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On the higher mean over arithmetic progressions
of Fourier coefficients of cusp forms

by

Yujiao Jiang and Guangshi Lü (Shandong)

1. Introduction. Throughout this paper, we consider the holomorphic
forms or Maass forms for the full modular group Γ = SL(2,Z) which are
eigenfunctions of all the Hecke operators Tn. Let k be an even integer and
let Hk denote the set of normalized primitive holomorphic cusp forms of
even integral weight k. Recall that f(z) ∈ Hk has Fourier expansion at the
cusp ∞ given by

(1.1) f(z) =
∞∑
n=1

λf (n)n(k−1)/2e(nz),

where e(x) := exp(2πix) is an additive character, and the coefficients
λf (n) ∈ R are eigenvalues of Tn. Deligne’s bound [7] asserts that

(1.2) |λf (n)| ≤ d(n)

for all n ≥ 1, where d(n) is the divisor function. Similarly, let Sr be the set
of normalized primitive Maass cusp forms of eigenvalue λ = 1/4 + r2. Then
f(z) ∈ Sr has Fourier expansion

(1.3) f(z) =
∑
n6=0

λf (n)
√
y Kir(2π|n|y)e(nx),

where Kir is the K-Bessel function and λf (n) ∈ R are eigenvalues of Tn.
The current best estimate is due to Kim and Sarnak [15],

(1.4) |λf (n)| ≤ n7/64d(n)

It is an interesting problem to study the 2jth power sum of |λf (n)|,∑
n≤x
|λf (n)|2j .
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For j = 1, the well-known Rankin–Selberg method (see [8, Theorem A])
yields ∑

n≤x
|λf (n)|2 = Cfx+Of (x3/5).

For j = 2, 3, 4, Lau, Lü and Wu showed that

(1.5)
∑
n≤x
|λf (n)|2j = xPf,2j(log x) +Of,ε(x

c2j+ε)

for any ε > 0, where P2j are polynomials with degP4 = 1, degP6 = 4 and

degP8 = 13, with the constants c4 = 151
175 , c6 = 175

181 and c8 = 2933
2957 if f ∈ Hk

(in [19]), and c4 = 15
17 , c6 = 63

65 and c8 = 255
257 if f ∈ Sr (in [18]). For higher

moments with j ≥ 5, assuming the Generalized Ramanujan Conjecture and
that L(symr φ), r = 1, . . . , j, are all automorphic cuspidal, Lau and Lü [18]
recently proved∑

n≤x
|λf (n)|2j = xPf,2j(log x) +Of,ε(x

η2j+ε),

where P2j is a polynomial of degree (2j)!/(j!(j + 1)!) − 1. For the general
case j > 1, j ∈ R, Rankin [27] showed that, if f ∈ Hk, then∑

n≤x
|λf (n)|2j = Of (x log2

2(j−1)−1 x).

Let l, q ∈ Z with 0 ≤ l < q and (q, l) = 1. In this paper, we will consider
the 2jth power sum of |λf (n)| over arithmetic progressions,

(1.6)
∑
n≤x

n≡l (mod q)

|λf (n)|2j

as x→∞, in which the parameter q can grow with x in a definite way.

Andrianov and Fomenko [2] firstly treated the second power sum of
|λf (n)| over arithmetic progressions for holomorphic cusp forms. Later Ak-
barov [1] improved the error term. The result was further strengthened when
q is a prime or a power of an odd prime by Ichihara [12], [13]:

(1.7)
∑
n≤x

n≡l (mod q)

|λf (n)|2 =
c

ϕ(q)

∏
p|q

(1−α(p)2p−1)(1−p−1)(1−β(p)2p−1)

× (1 + p−1)−1x+Of,ε(x
3/5q4/5+ε).

If x � q2, the error term was estimated as Of,ε(x
3/5q4/5), where c is a

constant only depending on f , and α(p), β(p) are the parameters in (2.1).

Our aim here is to investigate the fourth, sixth and eighth moments of
Fourier coefficients over arithmetic progressions. The main results are the
following.
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Theorem 1.1. Let f ∈ Hk and let q be a prime with (q, l) = 1. For any
ε > 0 and j = 2, 3, 4, if q ≤ xθ2j , then

(1.8)

∑
n≤x

n≡l (mod q)

|λf (n)|2j =
1

ϕ(q)
R2j(x, q) +Of,ε(qx

1− 3
2
θ2j+ε),

where θ4 = 2/23, θ6 = 4/187, θ8 = 4/755, ϕ(q) is the Euler function, and

R2j(x, q) =

n2j∑
k=0

k∑′

d=0

∑
Ω(d)

dL−1
(m)

2j,q (q−1)

m!r0! · · · r2j !
Bk,d

(
− log q

q
, . . . ,

(− log q)k−d+1

q

)

×
2j∏
i=0

Ci2j !((−α(q))2(j−i))ri

(Ci2j − ri)!

(
1− α(q)2(j−i)

q

)Ci2j−ri
xPn2j−k(log x).

Here
∑′ means that the d = 0 term is absent if k ≥ 1, Ω(d) denotes sum-

ing over m, r0, . . . , r2j with m + r0 + · · · + r2j = d, g(m) means the mth
derivative of g, Bk,d is the Bell polynomial given by (3.10), Ci2j are bino-
mial coefficients, L2j,q(T ) are polynomials with degL4,q = 14, degL6,q = 62
and degL8,q = 254 as in Lemma 2.5, Pk is a polynomial of degree k, and
n2j = 1, 4, 13 respectively.

The proof of Theorem 1.1 is based on Deligne’s bound (1.2). Although
the Ramanujan Conjecture is not available for Maass cusp forms, we have

Theorem 1.2. Let f ∈ Sr and let q be a prime with (q, l) = 1. For any
ε > 0 and j = 2, 3, 4, we have

(1.9)

∑
n≤x

n≡l (mod q)

|λf (n)|2j =
1

ϕ(q)
R2j(x, q) +Of,ε

(
q

4j

4j+1x
4j−1

4j+1
+ε)

,

where R2j(x, q) is as in Theorem 1.1.

Remark 1.1. Applying the method of Theorem 1.2 for the decomposi-
tion equation (2.14), we can obtain the result on Maass cusp forms for j = 1,
which coincides with Ichihara’s result (1.7) on holomorphic cusp forms.

2. Preliminaries. In this section we will briefly recall some fundamen-
tal facts about cusp forms and their L-functions. For f in Hk or Sr, the
associated L-function is given by

(2.1) L(s, f) =
∑
n≥1

λf (n)

ns
=
∏
p

(
1− α(p)

ps

)−1(
1− β(p)

ps

)−1
,
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which converges absolutely for σ = <s > 1. The local parameters α(p) and
β(p) are related to the normalized Fourier coefficients in the following way:

α(p) + β(p) = λf (p), α(p)β(p) = 1.

Now let χ be a Dirichlet character modulo q. Then we define the twisted
mth symmetric power L-function to be the degree m+ 1 Euler product

(2.2) L(s, symm f ⊗ χ) =
∏
p

∏
0≤j≤m

(
1− α(p)m−2jχ(p)

ps

)−1
,

and the Rankin–Selberg convolution of symm f and symn f⊗χ via the degree
m+ n+ 2 Euler product

(2.3) L(s, symm f × symn f ⊗ χ)

=
∏
p

∏
0≤j≤m

∏
0≤i≤n

(
1− α(p)m−2jα(p)n−2iχ(p)

ps

)−1
.

It is easy to see that
L(s, sym0 f ⊗ χ) = L(s, χ),

L(s, sym1 f ⊗ χ) = L(s, f ⊗ χ),

L(s, symm f × sym0 f ⊗ χ) = L(s, symm f ⊗ χ).

Lemma 2.1. Let f in Hk or Sr be a Hecke eigencuspform and χ be a
primitive character modulo a prime q. The completed L-function defined as

(2.4) Λ(s, symm f × symn f ⊗ χ))

= q(m+1)(n+1)s/2γ(s)L(s, symm f × symn f ⊗ χ)

is an entire function and satisfies a functional equation

(2.5) Λ(s, symm f × symn f ⊗χ)) = ε(f, χ)Λ(1−s, symm f × symn f ⊗χ)),

where 1 ≤ m ≤ 4 and 0 ≤ n ≤ m, |ε(f, χ)| = 1 and γ(s) is essentially a
product of some gamma functions Γ ((s+ κi)/2), i = 1, . . . , (m+ 1)(n+ 1),
with κi depending on the weight or spectrum of f and the parity of the char-
acter χ and <κi ≥ 0.

Proof. If m = 0, 1 or 2, n = 0, this follows from the classical results of
[4, Theorem 1.1.1, equation 5.9] and Li [20]. For the general case, the proof
is a little different for χ odd and for χ even. A primitive character χ corre-
sponds to a Hecke character of the idele class group A×/Q× trivial on R×+, so
χ is of the form χ =

⊗
p≤∞ χp. It is known that there exists an automorphic

cuspidal self-dual representation symk π =
⊗

p≤∞ symk πp associated with

symk f for k up to 4, from the work of Gelbart and Jacquet [9] for k = 2
and the works of Kim and Shahidi [16, 17] and Kim [15] when k = 3, 4.
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If χ is even, that is, χ(−1) = 1, which is equivalent to the local factor at
infinity satisfying χ∞ ≡ 1, by the method of Luo, Rudnick and Sarnak [22]
we can show

ε(f, χ) = ε(symm π × symn π ⊗ χ) = (τ(χ)/
√
q)(m+1)(n+1)

and

γ(s) = L(s, symm π∞ × symn π∞ ⊗ χ∞) = L(s, symm π∞ × symn π∞)

=
n∏
r=0

L(s, symm+n−2r π∞).

The last step is obtained due to symm π ⊗ symn π =
⊕

0≤r≤n symm+n−2r π.

Further, γ(s) is essentially a product of some gamma functions Γ ((s+ κi)/2)
with <κi ≥ 0, because of the explicit formula for L(s, symk π∞) of Cogdell
and Michel [6] if f ∈ Hk and of Murty [26] if f ∈ Sr.

If χ is odd, similar results can be obtained. We know from [10, Re-
mark 10.8.7] that the root number ε(f, χ) and the gamma factor γ(s) in the
functional equation change a little, namely

ε(f, χ) = ε(symm π × symn π ⊗ χ) =

(
τ(χ)

i
√
q

)(m+1)(n+1)

and

γ(s) = L(s, symm π∞ × symn π∞ ⊗ χ∞) = L(s+ 1, symm π∞ × symn π∞)

=

n∏
r=0

L(s+ 1, symm+n−2r π∞).

Hence Lemma 2.1 is proved.

2.1. Mean values and subconvexity bounds

Lemma 2.2. Let f(s) be an analytic function of s, real for real s, regular
for σ ≥ α except possibly for a pole at s = s0, and O(eε|t|) as |t| → ∞ for
every positive ε and σ ≥ α. Let α < σ < β.

(1) Assume that for all T > 0,

T�

0

|f(α+ it)|2 dt≤C(T a + 1),

T�

0

|f(β + it)|2 dt≤C ′(T b + 1),

where a, b ≥ 0, and C,C ′ depend on f(s). Then for T ≥ 2,

(2.6)

T�

1
2
T

|f(σ + it)|2 dt ≤ K(CT a)(β−σ)/(β−α)(C ′T b)(σ−α)/(β−α),

where K depends on a, b, α, β only, and is bounded if these are bounded.
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(2) Assume that

|f(α+ it)| ≤ C(|t|+ 1)a, |f(β + it)| ≤ C ′(|t|+ 1)b,

for t ∈ R. Then

(2.7) |f(σ + it)| ≤ (C(|t|+ 1)a)(β−σ)/(β−α)(C ′(|t|+ 1)b)(σ−α)/(β−α).

The result (1) comes from a convexity theorem of Titchmarsh [29, p. 149],
and (2) is the Phragmén–Lindelöf principle for a strip [14, Theorem 5.53]. We
shall estimate the mean values and hybrid bounds of Dirichlet L-functions
in the strip by using Lemma 2.2.

Lemma 2.3. Let χ be a primitive character modulo q. Then, for any
ε > 0 and T ≥ 1 with q � T 2,

(2.8) L(σ + iT, χ)�ε (q(|T |+ 1))max { 1
3
(1−σ),0}+ε,

and if further q is a prime,

(2.9)

T�

0

|L(σ + it, χ)|12 dt�ε q
4(1−σ)T 3−2σ+ε.

Proof. The corresponding results on the critical line s = 1/2 + it were
stated by Heath-Brown [11] and Motohashi [25]. Since the Dirichlet
L-function L(s, χ) converges absolutely for σ = <s > 1, the claim follows
from Lemma 2.2.

2.2. Mean values and convexity bounds for higher rank L-func-
tions. We shall use the notation of [19]. For d := {d1, . . . , dJ},m :=
{m1, . . . ,mJ},n := {n1, . . . , nJ} with dj ∈ N, 1 ≤ mj ≤ 4 and 0 ≤ nj ≤ mj ,
define

(2.10) Ld
m,n(s, χ) :=

J∏
j=1

L(s, symmj f × symnj f ⊗ χ)dj .

By Lemma 2.1, we know that L(s, symm f ⊗ symn f ⊗χ)) is Perelli’s general
L-function as defined in [28]. Then Ld

m,n(s, χ) is also a general L-function
satisfying the functional equation

Qs
N∏
i=1

Γ (αis+ βi)L
d
m,n(s, χ) = WQ1−s

N∏
i=1

Γ (αi(1− s) + βi)L
d
m,n(1− s, χ)

with |W | = 1, αi = 1/2, βi ≥ 0 for all i and

N = d1(m1 + 1)(n1 + 1) + · · ·+ dJ(mJ + 1)(nJ + 1).

Let

A = N/2, B =

N∑
i=1

βi ≥ 0, qA � Q� qA,

H = 1 + <(B/A)− (N − 1)/(2A) > 0
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and

G(Q) = QH
(

1 +Q−min<(βi/αi)
(
Q−1 +Q max

i=1,...,N−1
z

|Ld(i)
m,n(z, χ)|

))
� QH ,

where z runs over the poles of
∏N
i=1 Γ (αis + βi)L

d
m,n(s, χ). Then from

[28, Theorem 4] and [23, Proposition 1] we deduce the estimate (2.11) below.
The estimate (2.12) can be obtained by standard arguments used to estab-
lish convexity bounds, applying Lemma 2.1, Lemma 2.2 and the definition
of Ld

m,n(σ + it, χ).

Lemma 2.4. Let f ∈ Hk be a Hecke eigencuspform and χ be a primitive
character modulo q. Let Ld

m,n(s, χ) be defined as in (2.10). Then for any
ε > 0, we have

(2.11)

2T�

T

|Ld
m,n(σ + it, χ)|2 dt� (qT )2A(1−σ)+ε

uniformly for 1/2 ≤ σ ≤ 1 and T ≥ 1. Moreover,

(2.12) Ld
m,n(σ + it, χ)� (q(|t|+ 1))max{A(1−σ),0}+ε

uniformly for −ε ≤ σ ≤ 1 + ε.

From (2.4), we know that the mean value and convexity of a product of
symmetric L-functions are determined by the parameter A. So we only need
to specify the value of A for L-functions in our applications.

2.3. Decomposition of F2j(s, χ). Let f in Hk or Sr be a Hecke
eigencuspform and χ be a Dirichlet character modulo q. Define an L-func-
tion as

(2.13) F2j(s, χ) =
∞∑
n=1

|λf (n)|2jχ(n)n−s.

The aim is to decompose it into some functions whose properties are well
known. For j = 1, we know from [12] that

(2.14) F2(s, χ) = L(s, χ)L(s, sym2 f ⊗ χ)L(2s, χ2)−1.

Clearly, L(2s, χ2)−1 is absolutely convergent and free from zeros for <s ≥
1/2 + ε. For the higher cases, we have the following.

Lemma 2.5. With notation as above and <s > 1, for any ε > 0 we have

(2.15) F2j(s, χ) = G2j(s, χ)H2j(s, χ)
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for j = 2, 3, 4, where

G4(s, χ) = L(s, χ)2L(s, sym2 f ⊗ χ)3L(s, sym4 f ⊗ χ),

G6(s, χ) = L(s, χ)5L(s, sym2 f ⊗ χ)8

× L(s, sym4 f ⊗ χ)4L(s, sym4 f × sym2 f ⊗ χ),

G8(s, χ) = L(s, χ)13L(s, sym2 f ⊗ χ)21L(s, sym4 f ⊗ χ)13

× L(s, sym4 f × sym2 f ⊗ χ)6L(s, sym4 f × sym4 f ⊗ χ),

and H2j(s, χ) :=
∏
p L2j,p(χ(p)p−s). Here L2j,p are polynomials of degree 14,

62 and 254 for j = 2, 3, 4 respectively, whose coefficients of constant, linear
and highest terms equal 1, 0,−1. Furthermore, if f ∈ Hk, then H2j(s, χ)
admits a Dirichlet series absolutely convergent in <s ≥ 1/2 + ε. If f ∈ Sr,
then H4(s, χ) and H6(s, χ) converge absolutely in <s ≥ 1/2+ε, and H8(s, χ)
converges absolutely in <s ≥ 23/32 + ε. For f in Hk or Sr, the convergence
in all cases is uniform in q in the respective regions.

Proof. From the multiplicativity property of |λf (n)|2j , we have the Euler
product identity

F2j(s, χ) =
∏
p

( ∞∑
v=0

|λf (pv)|2jχv(p)p−vs
)
.

Now we shall take T = χ(p)p−s. For j = 2, we can easily derive

∞∑
v=0

|λf (pv)|4T v =
L4,p(T )

(1− T )2S2(T )3S4(T )4
,

where

L4,p(T ) = 1−
(
7− 12λf (p)2 + 6λf (p)4

)
T 2 + · · · − T 14,

and

Sm×n(T ) =
∏

0≤j≤m

∏
0≤i≤n

(
1− α(p)m−2jα(p)n−2iT

)
,

in particular Sm(T ) = Sm×0(T ), because of the facts from [24, Lemma 2,
Remarks], namely

∞∑
v=0

|τ0(pv)|4T v =
L′4,p(T )

(1− T )2S′2(T )3S′4(T )4

and

L′4,p(T ) = 1− (7− 12τ0(n)2 + 6τ0(n)(p)4)T 2 + · · · − T 14,

where τ0(n) is the nth normalized Ramanujan τ -function, and L′4,p, S
′
2, S
′
4

are functions similar to L4,p, S2, S4 with local parameters for τ0(n).
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For j = 3, the claim follows if we prove that
∞∑
v=0

|λf (pv)|6T v =
L6,p(T )

(1− T )5S2(T )8S4(T )4S4×2(T )
.

It follows from the theory of Hecke operators that

(2.16) λf (pv) =
α(p)v+1 − α(p)−v−1

α(p)− α(p)−1
.

Then the problem is reduced to showing that
∞∑
v=0

(
α(p)v+1 − α(p)−v−1

α(p)− α(p)−1

)6

T v =
L6,p(T )

(1− T )5S2(T )8S4(T )4S4×2(T )
.

By a straightforward calculation one shows that

∞∑
v=0

(
av+1 − 1

a− 1

)6

tv

=
1 +R1(a)t+R2(a)t2 +R1(a)a5t3 +R2(a)a7t4 + a15t5

(1− a6t)(1− a5t) · · · (1− t)
,

where

R1(a) = a(5 + 14a+ 19a2 + 14a3 + 5a4),

R2(a) = a3(10 + 35a+ 66a2 + 80a3 + 66a4 + 35a5 + 10a6).

Inserting a = a(p)2 and t = T/a(p)6 into this identity, and using the facts
that

R1(a)t =
(
1− 6λf (p)2 + 5λf (p)4

)
T,

R2(a)t2 =
(
−2 + 16λf (p)2 − 25λf (p)4 + 10λf (p)6

)
T 2,

we obtain
∞∑
v=0

|λf (pv)|6T v =
N6(T )

S6(T )
,

where
N6(T ) = 1 + (5λf (p)4 − 6λf (p)2 + 1)T

+
(
10λf (p)6 − 25λf (p)4 + 16λf (p)2 − 2

)
T 2

+ (10λf (p)6 − 25λf (p)4 + 16λf (p)2 − 2)T 3

+ (5λf (p)4 − 6λf (p)2 + 1)T 4 + T 5.

It is easy to derive

S2(T ) = 1− (λf (p)2 − 1)T + (λf (p)− 1)T 2 − T 3,

S4(T ) = 1− (λf (p)4− 3λf (p)2 + 1)T + (λf (p)6− 5λf (p)4 + 7λf (p)2− 2)T 2

− (λf (p)6− 5λf (p)4 + 7λf (p)2 − 2)T 3 + (λf (p)4− 3λf (p)2 + 1)T 4− T 5,
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and
S4×2(T ) = S2(T )S4(T )S6(T ).

Therefore,

L6,p(T ) = N6(T )(1− T )5S2(T )9S4(T )5

= 1− (31− 90λf (p)2 + 105λf (p)4 − 60λf (p)6 + 15λf (p)8)T 2 + · · · − T 62.

For j = 4, the goal is to show
∞∑
v=0

|λf (pv)|8T v =
L8,p(T )

(1− T )13S2(T )21S4(T )13S4×2(T )6S4×4(T )
.

From (2.16) and some elementary calculations we derive that
∞∑
v=0

|λf (pv)|8T v =
∞∑
v=0

(
α(p)v+1 − α(p)−v−1

α(p)− α(p)−1

)8

T v =
N8(T )

S8(T )
,

where

N8(T )

= 1 + (7λf (p)6 − 15λf (p)4 + 10λf (p)2 − 1)T + (21λf (p)10 − 105λf (p)8

+ 183λf (p)6 − 138λf (p)4 + 42λf (p)2 − 3)T 2 + (35λf (p)12 − 231λf (p)10

+ 560λf (p)8 − 610λf (p)6 + 293λf (p)4 − 52λf (p)2 + 3)T 3 + (35λf (p)12

− 231λf (p)10 + 560λf (p)8 − 610λf (p)6 + 293λf (p)4 − 52λf (p)2 + 3)T 4

+ (21λf (p)10 − 105λf (p)8 + 183λf (p)6 − 138λf (p)4 + 42λf (p)2 − 3)T 5

+ (7λf (p)6 − 15λf (p)4 + 10λf (p)2 − 1)T 6 + T 7.

Since
S4×4(T ) = (1− T )S2(T )S4(T )S6(T )S8(T )

and

S6(T ) = 1− (λf (p)6 − 5λf (p)4 + 6λf (p)2 − 1)T + (λf (p)10 − 9λf (p)8

+ 29λf (p)6 − 40λf (p)4 + 22λf (p)2 − 3)T 2 − (λf (p)12 − 11λf (p)10

+ 46λf (p)8 − 90λf (p)6 + 81λf (p)4 − 28λf (p)2 + 3)T 3 + (λf (p)12

− 11λf (p)10 + 46λf (p)8 − 90λf (p)6 + 81λf (p)4 − 28λf (p)2 + 3)T 4

− (λf (p)10 − 9λf (p)8 + 29λf (p)6 − 40λf (p)4 + 22λf (p)2 − 3)T 5

+ (λf (p)6 − 5λf (p)4 + 6λf (p)2 − 1)T 6 − T 7.

Thus, we obtain

L8,p(T ) = N8(T )(1− T )14S2(T )28S4(T )20S6(T )7

= 1− (28λf (p)12 − 168λf (p)10 + 490λf (p)8 − 840λf (p)6

+ 868λf (p)4 − 504λf (p)2 + 127)T 2 + · · · − T 254.
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When f ∈ Hk, Deligne’s bound (1.2) holds. From the convergence of the
series

∑
p p
−2s for <s > 1/2 and the expression of L2j,p(T ), we know that

H2j(s, χ) converges absolutely in the region <s ≥ 1/2 + ε for any ε > 0.

When f ∈ Sr, we use an assertion equivalent to (1.4), which states that

(2.17) |α(p)|, |α−1(p)| ≤ p7/64.

From the expression of L2j,p(T ), we obtain

(2.18)

H4(s, χ)�
∏
p

(
1 +O

(
|α(p)|4 + |α(p)|−4

p2σ

))
,

H6(s, χ)�
∏
p

(
1 +O

(
|α(p)|8 + |α(p)|−8

p2σ

))
,

H8(s, χ)�
∏
p

(
1 +O

(
|α(p)|12 + |α(p)|−12

p2σ

))
.

The convexity bound for L(s, sym4 f × sym4 f) (see [21]) implies that for
any σ > 1 + ε, ε > 0,

(2.19)
∏
p

(
1 +
|α(p)|8 + |α(p)|−8

pσ

)
� 1.

Combining (2.17)–(2.19), we deduce that H4(s, χ) and H6(s, χ) converge
absolutely in the region <s ≥ 1/2 + ε, and H8(s, χ) converges absolutely in
<s ≥ 23/32+ε. Moreover, since |χ(p)| = 1, the convergence is uniform in q in
the respective regions for all cases. This completes the proof of Lemma 2.5.

3. Proof of Theorem 1.1. We shall complete the proof of Theorem 1.1
by using the orthogonality relation of characters. Thus we have to investigate
the sum

∑
n≤x |λf (n)|2jχ(n).

Proposition 3.1. Let f ∈ Hk and let χ be a primitive character modulo
a prime q. For any ε > 0 and q ≤ xθ2j , we have

(3.1)
∑
n≤x
|λf (n)|2jχ(n)�f,ε qx

1− 3
2
θ2j+ε.

where θ4 = 2/23, θ6 = 4/187 and θ8 = 4/755.

Proof. Applying the Perron formula [14, Proposition 5.54] for the func-
tion (2.13), we get, due to (1.2),∑

n≤x
|λf (n)|2jχ(n) =

1

2πi

1+ε+iT�

1+ε−iT
F2j(s, χ)

xs

s
ds+Of,ε(x

1+ε/T ),
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uniformly for 2 ≤ T ≤ x. By Lemmas 2.1 and 2.5, F2j(s, χ) is free from
poles in the rectangle 1/2 + ε ≤ σ ≤ 1 + ε. Then we derive∑

n≤x
|λf (n)|2jχ(n) = − 1

2πi

�

C

F2j(s, χ)
xs

s
ds+Of,ε(x

1+ε/T ),

where C is the contour joining 1+ε+iT, 1/2+ε+iT, 1/2+ε−iT, 1+ε−iT with
straight line segments. Since H2j(s, χ) converges absolutely and uniformly
in q and <s ≥ 1/2 + ε, it follows that

(3.2)
∑
n≤x
|λf (n)|2jχ(n) = O(I1) +O(I2) +Of,ε(x

1+ε/T ),

where

I1 :=
1

T

1+ε�

1/2+ε

|G2j(σ + iT, χ)|xσdσ,

I2 := x1/2+ε sup
0≤t≤1

|G2j(1/2 + ε+ it, χ)|+ x1/2+ε
T�

1

|G2j(1/2 + ε+ it, χ)| dt
t

� x1/2+ε sup
0≤t≤1

|G2j(1/2 + ε+ it, χ)|

+ x1/2+ε sup
1≤T1≤T

1

T1

2T1�

T1

|G2j(1/2 + ε+ it, χ)| dt.

Next we shall only treat the case of j = 2, since the proofs of other cases
have similar steps. Inserting the upper bounds (2.8) and (2.12), namely,

(3.3)
L(σ + iT, χ)� (q(|T |+ 1))max { 1

3
(1−σ),0}+ε,

L(σ + iT, sym2 f ⊗ χ)3L(σ + iT, sym4 f ⊗ χ)

� (q(|T |+ 1))max {7(1−σ),0}+ε,

we show, for q � T 2,

I1 �
1

T

1+ε�

1/2+ε

(qT )
2
3
(1−σ)+ε(qT )7(1−σ)+εxσdσ,(3.4)

� q23/3+εT 20/3+ε
1+ε�

1/2+ε

(
x

(qT )23/3

)σ
dσ,

� q23/6+εT 17/6+εx1/2+ε + x1+ε/T .

Applying the generalization of Hölder’s inequality and (3.3), we obtain

I2 � q23/6+εx1/2+ε(3.5)

+ x1/2+ε sup
1≤T1≤T

1

T1
I2,1(T1)

1/6I2,2(T1)
1/3I2,3(T1)

1/2,
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where

I2,1(T1) :=

2T1�

T1

|L(1/2 + ε+ it, χ)|12 dt,

I2,2(T1) :=

2T1�

T1

|L(1/2 + ε+ it, sym2 f ⊗ χ)|6 dt,

I2,3(T1) :=

2T1�

T1

|L(1/2 + ε+ it, sym2 f ⊗ χ)L(1/2 + ε+ it, sym4 f ⊗ χ)|2 dt.

Since L(1/2 + ε + it, sym2 f ⊗ χ)3 and L(1/2 + ε + it, sym2 f ⊗ χ)L(1/2 +
ε + it, sym4 f ⊗ χ) are general L-functions defined in (2.10) with A = 9/2
and A = 4 respectively, we deduce from (2.9) and (2.11) that

I2,1(T1)� (qT )2+ε, I2,2(T1)� (qT )9/2+ε, I2,3(T1)� (qT )4+ε.

By inserting these into (3.5) we obtain

(3.6) I2 � q23/6+εT 17/6+εx1/2+ε.

Combining (3.4), (3.6) and (3.2), we get (3.1) by choosing T = x3/23/q.

Since q � T 2, we have proved (3.1) for q ≤ x2/23.

Proposition 3.2. Let f ∈ Hk and let χ0 be a principal character modulo
a prime q. For any ε > 0, q � x and j = 2, 3, 4 we have

(3.7)

∑
n≤x
|λf (n)|2jχ0(n) = R2j(x, q) +Of,ε(x

c2j+ε),

where R2j(x, q) is given in (3.9), and c4 = 151
175 , c6 = 175

181 , c8 = 2933
2957 .

Proof. By Lemma 2.5, it can easily be seen that

(3.8) F2j(s, χ0) = L−12j,q(q
−s)

2j∏
i=0

(1− α(q)2(j−i)q−s)C
i
2jG2j(s)H2j(s),

where (see [19])

G4(s) = ζ(s)2L(s, sym2 f)3L(s, sym4 f),

G6(s) = ζ(s)5L(s, sym2 f)8L(s, sym4 f)4L(s, sym4 f × sym2 f),

G8(s) = ζ(s)13L(s, sym2 f ⊗ χ)21L(s, sym4 f)13L(s, sym4 f × sym2 f)6

× L(s, sym4 f × sym4 f),

and H2j(s) converges absolutely in <s ≥ 1/2 + ε and H2j(1 + it) 6= 0 for
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j = 2, 3, 4. Applying the Perron formula for this function, we have

∑
n≤x
|λf (n)|2jχ0(n) =

1

2πi

1+ε+iT�

1+ε−iT
F2j(s, χ0)

xs

s
ds+Of,ε(x

1+ε/T ),

uniformly for 2 ≤ T ≤ x. From (3.8) and the expressions of G2j(s), the point
s = 1 is the only possible pole of the integrand in the rectangle κ ≤ σ ≤ 1+ε
and |τ | ≤ T for any κ ∈ [1/2 + ε, 1), and it is of order n2j + 1 = 2, 5, 14
respectively. Thus, we obtain∑

n≤x
|λf (n)|2jχ0(n) = R(x)− 1

2πi

�

C

F2j(s, χ)
xs

s
ds+Of,ε(x

1+ε/T ),

where R2j(x, q) = ress=1F2j(s, χ0)x
s/s, and C is the contour joining 1 +

ε+ iT, κ+ iT, κ− iT, 1 + ε− iT with straight line segments. By the residue
formula, Leibniz’s rule and Bruno’s formula, we have

(3.9)

R2j(x, q) =

n2j∑
k=0

(
L−12j,q(q

−s)

2j∏
i=0

(1− α(q)2(j−i)q−s)C
i
2j

)(k) ∣∣∣
s=1

xPn2j−k(log x)

=

n2j∑
k=0

k∑′

d=0

∑
Ω(d)

d!L−1
(m)

2j,q (q−1)

m!r0! · · · r2j !
Bk,d

(
− log q

q
, . . . ,

(− log q)k−d+1

q

)

×
2j∏
i=0

Ci2j !((−α(q))2(j−i))ri

(Ci2j − ri)!

(
1− α(q)2(j−i)

q

)Ci2j−ri
xPn2j−k(log x),

where
∑′ means that the d = 0 term is absent if k ≥ 1, Ω(d) denotes

summing over m, r0, . . . , r2j with m+ r0 + · · ·+ r2j = d, and Bk,d is the Bell
polynomial given by

(3.10) Bk,d(x1, x2, . . . , xk−d+1) =
∑

ji≥0, j1+j2+···+jk−d+1=d
j1+2j2+···+(k−d+1)jk−d+1=k

k!

j1! · · · jk−d+1!

×
(
x1
1

)j1(x2
2!

)j2
· · ·
(

xk−d+1

(k − d+ 1)!

)jk−d+1

.

We also have

2j∏
i=0

(1− α(q)2(j−i)q−s)C
i
2j � (1 + q−σ)2jC

i
2j � 1.

In addition we know that H2j(s, χ) converges absolutely and uniformly in q
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and <s ≥ 1/2 + ε. It follows that∑
n≤x
|λf (n)|2jχ0(n) = R2j(x, q) +O(I1) +O(I2) +Of,ε(x

1+ε/T ),

where

I1 :=
1

T

1+ε�

κ

|G2j(σ + iT )|xσ dσ,

I2 := xκ+ε sup
0≤t≤1

|G2j(κ+ it, χ)|+ xκ+ε
T�

1

|G2j(κ+ it)| dt
t

� xκ+ε sup
1≤T1≤T

1

T1

2T1�

T1

|G2j(κ+ it)| dt.

Finally, Proposition 3.2 follows from the same procedure as in the proof of
[19, Theorem 1].

Proof of Theorem 1.1. Let χ be a Dirichlet character modulo a prime q.
Applying Propositions 3.1 and 3.2, we derive by orthogonality∑

n≤x
n≡l (mod q)

|λf (n)|2j =
1

ϕ(q)

∑
χ (mod q)

χ(l)
∑
n≤x
|λf (n)|2jχ(n)

=
1

ϕ(q)

∑
n≤x
|λf (n)|2jχ0(n) +O

(∑
n≤x
|λf (n)|2jχ(n)

)
=

1

ϕ(q)
R2j(x, q) +Of,ε(qx

1− 3
2
θ2j+ε).

Note that 1− 3
2θ2j > c2j . This completes the proof.

4. Proof of Theorem 1.2. Chandrasekharan and Narasimhan [5] con-
sidered the average order of a class of arithmetical functions. To estimate a
special class, we refine their main O-theorem [5, Theorem 4.1] including the
conductor. We first give some notation.

Let {an}, {bn} be two sequences of complex numbers, not all zero. Let
{λn}, {µn} be two sequences of strictly positive numbers, strictly increasing
to infinity. We define Dirichlet series ϕ(s) and ψ(s) by

ϕ(s) =
∞∑
n=1

an
λsn
, ψ(s) =

∞∑
n=1

bn
µsn
,

each of which converges absolutely in some half-plane and satisfies [5, (2.3)].
Let

∆(s) =

N∏
v=1

Γ

(
αvs+ βv

2

)
,
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where N ≥ 1, βv is an arbitrary complex number, and A =
∑N

v=1 αv ≥ 1.
Suppose that the functional equation

qAs∆(s)ϕ(s) = ε(q)qA(δ−s)∆(δ − s)ψ(δ − s)
is satisfied with δ > 0, |ε(q)| = 1 and that the only singularities of the
function ϕ are poles. Let

A0
λ(x) =

∑′

λn≤x
an,

where the dash denotes that the last term has to be multiplied by 1/2 if
x = λn. Let

Q0
λ(x) =

1

2πi

�

C0

ϕ(s)
xs

s
ds

where C0 encloses all the singularities of the integrand.

Lemma 4.1. We have

A0
λ(x)−Q0

λ(x) = O(qA(2β−δ)y−2Aux
δ
2
− 1

4A
+(2A−1)u) +O(yx−1|Q0

λ(x)|)

+O
( ∑
x<λn≤x+O(y)

|an|
)
,

for every 0 < y � x, and u = β − δ/2 − 1/(4A), where β is such that∑∞
n=1|bn|µ

−β
n <∞.

If in addition an ≥ 0, then

A0
λ(x)−Q0

λ(x) = O(qA(2β−δ)y−2Aux
δ
2
− 1

4A
+(2A−1)u) +O(yx−1|Q0

λ(x)|).
Proof. The proof is similar to that of Chandrasekharan and Narasimhan.

Their results follow immediately by changing bn→ ε(q)qAδbn, µn→ q2Aµn.

Proposition 4.2. Let f ∈ Sr and let χ be a primitive character mod-
ulo q. For any ε > 0, q � x and j = 2, 3, 4 we have

(4.1)
∑
n≤x
|λf (n)|2jχ(n) = Of,ε

(
q

4j

4j+1x
4j−1

4j+1
+ε)

.

Proof. Let G2j(s, χ), H2j(s, χ) be expressed as Dirichlet series

G2j(s, χ) =

∞∑
n=1

a2j(n)χ(n)

ns
=

∞∑
n=1

a2j(n, χ)

ns
, H2j(s, χ) =

∞∑
n=1

b2j(n, χ)

ns
,

where a2j(n) are the coefficients of G2j(s); it is known that a2j(n) are
nonnegative (see [18, Lemma 7.1]). Then by the refinement of Landau’s
Lemma [3, Theorem 3.2] we derive that

(4.2)
∑
n≤x

a2j(n) = xPn2j (log x) +O
(
x

4j−1

4j+1
+ε)

.
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For any xε � y � x, this yields the upper bound of a2j(n) in short intervals
by subtracting the x sum from the x+ y sum:∑

x<n≤x+y
a2j(n) = O(y logn2j x) +O

(
x

4j−1

4j+1
+ε)

.

Clearly, it follows from Lemma 2.1 that

q4
js/2γ2j(s)G2j(s, χ) = ε(f, χ)q4

j(1−s)/2γ2j(1− s)G2j(1− s, χ).

If χ is even, that is, χ(−1) = 1, it is clear that Q0
λ(0) = G2j(0, χ) =

L(0, χ) = 0. Applying Lemma 4.1 with the parameters

δ = 1, A =
4j

2
, β = 1, u =

1

2
− 1

2 · 4j
,

we deduce from (1.4) that

(4.3)
∑
n≤x

a2j(n, χ)

= O
(
q

4j

2 y
−4j+1

2 x
4j−1

2
)

+O
( ∑
x<n≤x+O(y)

|a2j(n)|
)

+O
(
x

7
32
j
)

= O
(
q

4j

2 y
−4j+1

2 x
4j−1

2
)

+O(y logdegP2j x) +O
(
x

4j−1

4j+1
+ε)

= Of,ε
(
q

4j

4j+1x
4j−1

4j+1
+ε)

,

which follows by taking y = q
4j

4j+1x
4j−1

4j+1
+ε
.

If χ is odd, that is, χ(−1) = −1, we have Q0
λ(0) = G2j(0, χ) � q4

j/2

by the convexity bound (2.12), which may lead to a higher bound than we

expect when q
4j

2 � q
4j

4j+1x
4j−1

4j+1
+ε

, namely, q � x
2

4j . However, we can treat
this case by shifting the variable. A new Dirichlet series is defined by

G′2j(s, χ) = G2j(s− 1, χ) =
∞∑
n=1

na2j(n, χ)

ns
,

which satisfies a functional equation

q4
js/2γ2j(s)G

′
2j(s, χ) = ε(f, χ)q4

j(3−s)/2γ2j(3− s)G′2j(3− s, χ).

Using Lemma 4.1 for G′2j(s, χ) with the parameters

δ = 3, A =
4j

2
, β = 2, u =

1

2
− 1

2 · 4j

and Q0
λ(0) = G′2j(0, χ) = G2j(−1, χ) = L(−1, χ) = 0, one derives by choos-
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ing y = q
4j

4j+1x
4j−1

4j+1
+ε

that

(4.4)
∑
n≤x

na2j(n, χ)

= O
(
q

4j

2 y
−4j+1

2 x
4j+1

2
)

+O
(
x

∑
x<n≤x+O(y)

|a2j(n)|
)

+O
(
x1+

7
32
j
)

= O
(
q

4j

2 y
−4j+1

2 x
4j+1

2
)

+O
(
yx logdegP2j x

)
+O

(
x

2·4j
4j+1

+ε)
= Of,ε(q

4j

4j+1x
2·4j
4j+1

+ε
).

Then the estimate (4.3) also holds for odd χ by partial summation. Note

that the estimate above is only established for y = q
4j

4j+1x
4j−1

4j+1
+ε � x, that

is, q � x1/4
j−ε. For q � x1/4

j−ε, by (4.2) we obtain∑
n≤x

a2j(n, χ)�
∑
n≤x

a2j(n)� x logn2j x� q
4j

4j+1x
4j−1

4j+1
+ε
.

Combining all cases, one can derive that (4.3) is valid for any primitive χ
and q > 0. Moreover, we know from (2.15) that

(4.5) |λf (n)|2jχ(n) =
∑
n=uv

a2j(u, χ)b2j(v, χ).

By Lemma 2.5, it follows from the absolute and uniform convergence of
H2j(s, χ) in the respective regions of s that∑

n≤x
|λf (n)|2jχ(n) =

∑
v≤x

b2j(v, χ)
∑
u≤x/v

a2j(u, χ)(4.6)

� q
4j

4j+1x
4j−1

4j+1
+ε
∞∑
v=1

|b2j(v, χ)|

v
4j−1

4j+1
+ε

� q
4j

4j+1x
4j−1

4j+1
+ε
.

Proposition 4.3. Let f ∈ Sr and let χ0 be a principal character modulo
a prime q. For any ε > 0, q � x and j = 2, 3, 4 we have

(4.7)
∑
n≤x
|λf (n)|2jχ0(n) = R2j(x, q) +Of,ε

(
x

4j−1

4j+1
+ε)

.

Proof. By Lemma 2.5,

(4.8) F2j(s, χ0)

=

2j∏
i=0

(1− α(q)2(j−i)q−s)C
i
2jG2j(s)H2j(s, χ0) =: G2j(s)H2j(s, q).
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Let b2j(n, q) be the coefficients of H2j(s, q). Then

(4.9) H2j(s, q)
(k)|s=1 = (−1)k

∑
n=1

b2j(n, q) logk n

ns
,

and

|b2j(n, q)| ≤
∞∑
i=0

∑
qim=n

|b2j(m,χ0)|
(
|α(q)|2j + |α(q)|−2j

)i
.

Further, from (2.17) and the convergence properties of H2j(s, χ0) we have

(4.10)
∑
n≤x
|b2j(n, q)|

≤
∑

i≤log2 x

(
|α(q)|2j + |α(q)|−2j

)i ∑
m≤x/qi

|b2j(m,χ0)|

≤ x
4j−1

4j+1

∑
i≤log2 x

(
|α(q)|2j + |α(q)|−2j

q
4j−1

4j+1

)i ∑
m≤x/qi

|b2j(m,χ0)|

m
4j−1

4j+1

≤ x
4j−1

4j+1

∑
i≤log2 x

(
|α(q)|2j + |α(q)|−2j

q
4j−1

4j+1

)i
≤ x

4j−1

4j+1
+ε
.

It is easily seen from (4.8) that

|λf (n)|2jχ0(n) =
∑
n=uv

a2j(u)b2j(v, q).

Combining this with (4.2), we obtain∑
n≤x
|λf (n)|2jχ0(n) =

∑
v≤x

b2j(v, q)
∑
u≤x/v

a2j(u)

= x
∑
v≤x

b2j(v, q)

v
Pn2j

(
log

x

v

)
+O

(
x

4j−1

4j+1
+ε
∑
v≤x

|b2j(v, q)|

v
4j−1

4j+1
+ε

)
.

By partial summation and (4.10), we have∑
n≤x
|λf (n)|2jχ0(n) = x

∞∑
v=1

b2j(v, q)

v
Pn2j

(
log

x

v

)
+O

(
x

4j−1

4j+1
+ε)

(4.11)

=: M2j(x, q) +O
(
x

4j−1

4j+1
+ε)

.

It remains to compute M2j(x, q). For convenience, suppose Pk is a polyno-
mial of degree k, not necessarily the same at each occurrence. Then from
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(4.9), we have

M2j(x, q) = x
∞∑
v=1

b2j(v, q)

v
Pn2j (log x− log v)

=

n2j∑
k=0

∞∑
v=1

b2j(v, q) logk v

v
xPn2j−k(log x)

=

n2j∑
k=0

(
L−12j,q(q

−s)

2j∏
i=0

(1− α(q)2(j−i)q−s)C
i
2jH2j(s)

)(k)∣∣∣
s=1

× xPn2j−k(log x)

=

n2j∑
k=0

(
L−12j,q(q

−s)

2j∏
i=0

(1− α(q)2(j−i)q−s)C
i
2j

)(k)∣∣∣
s=1

xPn2j−k(log x).

Then the result can be obtained from (3.9). In fact, a precise calculation
shows M2j(x, q) = R2j(x, q) = ress=1F2j(s, χ0)x

s/s.

Finally, as in the proof of Theorem 1.1, combining Propositions 4.2
and 4.3, we have

(4.12)

∑
n≤x

n≡l (mod q)

|λf (n)|2j =
1

ϕ(q)
R2j(x, q) +Of,ε

(
q

4j

4j+1x
4j−1

4j+1
+ε)

.

This completes the proof of Theorem 1.2.
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