a) ~ #Pi(m.a)
Further, Lemma 4.1 implies that
#Px,(m,a) 3
#PY(m,a) - 4

(4.21)

C,(m).

(4.22) Cy(m) if X is large enough.
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Combining (4.19), (4.21) and (4.22), we conclude that if X is large enough

then

#B%, (m,a) . #BY ,(m, a) 3 1 1
#PY(m,a) #P)(m,a) 4 4
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5. Proofs of Theorem 1.1 and its corollaries

Proof of Theorem 1.1. Let € > 0 be an arbitrary small number. Take
a real number o7 > 1/2 such that K C {s € C | Res > o1}. Fix a large
positive number v satisfying v1 > vy(01, K, €, m) and 1/%_2”1/(201 1) <e,
where vy(o1, K,e,m) is the constant in Proposition 4.3. We set ag to be 1
ifa=1or 7mod 8, and —1 if @ = 3 or 5 mod 8. Further, we set a, = (%‘)
for each odd prime p with p|m, where § is as in (4.1).

As is shown in [MN1], there exists a holomorphic function g(s) on {2

such that g(z) € R for any x € 2 NR and
(5.1) h(s) = e9®).

Now Proposition 2.3 implies that there exist v > v and a, € {1, —1}, for
each prime p with p < v and p{m, such that

g(s) —log ][ (1 - %) -

p<v

2
2 e

<e.

For those a,’s, where p < v and p{m, we apply Proposition 4.3. Then
for the above number v and all large X, we have

#B% ,(m,a) 1
#PY(m,a) ~ 2
Since 8| m, we have ¢ = da mod 8 and ¢ = da mod p for ¢ € PY(m,a) and
a prime p with p|m. This and the definition of Kronecker’s symbol yield
Xq(2) = a and x4(p) = (f—)) = (%‘1) = ayp for ¢ € P7(m, a) and an odd prime
p with p|m. Hence, from the definition of B}(’y(m, a) we find that for every

q € BY ,(m,a) and all large X,

wl(-2) eI )

(5.3) C,(m).

(5.4) max

p<v p<hx
o
. Xq(P) Xq(p)"
Syl 3 0,y Sl
v<p<hx v<p<hx n=2
o0
Xq(P) Xq(p)"
<mpd XN Yy
v<p<hx v<p<hx n=2

<e+0(e) K¢,

since
Vl —201 Vll —201

1
< < < < e.
Z p2‘71 201 — 1 201 — 1
v<p<hx

D

v<p<hx n=2

nan
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From (5.4) and (5.2) we deduce, for every ¢ € B} (m,a),

~1
B ~ Xq(P)
max g(s) —log H <1 p > ’<<€

p<hx
and therefore

-1

Cxe0))
(5.5) max H (1 p ) h(s)
p<hx

= Imax
seK

h(s) (Hpghx(l ;(;(;(p)/ps)_l B 1) ‘

log [T,<n, (1=Xa(P)/p*) "' —g(s) _ 1|

< max |h(s)| max |e
seK seK

<K, h(s) &

using (5.1) and the fact that e* — 1 < |z] if |z] is small.
Let €1 be a small positive number such that

nfe S5
€1 < min 6,7 .

According to Proposition 3.2, if we put
(5.6) A(m,a)

max

L) — [T (1 B ><q(10)>_1

= {q € P} (m,a)

seK p<hx ps
then for all large X,
Ak (m,
(5.7) #Ama) e
#Px(m,a)

By (5.6) and (5.5), every ¢ € A% (m,a)N B}7V(m,a) satisfies
(5.8) max |L(s, xq) = 7(s)| <, n(s) €

Furthermore, from (5.3) and (5.7) it follows that for the above number v
and all large X,

(5.9)  #(Ak(m,a)N B}(’V(m, a))
> #Ax(m,a) + #B% ,(m,a) — #Px(m, a)

> (S - c)#Pi om0

Since C,(m)/2 —e1 > 0, (5.8) and (5.9) yield (1.3). This completes the
proof. m
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From Theorem 1.1 we can prove Corollaries 1.2-1.4 by the same argu-
ments as in the proofs of Corollaries 1.2-1.4 in [MN1], respectively.

6. On the line Res = 1. In this section we prove Theorem 1.5. The
next lemma is proved in [MN1].

LEMMA 6.1. Lett € RT and y € R™ be fizred. Then for any zo € C and
e > 0, there exist v >y and ¢, € {1, —1}, for each prime p withy <p <v,

such that
Cp
20 — Z pirit
y<p<v

<e.

PROPOSITION 6.2. Let t € RT be fived. Let z € C and v1 € RY with
vi > m+ 1. Let ap, € {1,—1} for each prime p with p|m. Then for any
e > 0 there exist v > v and a, € {1, -1}, for each prime p with p <v and
pfm, such that

<e,

—1
T

p<v

where

IOgH< 1+zt>_1 - _Zlog< H”)

p<v p<l/
- ZZ T
p<vn= 1

Proof. The proof is similar to that of Proposition 2.3. Let ¢ > 0 be
arbitrary. Take a large number y > v such that 1/y < e. Then

(6.1) ZZ—«Z 2<< <e.

p>y n=2 p>y

Set a, = 1 for each prime p with p <y and ptm.
From Lemma 6.1 it follows that there exist ¥ > y and ¢, € {1, —1}, for
each prime p with y < p < v, such that

[e’e] a™
(-X ) - X o

y<p<v

(6.2) <e.

For each prime p with y < p < v we set a, = ¢,. Then we obtain, by (6.1)
and (6.2),
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-1
z —10gH< 1+zt>

p<v
- Z—ZZ p> PP
1+lt p1+1t npn(1+lt
p<y n= 1 y<p<v y<p<vn=2
Z*ZZ Sy T
- l—Ht p1+1t p l—Ht
p<y n= 1 y<p<v y<p<vn=2
<e+ E E ———-<<€
p>y n= 2

which completes the proof. =

Proof of Theorem 1.5. The proof is similar to that of Theorem 1.1 in
Section 5. Since L(1+1it, xq) = L(1 — it, x4), it suffices to verify the assertion
in the case t > 0. Moreover, it suffices to consider the case zp € C — {0},
since the set C — {0} is dense in C.

Fix zg € C—{0} and ¢ > 0. Take a complex number z such that zy = e*.
Let £ > 0 be an arbitrary small number. Take o1 € R with 1/2 < 01 < 1,
and set K = {1 + it}. Take v; € R so large that 1/1y < ¢ and v; >
vo(o1, K,e,m), where vy(o1, K,e,m) is the constant in Proposition 4.3. We
set as to be 1 if a =1 or 7mod 8, and —1 if a = 3 or 5 mod 8. Further, we
set a, = (%‘) for each odd prime p with p|m. According to Proposition 6.2,
there exist v > vy and a, € {1, —1}, for each prime p with p < v and ptm,
such that

(6.3)

-1
ap
Z_IOgH<1_p1+it> <e.

p<v

For those a,’s, where p < v and p{m, we apply Proposition 4.3. Then
for the above number v and all large X, we have

#BX ll(m CL) 1
#P)(m,a) = 2

Noting x4(2) = a2 and x4(p) = a, for ¢ € P7(m,a) and an odd prime p
with p | m, we have, for every ¢ € BV ,(m,a) and all large X,

logH(l 1+zt>_ ~log [ <1— mt)_l‘

p<v p<hx

p1+zt + Z Z Xq 1+zt)

v<p<hx n= 2

(6.4) Cy(m).

(6.5)

<e+0(e) K¢,

v<p<hx
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since

(e 9]
Z Zn—;n<< Z Z%<<1/_1<1/1_1<5.

v<p<hx n=2 v<p<hx
By (6.3) and (6.5), every g € B, (m,a) satisfies

-1
Xq\P
z — log H <1— ptl]J(r“f)> ‘<<€

p<hx
and hence
-1 14it\—1
Xq(P) B [p<ny (1= Xq(p)/P ™)
(6.6) l_h[ (1 N p1+it> 20| = Zo( = P -1
p=hx

= || \elogHPShX(1*Xq(p)/p1+“)—1—z T

<z €.

Let e; be a small positive number such that ¢; < min{e, C,(m)/2}.
Proposition 3.2 implies that if we put

6.7)  Al(m,a)

‘L(1+it,xq)— I1 <1— ’;‘{ﬁ?)l‘ <51}

p<hx

= {q € P} (m,a)

then

#A% (m, a)
#PY(m,a)
for all large X. Hence by (6.6) and (6.7) we conclude that every ¢ €
Al (m,a)N B}(’V(m, a) satisfies

(6.9) |L(1 + it, xq) — 20| <z €.

Furthermore, from (6.4) and (6.8) we see that for the above number v and
all X sufficiently large,

(6.10) #(Ax(m,a) N By, (m,a)) > (@ — 81>#7D}(m, a).

Since Cy,(m)/2 —e1 > 0, (6.9) and (6.10) complete the proof. =
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