
ACTA ARITHMETICA

123.2 (2006)

Near solutions of polynomial equations

by

Shih Ping Tung (Chung Li)

1. Introduction. Let K be a field and K[x] be the polynomial ring
over K. Given a polynomial f(y) with coefficients in K[x], we may ask what
the solutions of f(y) = 0 are in K[x]. Moreover, is there a notion of “near
solution”, which includes the usual solution as a special case? This is what
we are dealing with in this paper.

Let F (x, y) be a polynomial over K and m be a nonnegative integer. We
call a polynomial g(x) over K an m-near solution of F (x, y) if there exists
a c ∈ K such that F (x, g(x)) = cxm; then c is called the m-value of F (x, y)
corresponding to g(x). In particular, c can be zero. Now we view F (x, y)
as a polynomial over K[x] with variable y, and denote it as F (y). Then
every solution of F (y) = 0 in K[x] is also an m-near solution of F (x, y)
with m-value 0. Thus, the definition of m-near solution extends the usual
definition of solutions of polynomial equations.

We can also consider this problem from another point of view. Given
a polynomial F (x, y) =

∑n
i=0 fi(x)yi over K as above, we want to find a

solution of F (y) = 0. In [2], we considered the case where the constant
term of f0(x) is zero. This problem arises from our study of the decision
problem of diophantine equations (cf. [2]). Now, we study a more general
case. Suppose that the coefficient of the term xm (m ≥ 0) in the polynomial
f0(x) is zero; can we still find the solutions of F (y) = 0? How many solutions
of F (y) = 0 are there? In this paper we will show that except for some
special cases, which are given explicitly, the number of possible solutions is
still bounded by the degree of F (y) = 0. In [1] we have considered a related
problem over the rational function field; here we only consider the problem
over polynomial rings.

The results of this paper are new. They are stated over an arbitrary
field K. However, the reader can take this field to be the rational number
field Q or the real number field R. In this way, this author believes that
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the proofs in this paper can be read by any diligent high school student.
Many interesting problems remain unanswered in this paper. For example,
given a polynomial F (x, y), can we tell whether F (x, y) has an m-near so-
lution or not? Is there a characterization of the polynomials having m-near
solutions? May a given polynomial have m-near solutions for different val-
ues of m? These surely deserve further studies. In a companion paper we
give a polynomial time algorithm to find all the m-near solutions of a given
polynomial for a given m if there is a polynomial time algorithm to solve
equations of one variable in K.

2. Basic properties of near solutions. We first give the notations
used throughout this paper. We will use K to denote a field, and N the
set of all nonnegative integers. The degree of a nonzero polynomial f(x) =
∑s

i=0 aix
i, written deg(f(x)), is the maximal index n for which an 6= 0;

usually as 6= 0. The rank of f(x), written rank(f(x)), is the minimal in-
dex m for which am 6= 0. For a multivariate polynomial F (x1, . . . , xn),
degxi

(F (x1, . . . , xn)) denotes the degree of F (x1, . . . , xn) in the variable xi.

Given a polynomial F (x, y) in K[x, y], we may view F (x, y) as an element
in (K[x])[y], i.e. a polynomial F (y) of one variable y with coefficients in K[x].
The equation F (y) = 0 is solvable in K[x] if and only if there is a g(x) in
K[x] such that F (g(x)) = F (x, g(x)) = 0. We are interested in the situation
that F (x, g(x)) has only one term, i.e., F (x, g(x)) is a monomial.

Now, we give the definition of near solutions of a polynomial.

Definition. Let F (x, y) be a polynomial over K and m be a nonnega-
tive integer. We call a polynomial g(x) over K an m-near solution of F (x, y)
if there exists a c ∈ K such that F (x, g(x)) = cxm; then c is called the
m-value of F (x, y) corresponding to g(x).

Remark 1. The c in the definition of m-near solution can be zero. Thus,
for a given polynomial F (x, y) over K if g(x) is a solution of F (y) = 0 in
K[x], then g(x) is also an m-near solution of F (x, y) for any m in N. Thus,
over polynomial rings, the m-near solution we defined extends the usual
notion of solutions of equations.

Remark 2. In our definition, we consider the near solutions to polyno-
mial rings only. It seems natural to generalize it to rational function fields
as in [1]. We will study this generalization elsewhere. As will be shown in
the Final Example of this paper, the situation then becomes much more
complicated. In particular, the results and proofs of this paper need to be
extensively modified. For simplicity, we restrict our attention to polynomial
rings in this paper.

Next, we will show some basic properties of m-near solutions.
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Theorem 2.1. Let F (x, y) be a polynomial over K and m be a nonnega-

tive integer. Let g1(x), g2(x) be two m-near solutions of F (x, y) with distinct

m-values. Then there exists an r ∈ N, 0 ≤ r ≤ m, and a b ∈ K − {0} such

that g1(x) − g2(x) = bxr, i.e., g1(x) − g2(x) is a monomial.

Proof. Suppose that F (x, g1(x)) = a1x
m and F (x, g2(x)) = a2x

m where
a1 and a2 are distinct elements in K. Then, by the Factor Theorem we may
assume that

F (x, y) = (y − g2(x))h(x, y) + a2x
m

where h(x, y) is a polynomial over K. Hence,

F (x, g1(x)) = (g1(x) − g2(x))h(x, g1(x)) + a2x
m = a1x

m.

Thus, g1(x) − g2(x) is a factor of the monomial (a1 − a2)x
m. This implies

that there exists an r ∈ N, 0 ≤ r ≤ m, and a b ∈ K such that g1(x) − g2(x)
= bxr.

Corollary 2.2. Let F (x, y) be a polynomial over K and m be a non-

negative integer. If F (x, y) has at least two different m-values, then the

difference between any two distinct m-near solutions of F (x, y) is either a

monomial or a binomial.

Proof. Let g(x) and h(x) be two distinct m-near solutions of F (x, y).
If F (x, g(x)) 6= F (x, h(x)), then g(x) − h(x) is a monomial by Theorem
2.1. If F (x, g(x)) = F (x, h(x)), then by assumption there is another m-
near solution p(x) such that F (x, p(x)) 6= F (x, g(x)). From Theorem 2.1,
p(x) − g(x) and p(x) − h(x) are monomials. It follows that g(x) − h(x) =
(p(x) − h(x)) − (p(x) − g(x)) is a monomial or a binomial.

Remark. The assumption in the above corollary that F (x, y) has two
different m-values is necessary. This is easily shown by the following example.
Let F (x, y) = (y−x)(y−x2−x3)+x4. Both x and x2+x3 are 4-near solutions
of F (x, y). However, (x3 + x2) − x is not a monomial or a binomial.

Theorem 2.3. Let F (x, y) be a polynomial over K and m be a non-

negative integer. Assume that F (x, y) has more than two distinct m-values.

Then there is a nonnegative integer t such that for any two different m-near

solutions g(x) and h(x) there is an α ∈ K such that g(x) − h(x) = αxt.

Proof. Let p(x), q(x) and r(x) be three m-near solutions of F (x, y) cor-
responding to three different m-values. By Theorem 2.1, there exist three
nonzero elements a1, a2, a3 in K and three nonnegative integers r1, r2, r3

such that p(x)− q(x) = a1x
r1 , q(x)− r(x) = a2x

r2 , and p(x)− r(x) = a3x
r3 .

Then

p(x) − r(x) = (p(x) − q(x)) + (q(x) − r(x)) = a1x
r1 + a2x

r2 = a3x
r3 .

This implies that r1 = r2 = r3.
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Now, let g(x) and h(x) be two arbitrary m-near solutions of F (x, y).
Then the corresponding m-values of g(x) and h(x) must be different from
at least two out of the three m-values of p(x), q(x) and r(x). Without loss
of generality, we may assume that the m-values of g(x), p(x) and q(x) are
all different, and that the m-values of h(x), p(x) and either q(x) or r(x) are
all different. Then with the same arguments as above, there exist a and b
in K such that p(x) − g(x) = axr1 and p(x) − h(x) = bxr1 . Let t = r1 and
b − a = α. Then

g(x) − h(x) = (p(x) − h(x)) − (p(x) − g(x)) = bxt − axt = αxt.

Remark. We discussed the cases of a polynomial with more than one
m-value above. The case that F (x, y) has exactly one m-value can be easily
handled. Let gi(x), 1 ≤ i ≤ n, be arbitrary elements in K[x]. They are
m-near solutions of F (x, y) with the same m-value a ∈ K if and only if
there is a G(x, y) ∈ K[x, y] such that

F (x, y) =
[

n
∏

i=1

(y − gi(x))
]

· G(x, y) + axm.

We will study more general cases in the next section.

3. Presentations of near solutions. Let f(x) be a polynomial over an
integral domain D. Let a1, . . . , an be the solutions of the equation f(x) = 0
in D. Then there exists g(x) ∈ D[x] such that f(x) = (

∏n
i=1(x−ai))g(x). Do

we have a similar presentation for m-near solutions? The answer is “yes”.
Suppose that F (x, y) has two different m-near solutions. Our next proposi-
tion shows that we can use a single formula to represent F (x, y) whether or
not the corresponding m-values are the same.

Proposition 3.1. Let F (x, y), g1(x), . . . , gs(x) and h(x) be polynomials

over K, gi(x) 6= h(x), and m be a nonnegative integer. Let b1, b2 ∈ K. Then

F (x, gi(x)) = b1x
m for 1 ≤ i ≤ s and F (x, h(x)) = b2x

m if and only if there

exists a d 6= 0 in K, nonnegative integers t, r1, . . . , rs with t+
∑s

i=1 ri = m, a

polynomial f(x, y) in K[x, y], and an integer p > 0 with either f(x, h(x)) 6= 0
or f(x, y) = 0 such that

F (x, y) =
(

s
∏

i=1

[y − gi(x)]
)

·

[

(y − h(x))pf(x, y) +
b2 − b1

d
xt

]

+ b1x
m

where h(x) = gi(x) + dix
ri for b1 6= b2, and d =

∏s
i=1 di.

Proof. Assume that b1 = b2. Then F (x, gi(x)) = F (x, h(x)) = b1x
m if

and only if

F (x, y) =
(

s
∏

i=1

[y − gi(x)]
)

· [(y − h(x))pf(x, y)] + b1x
m

as desired. Notice that in this case p ≥ 1.
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Now, we consider the case that b1 6= b2. The direction (⇐) is a straight-
forward check. From the assumption that F (x, gi(x)) = b1x

m for 1 ≤ i ≤ s,
there is a polynomial G(x, y) such that

F (x, y) =
(

s
∏

i=1

[y − gi(x)]
)

· G(x, y) + b1x
m.

From Theorem 2.1, there are ri ∈ N, 0 ≤ ri ≤ m, and di ∈ K such that
h(x) = gi(x) + dix

ri . Let r =
∑s

i=1 ri. Thus,

F (x, h(x)) =
s

∏

i=1

[h(x) − gi(x)] · G(x, h(x)) + b1x
m

=
(

s
∏

i=1

di

)

xr · G(x, h(x)) + b1x
m = b2x

m.

This implies that G(x, h(x)) = ((b2 − b1)/d)xm−r. If degy(F (x, y)) = s,
then G(x, y) = ((b2 − b1)/d)xm−r. Thus, f(x, y) = 0 in our presentation of
F (x, y). If degy(F (x, y)) > s, then

G(x, y) = (y − h(x))pf(x, y) +
b2 − b1

d
xm−r

where p > 0 and f(x, y) ∈ K[x, y] with f(x, h(x)) 6= 0. Now, let m − r = t.
We then have h(x) = gi(x) + dix

ri , and

F (x, y) =
(

s
∏

i=1

[y − gi(x)]
)

·

[

(y − h(x))pf(x, y) +
b2 − b1

d
xt

]

+ b1x
m.

Note that in Proposition 3.1, f(x, y) = 0 if and only if degy(F (x, y)) = s.
The following lemma concerns polynomials with exactly two distinct m-

values. As regards the bound for the number of m-near solutions, these cases
are very special. This will be shown later. We, therefore, give their specific
representations.

Lemma 3.2. Let F (x, y) be a polynomial over K and m be a nonneg-

ative integer. If F (x, y) has exactly two distinct m-values, then one of the

following three cases holds:

Case 1: The difference between any two m-near solutions is a mono-

mial. In this case, there is a nonnegative integer t such that the difference

between any two m-near solutions is a monomial of degree t. Thus, there is

an h(x) and for every m-near solution gi(x) there is an ai in K such that

gi(x) = h(x) + aix
t.

Case 2: Only one of the two m-values has a pair of m-near solutions

g1(x) and g2(x) such that g1(x) − g2(x) is a binomial. In this case, there

exist nonnegative integers t, r1, . . . , rs with t +
∑s

i=1 ri = m, ai, b ∈ K, a
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polynomial G(x, y) in K[x, y] with either G(x, h(x)) 6= 0 or G(x, y) = 0, and

an integer q > 0 such that

F (x, y) =
[

s
∏

i=1

(y − h(x) − aix
ri)

]

· [(y − h(x))qG(x, y) + bxt] + axm

where h(x), h(x)+aix
ri for 1 ≤ i ≤ s are all the m-near solutions of F (x, y).

Case 3: For each m-value there exists a pair of m-near solutions whose

difference is a binomial. In this case, there exist a, b ∈ K, gi(x) ∈ K[x] for

1 ≤ i ≤ 4, a polynomial G(x, y) in K[x, y] with either G(x, g3(x)) 6= 0 and

G(x, g4(x)) 6= 0, or G(x, y) = 0, and integers p, q > 0 such that

F (x, y) = (y−g1(x))(y−g2(x))[(y−g3(x))p(y−g4(x))q ·G(x, y)+bxt]+axm

where gi(x), 1 ≤ i ≤ 4, are all the m-near solutions of F (x, y). Moreover ,
there is a polynomial g(x) over K, u, v ∈ N, and a1, a2, a3, a4 ∈ K such

that g1(x) = g(x) + a1x
u + a2x

v, g2(x) = g(x) + a3x
u + a4x

v, g3(x) =
g(x) + a1x

u + a4x
v, and g4(x) = g(x) + a3x

u + a2x
v.

Proof. Case 1. Let g(x), h(x), r(x) and s(x) be four arbitrary m-near
solutions of F (x, y) such that g(x)−h(x) = axp and r(x)−s(x) = bxq where
a, b ∈ K. Assume that p 6= q. Let h(x) − r(x) = cxu where c ∈ K. We have

g(x)−s(x) = (g(x)−h(x))+(h(x)−r(x))+(r(x)−s(x)) = axp +cxu +bxq.

Then g(x)−s(x) being a monomial implies that axp = −cxu or bxq = −cxu.
However, if axp = −cxu, then

h(x) − s(x) = (h(x) − r(x)) + (r(x) − s(x)) = cxu + bxq

is not a monomial. Similarly, if bxq = −cxu then g(x)− r(x) is not a mono-
mial. This contradicts the assumption that the difference between any two
m-near solutions is a monomial. Hence, p = q. This means that there is a
nonnegative integer t such that the difference between any two m-near so-
lutions is a monomial of degree t. Let g1(x) = h(x). Then for every m-near
solution gi(x) there is an ai in K such that gi(x) = h(x) + aix

t.

Case 2. Let c and d be the distinct m-values of F (x, y). Suppose there
exist g1(x) and g2(x) in K[x] such that F (x, g1(x)) = F (x, g2(x)) = cxm and
g1(x) − g2(x) is a binomial, but the m-value d does not have two m-near
solutions whose difference is a binomial. We claim that in this case there is
exactly one m-near solution corresponding to the m-value d.

Indeed, suppose h1(x) and h2(x) are two distinct m-near solutions in
K[x] such that

F (x, h1(x)) = F (x, h2(x)) = dxm,

but h1(x) − h2(x) is not a binomial. From Corollary 2.2, h1(x) − h2(x) is
a monomial. By Theorem 2.1, there exist α, β, γ, δ in K and u, v, p, q in N
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such that h1(x) − g1(x) = αxu, h1(x) − g2(x) = βxv, h2(x) − g1(x) = γxp,
and h2(x) − g2(x) = δxq. Then

g1(x) − g2(x) = (g1(x) − h1(x)) + (h1(x) − g2(x)) = −αxu + βxv,

g1(x) − g2(x) = (g1(x) − h2(x)) + (h2(x) − g2(x)) = −γxp + δxq.

Since g1(x) − g2(x) is a binomial, it follows that u 6= v and p 6= q. Also,

h1(x) − h2(x) = (h1(x) − g1(x)) − (h2(x) − g1(x)) = αxu − γxp,

h1(x) − h2(x) = (h1(x) − g2(x)) − (h2(x) − g2(x)) = βxv − δxq.

Since h1(x) − h2(x) is a monomial, we obtain u = p and v = q. Then from
the fact that

g1(x) − g2(x) = −αxu + βxv = −γxp + δxq,

we have α = γ and β = δ. Thus, h1(x) − h2(x) = αxu − γxp = 0. This
contradicts the assumption that h1(x) and h2(x) are distinct and proves our
claim.

Now, let g1(x), . . . , gs(x) be the m-near solutions corresponding to the
m-value c and h(x) be the only m-near solution corresponding to d. From
Proposition 3.1 for every i, 1 ≤ i ≤ s, there exist ai ∈ K − {0} and ri ∈ N

such that gi(x) − h(x) = aix
ri . Then we may write

F (x, y) =
(

s
∏

i=1

(y − gi(x))
)

[(y − h(x))qG(x, y) + bxt] + axm

=
(

s
∏

i=1

(y − h(x) − aix
ri)

)

[(y − h(x))qG(x, y) + bxt] + axm

where q > 0, G(x, y) ∈ K[x, y] with either G(x, h(x)) 6= 0 or G(x, y) = 0,
and a = c, b ∈ K.

Case 3. Let c and d be the distinct m-values of F (x, y). There exist
g1(x) and g2(x) in K[x] such that F (x, g1(x)) = F (x, g2(x)) = cxm and
g1(x) − g2(x) is a binomial. Also, there exist h1(x) and h2(x) in K[x] such
that F (x, h1(x)) = F (x, h2(x)) = dxm and h1(x)− h2(x) is also a binomial.

By Theorem 2.1, there exist α, β in K and u, v in N such that h1(x) −
g1(x) = αxu and h1(x)−g2(x) = βxv. By Theorem 2.1 again, h2(x)−g1(x) =
γxp and h2(x) − g2(x) = δxq where γ, δ ∈ K and p, q ∈ N. Then

g1(x) − g2(x) = (g1(x) − h1(x)) + (h1(x) − g2(x)) = −αxu + βxv,

g1(x) − g2(x) = (g1(x) − h2(x)) + (h2(x) − g2(x)) = −γxp + δxq.

Since g1(x) − g2(x) is a binomial, we infer that u 6= v and p 6= q. Also,

h1(x) − h2(x) = (h1(x) − g1(x)) − (h2(x) − g1(x)) = αxu − γxp,

h1(x) − h2(x) = (h1(x) − g2(x)) − (h2(x) − g2(x)) = βxv − δxq.
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These two equalities and u 6= v imply that βxv = −γxp (and αxu = −δxq),
i.e., h2(x) − g1(x) = −βxv (and h2(x) − g2(x) = −αxv). We see that
h1(x)+h2(x) = g1(x)+ g2(x). Hence, once g1(x), g2(x) and h1(x) are given,
then h2(x) is determined. Therefore, there are exactly two m-near solutions
corresponding to the m-value d.

By the same arguments, there are exactly two m-near solutions corre-
sponding to the m-value c. This means that g1(x), g2(x), h1(x) and h2(x)
are the only four m-near solutions of F (x, y) for this case. We may write

F (x, y) = (y − g1(x))(y − g2(x))H(x, y) + cxm

where H(x, y) ∈ K[x, y]. Then

F (x, h1(x)) = (h1(x) − g1(x))(h1(x) − g2(x))H(x, h1(x)) + cxm

= (αxu)(βxv)H(x, h1(x)) + cxm = dxm

and

F (x, h2(x)) = (h2(x) − g1(x))(h2(x) − g2(x))H(x, h2(x)) + cxm

= (−βxu)(−αxv)H(x, h2(x)) + cxm = dxm.

Hence,

H(x, h1(x)) = H(x, h2(x)) = ((d − c)/αβ)xm−u−v.

Therefore,

H(x, y) = (y − h1(x))p(y − h2(x))qG(x, y) + bxt

where G(x, y) ∈ K[x, y], p, q ∈ N, b = (d − c)/αβ and t = m − u − v. If
degy(H(x, y)) = 0, i.e. H(x, y) = ((d − c)/αβ)xm−u−v, then G(x, y) = 0
in our representation of F (x, y). If degy(H(x, y)) = 1, then H(x, h1(x)) =
H(x, h2(x)) implies that h1(x) = h2(x). This contradicts h1(x)−h2(x) being
a binomial. This means that degy(F (x, y)) 6= 3 for this case. If degy(H(x, y))
> 1, then there exist G(x, y) ∈ K[x, y], a, b ∈ K, and positive integers p, q
such that

F (x, y) = (y−g1(x))(y−g2(x))[(y−g3(x))p(y−g4(x))q ·G(x, y)+bxt]+axm

where gi(x), 1 ≤ i ≤ 4, are the only four possible m-near solutions of
F (x, y). The nonnegative integers p and q in the formula will be zero or
nonzero simultaneously. Now, let g(x) ∈ K[x] and ai ∈ K for 1 ≤ i ≤ 4 be
such that g1(x) = g(x)+ a1x

u + a2x
v and g2(x) = g(x)+ a3x

u + a4x
v. Then

g3(x) = g(x) + a1x
u + a4x

v and g4(x) = g(x) + a3x
u + a2x

v. This completes
our proof.

We now give examples for these three cases.

Examples.

Case 1. Let

F (x, y) = (y − x)(y − 2x)(y − 3x)[(y − 4x)[(y − 5x) − 3x3] + 4x4] + x7.
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Then F (x, x) = F (x, 2x) = F (x, 3x) = x7, F (x, 4x) = 25x7, and F (x, 5x) =
25x7. It will be seen later that for this case the number of m-near solutions
is at most degy(F (x, y)). Thus, x, 2x, 3x, 4x and 5x are the only m-near
solutions of F (x, y).

Case 2. Let

F (x, y) =
[

s
∏

i=1

(y − g(x) + xi)
]

· xm−s(s+1)/2 + xm

where g(x) ∈ K[x] is arbitrary and m ≥ s(s + 1)/2. Here, the polynomial
G(x, y) in the presentation of F (x, y) in Lemma 3.2 is equal to 0. Then
F (x, g(x) − xi) = xm for 1 ≤ i ≤ s. Also,

F (x, g(x)) =
(

s
∏

i=1

xi
)

· xm−s(s+1)/2 + xm = 2xm.

Notice that degy(F (x, y)) = s, and F (x, y) has s + 1 m-near solutions.

Case 3. Let

F (x, y) = (y − 2x2 − x)(y − x2 − 2x) · xm−3 + xm.

Here, also, the polynomial G(x, y) in the presentation of F (x, y) in Lemma
3.2 is zero. We find that F (x, 2x2 +x) = F (x, x2 +2x) = xm, F (x, x2 +x) =
(−x2)(−x)xm−3+xm = 2xm, and F (x, 2x2+2x) = x ·x2 ·xm−3+xm = 2xm.
Notice that degy(F (x, y)) = 2, and F (x, y) has four m-near solutions.

Remark. If F (x, y) = f(x) ∈ K[x], then F (x, y) has an m-near solution
if and only if f(x) = cxm for a c ∈ K. In this case, we may say that every
g(x) ∈ K[x] is an m-near solution of F (x, y) with m-value c.

Now, we are ready to extend the results in Proposition 3.1 to the gen-
eral case. For simplicity, we do not state the results in detail as done in
Proposition 3.1.

Theorem 3.3. Let F (x, y) and gi(x), 1 ≤ i ≤ n, be polynomials over K
with the gi(x) all distinct. Then F (x, gi(x)) = aix

m where ai ∈ K for every i,
1 ≤ i ≤ n, if and only if F (x, y) can be represented in nested parentheses of

the form

F (x, y) = (y − g1(x))

×{(y− g2(x))[(y− g3(x))(· · · (G(x, y) · · ·)+d3x
m−r1−r2 ]+d2x

m−r1}+d1x
m,

where G(x, y) ∈ K[x, y], di ∈ K for 1 ≤ i ≤ n and di = 0 if gi(x) − gi+1(x)
is not a monomial , while ri = deg(gi(x) − gi+1(x)) when di 6= 0.

Proof. Assume that F (x, y) has only one m-value a, and let gi(x), 1 ≤
i ≤ n, be the m-near solutions of F (x, y). Then F (x, gi(x)) = axm for
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every i. We may write

F (x, y) =
[

n
∏

i=1

(y − gi(x))
]

· G(x, y) + axm.

This means that the numbers di for 2 ≤ i ≤ n in the above formula are all
zero. From the Remark above, it can be seen that this presentation is also
true for degy(F (x, y)) = 0.

We next consider the case when F (x, y) has exactly two m-values. We
deduce our result from Lemma 3.2. The proof for Case 1 in Lemma 3.2 is
the same as the proof given below for the case that F (x, y) has more than
two distinct m-values. What is needed here is that the differences between
any two m-near solutions are monomials of the same degree.

We need to show that the polynomials in Cases 2 and 3 can be rewritten
in the required form. The m-near solutions in those presentations have been
rearranged: those with the same m-values are put together. Here, we show
that our representation is true for an arbitrary order of m-near solutions.

Case 2. Only one of the two m-values has a pair of corresponding m-near
solutions g1(x) and g2(x) such that g1(x)− g2(x) is a binomial. In this case,

F (x, y) =
[

s
∏

i=1

(y − h(x) − aix
ri)

]

· [(y − h(x))qG(x, y) + bxt] + axm

where h(x), h(x)+aix
ri for 1 ≤ i ≤ s are all the m-near solutions of F (x, y),

ai, b ∈ K, ri, q, t ∈ N, and G(x, y) ∈ K[x, y]. Note that here t = m−
∑s

i=1 ri.
For simplicity, we deal only with the case q = 1 and we may interchange
the last term y − h(x) − asx

rs in the product
∏s

i=1(y − h(x) − aix
ri) with

y − h(x). Then

F (x, y) =
[

s
∏

i=1

(y − h(x) − aix
ri)

]

· [(y − h(x))G(x, y) + bxt] + axm

=
[

s
∏

i=1

(y − h(x) − aix
ri)

]

(y − h(x))G(x, y)

+
[

s
∏

i=1

(y − h(x) − aix
ri)

]

bxt + axm

=
[

s
∏

i=1

(y − h(x) − aix
ri)

]

(y − h(x))G(x, y)

+
[

s−1
∏

i=1

(y − h(x) − aix
ri)

]

(y − h(x))bxt

−
[

s−1
∏

i=1

(y − h(x) − aix
ri)

]

asx
rsbxt + axm
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=
[

s−1
∏

i=1

(y − h(x) − aix
ri)

]

× {(y − h(x))[(y − h(x) − asx
rs)G(x, y) + bxt] + b1x

t+rs} + axm,

where b1 = −asb. This is in the required form since the coefficients dj for

1 < j < s − 1 of the term djx
m−

∑j−1

i=1
ri in the required form are all zero.

Case 3. For each m-value there exists a pair of corresponding m-near
solutions whose difference is a binomial. In this case,

F (x, y) = (y−g1(x))(y−g2(x))[(y−g3(x))p(y−g4(x))q ·G(x, y)+bxt]+axm

where gi(x), 1 ≤ i ≤ 4, are all the possible m-near solutions of F (x, y),
p, q, t ∈ N, G(x, y) ∈ K[x, y], and a, b ∈ K. Moreover, there is a polynomial
g(x) over K, u, v ∈ N, and a1, a2, a3, a4 ∈ K such that g1(x) = g(x) +
a1x

u + a2x
v, g2(x) = g(x) + a3x

u + a4x
v, g3(x) = g(x) + a1x

u + a4x
v, and

g4(x) = g(x)+a3x
u +a2x

v. Note that here t = m−u− v. By symmetry, we
need only show that we may interchange the term y − g2(x) with y − g3(x).
For simplicity, we handle only the case of p = q = 1. We have

F (x, y) = (y−g1(x))

×{(y−g2(x))[(y−g3(x))(y−g4(x)) ·G(x, y)+ bxm−u−v]}+axm

= (y−g1(x)){(y−g2(x))(y−g3(x))(y−g4(x)) ·G(x, y)

+(y−g2(x))bxm−u−v}+axm

= (y−g1(x)){(y−g3(x))(y−g2(x))(y−g4(x)) ·G(x, y)

+(y−g3(x))bxm−u−v +(g3(x)−g2(x))bxm−u−v}+axm

= (y−g1(x)){(y−g3(x))[(y−g2(x))(y−g4(x)) ·G(x, y)+ bxm−u−v]

+(a1−a3)x
u · bxm−u−v}+axm

= (y−g1(x)){(y−g3(x))[(y−g2(x))(y−g4(x)) ·G(x, y)+ bxm−u−v]

+ b1x
m−v}+axm

where b1 = (a1 − a3)b. Thus, the second and third cases of Lemma 3.2 with
exactly two m-values are in the required form.

Finally, we assume that F (x, y) has more than two distinct m-values.
From Theorem 2.3 there is a nonnegative integer t such that for any two
different m-near solutions gi(x) and gj(x) there is an αi,j ∈ K such that
gi(x) − gj(x) = αi,jx

t. Our proof below is based on this fact only, i.e. not
on the number of m-values. Hence, this proof is also valid for Case 1 of
Lemma 3.2.

Now, we argue by induction on the y-degree of the polynomial. We have

F (x, y) = (y − g1(x))G1(x, y) + a1x
m.
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If degy(F (x, y)) = 1, then G1(x, y) = G1(x) ∈ K[x]. Then, for every 2 ≤
i ≤ n,

F (x, gi(x)) = (gi(x) − g1(x))G1(x) + a1x
m

= αi,1x
t · G1(x) + a1x

m = aix
m.

Thus, G1(x) = ((ai − a1)/αi,1)x
m−t, and

F (x, y) = (y − g1(x))((ai − a1)/αi,1)x
m−t + a1x

m.

This finishes the proof of the case of degy(F (x, y)) = 1 (1). Now, assume
that degy(F (x, y)) > 1. Then, for every 2 ≤ i ≤ n,

F (x, gi(x)) = (gi(x) − g1(x))G1(x, gi(x)) + a1x
m

= αi,1x
t · G1(x, gi(x)) + a1x

m = aix
m.

Hence, G1(x, gi(x)) = bix
m−t for every 2 ≤ i ≤ n where bi = (ai − a1)/αi,1.

Notice that degy(G1(x, y)) = degy(F (x, y)) − 1. By induction hypothesis,

G1(x, y) = (y − g2(x))[(y − g3(x))(· · ·G(x, y) · · ·) + d3x
m−2t] + d2x

m−t

where G(x, y) ∈ K[x, y] and di ∈ K for 2 ≤ i ≤ n. Therefore,

F (x, y) = (y − g1(x)){(y − g2(x))

× [(y − g3(x))(· · ·G(x, y) · · ·) + d3x
m−2t] + d2x

m−t} + d1x
m.

4. Bounds for near solutions. In this section we will show some
bounds for m-near solutions. We first give an upper bound on the degrees
of m-near solutions of a given polynomial.

Proposition 4.1. Let F (x, y) =
∑s

k=0 fk(x)yk =
∑s

k=0(
∑tk

l=0 bk,lx
l)yk

be a polynomial of y-degree s. Let r be a positive integer such that r ≥
(tk − ts)/(s − k) for 0 ≤ k < s and r ≥ (m − ts)/s. Then the degree of

every m-near solution of F (x, y) is less than or equal to r. In particular ,
the maximum of {t1, . . . , ts−1, (m − ts)/s} suffices as an upper bound.

Proof. Let p(x) =
∑d

i=0 aix
i, where ad 6= 0 and d > r. Then for every k,

0 ≤ k ≤ s,

deg(fk(x) · (p(x))k) = deg(fk(x)) + deg((p(x))k) = tk + dk.

By our choices for d and r, ts + sd > tk + kd for 0 ≤ k < s. Thus,

deg(F (x, p(x))) = deg(fs(x) · (r(x))s) = sd + ts.

Also, sd + ts > sr + ts ≥ m, which implies that p(x) cannot be an m-near
solution of F (x, y).

(1) Here, the number of distinct m-near solutions is greater than the y-degree of
F (x, y). The polynomial F (x, y) is also in the special form given in Theorem 4.2 of the
next section.
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Now, we show that unless the given polynomial is in a special form, the
number of m-near solutions is bounded by its y-degree.

Theorem 4.2. Let F (x, y) be a polynomial over K of y-degree t, and m
be a nonnegative integer. Except when F (x, y) has exactly two m-values, the

number of distinct m-near solutions of F (x, y) is greater than t if and only if

the number of elements of K is greater than t and there exists a polynomial

g(x) over K and a nonnegative integer r with r ≤ m/t such that

F (x, y) =

t
∑

i=0

ci(y − g(x))ixm−ir

where ci ∈ K. In this case, unless t = 0, a polynomial h(x) is an m-near

solution of F (x, y) if and only if h(x) = g(x) + axr for an a ∈ K.

Proof. We prove the second part first. Let

F (x, y) =

t
∑

i=0

ci(y − g(x))ixm−ir

where ci ∈ K. For any a ∈ K, a straightforward calculation shows that
g(x) + axr is an m-near solution of F (x, y) with m-value

∑t
i=0 ci(a)i.

Now, let h(x) be an m-near solution of F (x, y). We want to show that
h(x) − g(x) is a monomial of degree r. Let h(x) − g(x) = d(x) ∈ K[x] have
degree p and rank q. If p > r, then

deg(ci(d(x))ixm−ir) = pi + m − ir = m + i(p − r) ≥ 0

for each i, 0 ≤ i ≤ t. Thus, deg(ci(d(x))ixm−ir) > deg(cj(d(x))jxm−jr) if
i > j, and

deg(F (x, h(x))) = deg
(

t
∑

i=0

ci(d(x))ixm−ir
)

= deg(ct(d(x))txm−tr)

= tp + m − tr > m.

This implies that h(x) cannot be an m-near solution of F (x, y). Thus, p ≤ r.
Similarly, assume that q < r. Then

rank(F (x, h(x))) ≤ rank(ct(d(x))txm−tr) ≤ m − tr + tq < m.

This implies that h(x) is not an m-near solution of F (x, y). Thus, q ≥ r.
Combining these facts, we see that d(x) is a monomial of degree r. Therefore,
h(x) is an m-near solution of F (x, y) if and only if there is an a in K such
that h(x) = g(x) + axr. Thus, if

F (x, y) =

t
∑

i=0

ci(y − g(x))ixm−ir
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where t > 0 and ci ∈ K, then the number of m-near solutions of F (x, y) is
equal to the number of elements of K. In particular, if the latter is greater
than degy(F (x, y)), then the number of m-near solutions of F (x, y) is greater
than degy(F (x, y)).

Next, assume that the number of m-near solutions of F (x, y) is greater
than degy(F (x, y)) and the number of distinct m-values of F (x, y) is not
two. We need to prove that there exists a polynomial g(x) over K and a
nonnegative integer r ≤ m/t such that

F (x, y) =
t

∑

i=0

ci(y − g(x))ixm−ir

where ci ∈ K. We prove this fact by induction on degy(F (x, y)). Assume
that degy(F (x, y)) = 0. Then F (x) has an m-near solution if and only if that
F (x) = cxm for a c in K. Thus, F (x, y) has the desired form with t = 0.
Now, we assume that the hypothesis holds for any polynomial of y-degree n.
Let F (x, y) be a polynomial with degy(F (x, y)) = n + 1 and assume that
F (x, y) has n + 2 distinct m-near solutions g1(x), . . . , gn+2(x). If F (x, y)
has exactly one m-value, say a, then F (x, y) − axm = 0 has n + 2 distinct
zeros in K[x]. This implies that F (x, y)−axm is identically zero. Therefore,
F (x, y) = axm, which contradicts the fact that degy(F (x, y)) = n + 1. This
implies that F (x, y) cannot have exactly one m-value.

The case of two m-values being excluded by assumption, we now assume
that F (x, y) has more than two m-values. From Theorem 2.3, there is an
r ∈ N such that for any 1 ≤ i, j ≤ n + 2, gi(x) − gj(x) = ai,jx

r where
ai,j ∈ K. Now, we continue the proof with the assumption that the difference
between any two m-near solutions is a monomial. Let F (x, g1(x)) = axm for
an a ∈ K. Then

F (x, y) = (y − g1(x))G(x, y) + axm

for a G(x, y) ∈ K[x, y] with degy(G(x, y)) = n. For every i, 2 ≤ i ≤ n + 2,
let bi ∈ K be the corresponding m-value of gi(x). Then

F (x, gi(x)) = (gi(x) − g1(x))G(x, gi(x)) + axm

= ai,1x
rG(x, gi(x)) + axm = bix

m.

Thus, G(x, gi(x)) = ((bi−a)/ai,1)x
m−r. This means that every gi(x), 2 ≤ i ≤

n+2, is an (m− r)-near solution of G(x, y). We see that degy(G(x, y)) = n,
and G(x, y) has n+1 (m−r)-near solutions. Also, the difference between any
two (m−r)-near solutions of G(x, y) is a monomial. By induction hypothesis,
there is a p ∈ N with np ≤ m − r and such that

G(x, y) =

n
∑

i=0

di(y − g(x))ixm−r−ip
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where di ∈ K and g(x) ∈ K[x]. Since F (x, y) has at least three distinct
m-values, F (x, y) has at least three distinct m-near solutions. Now, g2(x)
and g3(x) are (m − r)-near solutions of G(x, y), so from the second part of
this theorem, there exist α and β in K such that g2(x) = g(x) + αxp and
g3(x) = g(x) +βxp, respectively. Thus, g2(x)− g3(x) = (α−β)xp. We know
that g2(x)− g3(x) = a2,3x

r for an a2,3 6= 0 in K. This means that p = r and

g1(x) = g2(x) + a1,2x
r = g(x) + αxr + a1,2x

r = g(x) + dxr

for a d ∈ K. Then

F (x, y) = (y − g1(x))G(x, y) + axm

= (y − g(x) − dxr)
[

n
∑

i=0

di(y − g(x))ixm−r−ir
]

+ axm

=
(

n
∑

i=0

di(y − g(x))i+1
)

xm−(i+1)r

−

n
∑

i=0

di(y − g(x))i · d · xm−ir + axm

=
n+1
∑

i=1

di−1(y − g(x))ixm−ir −
n

∑

i=0

d · di(y − g(x))ixm−ir + axm

=
n+1
∑

i=0

ci(y − g(x))ixm−ir

where c0 = −d · d0 + a, ci = di−1 − d · di for 1 ≤ i ≤ n, and cn+1 = dn.
Note also that np ≤ m − r and p = r imply that (n + 1)r ≤ m. Therefore,
F (x, y) is of the form in the assumption. The number of m-near solutions of
F (x, y) is thus equal to the number of elements of K. As we assume that the
number of m-near solutions of F (x, y) is greater than the degy(F (x, y)), we
conclude that the number of elements of K is greater than degy(F (x, y)).
This completes the proof.

Remark. If F (x, y) has exactly two m-values and F (x, y) is in Case 1
of Lemma 3.2, then the difference between any two m-near solutions is a
monomial. Then, with the same proof it can be shown that the number of
m-near solutions of F (x, y) is less than or equal to the y-degree of F (x, y).

For an equation we may have multiple solutions. Similarly, we can define
the multiplicity of an m-near solution.

Definition. Let g(x) be an m-near solution of F (x, y) with m-value a.
Then there exists a greatest integer r such that F (x, y) = (y−g(x))rH(x, y)
+ axm where H(x, y) ∈ K[x, y] and y − g(x) does not divide H(x, y). The
integer r is called the multiplicity of the m-near solution g(x) of F (x, y).
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We then have the following result.

Theorem 4.3. Let F (x, y) be a polynomial over K with y-degree t, and

m be a nonnegative integer. Except when F (x, y) has exactly two m-values,
if the number of m-near solutions of F (x, y) counting multiplicity is greater

than t, then there exist a polynomial g(x) over K and an nonnegative integer

r with r ≤ m/t such that

F (x, y) =
t

∑

i=0

ci(y − g(x))ixm−ir

where ci ∈ K.

Sketch of proof. We demonstrate only the induction step. Let F (x, y) be
a polynomial with y-degree n and assume that F (x, y) has n + 1 m-near
solutions counting multiplicity, and more than two distinct m-values. Let
g1(x), . . . , gs(x) be all the distinct m-near solutions of F (x, y), with possibly
different multiplicities. Since F (x, y) has more than two distinct m-values,
s > 2. Moreover, the difference between any two distinct m-near solutions
is a nonzero monomial of degree r.

Let g1(x) be an m-near solution of multiplicity t and F (x, g1(x)) = axm

for an a ∈ K. Then

F (x, y) = (y − g1(x))tG(x, y) + axm

for a G(x, y) ∈ K[x, y] with degy(G(x, y)) = n − t. For every i, 2 ≤ i ≤ s,
let gi(x)− g1(x) = ai,1x

r and bi ∈ K be the corresponding m-value of gi(x).
Then

F (x, gi(x)) = (gi(x) − g1(x))tG(x, gi(x)) + axm

= (ai,1x
r)tG(x, gi(x)) + axm = bix

m.

Thus, G(x, gi(x)) = ((bi − a)/(ai,1)
t)xm−rt. This means that every gi(x),

2 ≤ i ≤ s, is an (m − rt)-near solution of G(x, y). We have degy(G(x, y)) =
n− t, and G(x, y) has n+1− t (m− r)-near solutions counting multiplicity.
Also, the difference between any two (m − r)-near solutions of G(x, y) is
a monomial of degree r. By induction hypothesis, there is a p ∈ N with
np ≤ m − r and such that

G(x, y) =
n−t
∑

i=0

di(y − g(x))ixm−rt−ip

where di ∈ K and g(x) ∈ K[x]. We deduce that p = r and g1(x) = g(x)+dxr

for a d ∈ K. Then, by the Binomial Theorem, the c(t, j) being the binomial
coefficients, we have

F (x, y) = (y − g1(x))tG(x, y) + axm

= (y − g(x) − dxr)t
[

n−t
∑

i=0

di(y − g(x))ixm−rt−ir
]

+ axm
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=
[

t
∑

j=0

c(t, j)(y − g(x))j(−dxr)t−j
][

n−t
∑

i=0

di(y − g(x))ixm−rt−ir
]

+ axm

=
n

∑

k=0

ck(y − g(x))kxm−kr

where c0 = (−d)td0 + a, ck =
∑

i+j=k c(t, j)(−d)t−j(di). Hence, F (x, y) is of
the desired form.

Example. Let K = F3 be the finite field with three elements, and
F (x, y) = (y − x3)3x2 − (y − x3)x6. Then F (x, x3 + ax2) = (a3 − a)x8.
For every a ∈ F3, we have a3 − a = 0. Therefore, although F (x, y) has three
m-near solutions, it has only one m-value. Note that F (x, y) has the form
of Corollary 4.3. Hence, the converse of Corollary 4.3 (and of Corollaries
4.4, 4.5 below) is not true. Of course, if K is a field with infinitely many
elements, then these converses are easily seen to be true.

We also have a natural bound on the number of m-values, which can be
stated more elegantly as compared with Theorem 4.2.

Corollary 4.4. Let F (x, y) be a polynomial over K with y-degree t, and

m be a nonnegative integer. If the number of distinct m-values of F (x, y) is

greater than t, then there exists a polynomial g(x) over K and a nonnegative

integer r with r ≤ m/t such that

F (x, y) =
t

∑

i=0

ci(y − g(x))ixm−ir

where ci ∈ K.

Proof. Assume that degy(F (x, y)) = 0. Then F (x, y) has an m-value if
and only if F (x, y) = axm for an a ∈ K. This means that F (x, y) is as in
the statement.

It is easy to see that the number of m-values is less than or equal to the
number of distinct m-near solutions. If the number of m-values of F (x, y) is
greater than degy(F (x, y)), then the number of distinct m-near solutions is
greater than degy(F (x, y)). From Theorem 4.2, we need only handle the case
when F (x, y) has exactly two m-values. We then only need to handle the case
of degy(F (x, y)) = 1. However, in that case none of the three cases of Lemma
3.2 hold. We can also prove this directly. Let F (x, y) = f1(x)y + f0(x) have
two m-values, say a and b. Then there exist g(x) and h(x) in K[x] such that
F (x, g(x)) = axm and F (x, h(x)) = bxm. Thus, F (x, y) = (y − g(x))G(x) +
axm for a G(x) ∈ K[x]. Then F (x, h(x)) = (h(x)− g(x))G(x)+axm = bxm.
This implies that h(x)− g(x) = cxr for a c ∈ K and an r ∈ N where r ≤ m.
Then G(x) = ((b−a)/c)xm−r and F (x, y) = (y−g(x))((b−a)/c)xm−r+axm.
Hence F (x, y) is of the desired form.
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As above, we may define the multiplicity of an m-value.

Definition. Let F (x, y) be a polynomial over K and m be a nonnega-
tive integer. Let c ∈ K, {g1(x), . . . , gt(x)} be the set of all m-near solutions of
F (x, y) with m-value c, and ri be the multiplicity of gi(x). Then s =

∑t
i=1 ri

is called the multiplicity of the m-value c of F (x, y).

Note that the number of m-values is equal to the number of m-near
solutions (counting multiplicity). We then have the following corollary.

Corollary 4.5. Let F (x, y) be a polynomial over K with y-degree t, and

m be a nonnegative integer. Except when F (x, y) has exactly two m-values,
if the number of m-values of F (x, y) counting multiplicity is greater than t,
then there exists a polynomial g(x) over K and a nonnegative integer r with

r ≤ m/t such that

F (x, y) =
t

∑

i=0

ci(y − g(x))ixm−ir

where ci ∈ K.

The situation is much more complicated if we extend our definition of
near solution to rational functions. This is shown by the following example
which was provided by Mr. Li Yang Gan.

Final Example. Let

F (x, y) = (x3 + 6x2 + 11x + 6)y2 − (3x2 + 12x + 11)y + (2x + 6).

Then

F (x, y) = ((x + 1)y − 1)((x + 2)(x + 3)y − (2x + 5)) + 1

= ((x + 2)y − 1)((x + 1)(x + 3)y − (2x + 4)) + 2

= ((x + 3)y − 1)((x + 1)(x + 2)y − (2x + 3)) + 3.

From this presentation, it can be seen that F (x, y) has three 0-values and
six 0-value “rational” near solutions. That is,

F (x, 1/(x + 1)) = F (x, (2x + 5)/(x + 2)(x + 3)) = 1,

F (x, 1/(x + 2)) = F (x, (2x + 4)/(x + 1)(x + 3)) = 2,

F (x, 1/(x + 3)) = F (x, (2x + 3)/(x + 1)(x + 2)) = 3.

The bound on the number of near solutions given in Theorem 4.2 and the
bound on the number of m-values given in Theorem 4.4, are no longer valid.
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