Certain maximal curves and Cartier operators

by

ARNALDO GARCIA and SAEED TAFAZOLIAN (Rio de Janeiro)

1. Introduction. More than half a century ago, André Weil proved a formula for the number $N = \#\mathcal{C}(\mathbb{F}_q)$ of rational points on a smooth geometrically irreducible projective curve \mathcal{C} of genus g defined over a finite field \mathbb{F}_q. This formula provides upper and lower bounds on the number of rational points possible. It states that

$$q + 1 - 2g\sqrt{q} \leq N \leq q + 1 + 2g\sqrt{q}.$$

In general, this bound is sharp. In fact, if q is a square, there exist several curves that attain the above upper bound (see [4], [5], [14] and [23]). We say a curve is maximal (resp. minimal) if it attains the above upper (resp. lower) bound.

There are however situations in which the bound can be improved. For instance, if q is not a square there is a nontrivial improvement due to Serre (see [17, Section V.3]):

$$q + 1 - g[2\sqrt{q}] \leq N \leq q + 1 + g[2\sqrt{q}],$$

where $[a]$ denotes the integer part of the real number a.

Ihara showed that if a curve \mathcal{C} is maximal over \mathbb{F}_{q^2} then its genus satisfies

(1.1) $$g \leq \frac{q^2 - q}{2}.$$

There is a unique maximal curve over \mathbb{F}_{q^2} which attains the above genus bound, and it can be given by the affine equation (see [14])

(1.2) $$y^q + y = x^{q+1}.$$

This is the so-called Hermitian curve over \mathbb{F}_{q^2}.

In this paper, we consider maximal (and also minimal) curves over a finite field with q^2 elements. We give a characterization of certain ma-
mal and minimal curves of the following types: Fermat, Artin–Schreier or hyperelliptic. The main tool is the Cartier operator, which is a nilpotent operator in the case of maximal (or minimal) curves over finite fields. We give generalizations of results from [1], [7], [9], [22] and [23].

In Section 2 we review some important properties of the curves in question. Of special interest is Proposition 2.9 which is used to prove in Section 3 that \(C^n = 0 \) for a maximal or a minimal curve over \(\mathbb{F}_{q^2} \) with \(q = p^n \), where \(C \) denotes the Cartier operator (see Theorem 3.3). In Section 4 we consider the Fermat curve \(C(m) \) over \(\mathbb{F}_{q^2} \), defined by the affine equation \(y^m = 1 - x^m \). We show that \(C(m) \) is maximal over \(\mathbb{F}_{q^2} \) if and only if \(m \) divides \(q + 1 \). This generalizes [1, Corollary 3.5] which deals with the particular case when \(m \) belongs to the set of values of the polynomial \(T^2 - T + 1 \), and it also generalizes [9, Corollary 1] which deals with the case of \(q = p \) prime (see Remark 4.3).

In Section 5 we consider maximal curves \(C \) over \(\mathbb{F}_{q^2} \) given by an affine equation \(y^q - y = f(x) \), where \(f(x) \) is a polynomial in \(\mathbb{F}_{q^2}[x] \) with degree \(d \) prime to the characteristic \(p \). We show that \(d \mid q + 1 \) and that the maximal curve \(C \) is isomorphic to the curve given by \(y^q + y = x^d \) (see Theorem 5.4). In particular, this result shows that the hypothesis that \(d \mid q + 1 \) in Proposition 5.2 is superfluous and that the maximal curves \(C \) in Theorem 5.4 are covered by the Hermitian curve over \(\mathbb{F}_{q^2} \) given by (1.2) (see Remark 5.5). The main ideas here come from [7] which deals with the case of \(q = p \) prime.

In Section 6 we deal with maximal hyperelliptic curves \(C \) over \(\mathbb{F}_{q^2} \) in characteristic \(p > 2 \). The genus of \(C \) satisfies \(g(C) \leq (q - 1)/2 \) and we show that the curve \(C \) given by the affine equation

\[
y^2 = x^q + x
\]

is the unique maximal hyperelliptic curve over \(\mathbb{F}_{q^2} \) with genus \(g = (q - 1)/2 \) (see Theorem 6.1). The main ideas here come from [22] which deals with hyperelliptic curves with zero Hasse–Witt matrix (see Remark 6.2).

In this paper the word "curve" will mean a projective nonsingular and geometrically irreducible algebraic curve defined over a perfect field of characteristic \(p > 0 \).

2. Maximal curves. In this section we review some well-known properties of maximal curves.

Let \(C \) be a curve of genus \(g > 0 \) over the finite field \(k = \mathbb{F}_q \) with \(q \) elements. The zeta function of \(C \) is a rational function of the form

\[
Z(C/k) = \frac{L(t)}{(1 - t)(1 - qt)},
\]

where \(L(t) \in \mathbb{Z}[t] \) is a polynomial of degree \(2g \) with integral coefficients. We call this polynomial the \(L \)-polynomial of \(C \) over \(k \).
Let K/k be the function field of C over k. Then the divisor class group $C^0(K)$ is finite and it is isomorphic to the group of k-rational points of the Jacobian J of C,

$$C^0(K) = J(k).$$

It is well-known that the class number $h = \text{ord}(C^0(K))$ of K/k is given by $h = L(1)$. We have

$$L(t) = 1 + a_1 t + \cdots + a_{2g-1} t^{2g-1} + q^g t^{2g} = \prod_{i=1}^{2g} (1 - \alpha_i t),$$

where $a_{2g-i} = q^{g-i} a_i$ for $i = 1, \ldots, g$, and moreover the α_i's are complex numbers with absolute value $|\alpha_i| = \sqrt{q}$ for $1 \leq i \leq 2g$.

We recall the following fact about maximal curves (see [21]):

Proposition 2.1. Suppose q is a square. For a smooth projective curve C of genus g, defined over $k = \mathbb{F}_q$, the following conditions are equivalent:

- C is maximal (minimal, respectively).
- $L(t) = (1 + \sqrt{q} t)^{2g}$ ($L(t) = (1 - \sqrt{q} t)^{2g}$, respectively).
- The Jacobian of C is k-isogenous to the gth power of a supersingular elliptic curve, all of whose endomorphisms are defined over k.

Let $h(t) = t^{2g} L(t^{-1})$. Then $h(t)$ is the characteristic polynomial of the Frobenius action on the Jacobian variety J/k.

Remark 2.2. As shown by J.-P. Serre, if there is a morphism defined over the field k between two curves $f : C \to D$, then the L-polynomial of D divides the one of C. Hence a subcover D of a maximal curve C is also maximal (see [10]). So one way to construct explicit maximal curves is to find equations for subcovers of the Hermitian curve (see [1] and [4]).

Definition. The p-rank of an abelian variety A/k is denoted by $\sigma(A)$; it is the number of copies of $\mathbb{Z}/p\mathbb{Z}$ in the group of points of order p in $A(k)$. The p-rank $\sigma(C)$ of a curve C/k is the p-rank of its Jacobian. We also call it the Hasse–Witt invariant of the curve.

If we have the L-polynomial of a curve C, we can use the following result to determine its Hasse–Witt invariant (see [16]):

Proposition 2.3. Let C be a curve defined over $k = \mathbb{F}_q$. If the L-polynomial is $L = 1 + a_1 t + \cdots + a_{2g-1} t^{2g-1} + q^g t^{2g}$, then the Hasse–Witt invariant satisfies

$$\sigma(C) = \max\{i \mid a_i \not\equiv 0 \pmod{p}\}.$$

Remark 2.4. Since $a_{2g-i} = q^{g-i} a_i$, $i = 0, 1, \ldots, g$, we have $0 \leq \sigma(C) \leq g$. If $\sigma(C) = g$ the curve is called ordinary.
Corollary 2.5. If a curve C is maximal (or minimal) over a finite field, then the Hasse–Witt invariant satisfies $\sigma(C) = 0$.

Proof. This follows from the above proposition and Proposition 2.1. □

Remark 2.6. In fact, the p-rank of an abelian variety is equal to the number of zero slopes in its p-adic Newton polygon and this number is not greater than the dimension. So in general we have $0 \leq \sigma(C) \leq g(C)$. From Proposition 2.1 a maximal (or minimal) curve C is supersingular, so all slopes of its Newton polygon are equal to 1/2. On the other hand, if a curve C defined over a finite field $k = \mathbb{F}_q$ is supersingular, then C is minimal over some finite extension of k (see [18, Proposition 1]). For additional information about Newton polygons, see [12].

We recall the following basic result concerning Jacobians. Let C be a curve, \mathcal{F} the Frobenius endomorphism (relative to the base field) of the Jacobian J of C, and $h(t)$ the characteristic polynomial of \mathcal{F}. Let $h(t) = \prod_{i=1}^{T} h_i(t)^{r_i}$ be the irreducible factorization of $h(t)$ over $\mathbb{Z}[t]$. Then

\[
\prod_{i=1}^{T} h_i(\mathcal{F}) = 0 \quad \text{on } J.
\]

This follows from the semisimplicity of \mathcal{F} and the fact that the representation of endomorphisms of J on the Tate module is faithful (cf. [21, Theorem 2] and [11, VI, Section 3]). In the case of a maximal curve over \mathbb{F}_{q^2}, we have $h(t) = (t + q)^{2g}$. Therefore from (2.1) we obtain the following result, which is contained in the proof of [14, Lemma 1].

Lemma 2.7. The Frobenius map \mathcal{F} (relative to \mathbb{F}_{q^2}) of the Jacobian J of a maximal (resp. minimal) curve over \mathbb{F}_{q^2} acts as multiplication by $-q$ (resp. by $+q$).

Remark 2.8. Let A be an abelian variety defined over \mathbb{F}_{q^2}, of dimension g. Then

\[(q-1)^{2g} \leq \#A(\mathbb{F}_{q^2}) \leq (q+1)^{2g}.\]

But if C is a maximal (resp. minimal) curve over \mathbb{F}_{q^2}, then by the above lemma we have $J(\mathbb{F}_{q^2}) = (\mathbb{Z}/(q+1)\mathbb{Z})^{2g}$ (resp. $J(\mathbb{F}_{q^2}) = (\mathbb{Z}/(q-1)\mathbb{Z})^{2g}$). So the Jacobian of a maximal (resp. minimal) curve is maximal (resp. minimal) in the sense of the above bounds.

The following proposition is crucial for us (see [2, Proposition 1.2]):

Proposition 2.9. Let A be an abelian variety defined over \mathbb{F}_{q^2}, where $q = p^n$. If the Frobenius \mathcal{F} relative to \mathbb{F}_{q^2} acts on the abelian variety A as multiplication by $\pm q$, then $\mathcal{F}^n = 0$ on $H^1(A, \mathcal{O}_A)$.
3. Cartier operator. Let C be a curve defined over a perfect field k of characteristic $p > 0$. Let Ω^1 be the sheaf of differential 1-forms on C. Then there exists a unique operation $\mathcal{C}: \Omega^1 \rightarrow \Omega^1$, called the Cartier operator, such that

(i) \mathcal{C} is $1/p$-linear, i.e., $\mathcal{C}(f^p \omega) = f \mathcal{C}(\omega)$,
(ii) \mathcal{C} vanishes on exact differentials, i.e., $\mathcal{C}(df) = 0$,
(iii) $\mathcal{C}(f^{p-1} df) = df$,
(iv) a differential $\omega \in \Omega^1$ is logarithmic (i.e., there exists a section $f \neq 0$ such that $\omega = df/f$) if and only if ω is closed and $\mathcal{C}(\omega) = \omega$,

where f (resp. ω) is a local section of \mathcal{O} (resp. Ω^1). This operator induces a $1/p$-linear map $\mathcal{C}: H^0(C, \Omega^1) \rightarrow H^0(C, \Omega^1)$, acting on the space of regular differential forms.

Remark 3.1. Moreover, for a given natural number n, one can easily show that

$$\mathcal{C}^n(x^j dx) = \begin{cases} 0 & \text{if } p^n \nmid j + 1, \\ x^{s-1}dx & \text{if } j + 1 = p^n s. \end{cases}$$

We mention here the following theorem of Hasse–Witt ([6]):

Theorem 3.2. Let V be a finite-dimensional vector space over an algebraically closed field of characteristic $p > 0$. Let $\psi: V \rightarrow V$ be a $1/p$-linear map. Then there are two subspaces V^s and V^0 of V satisfying the following conditions:

- V^s is spanned by ψ invariant elements.
- Each y in V^0 is killed by an iterate of ψ.
- $V = V^s \oplus V^0$.

Definition. For a basis $\omega_1, \ldots, \omega_g$ of $H^0(C, \Omega^1)$ let (a_{ij}) denote the associated matrix of the Cartier operator \mathcal{C}, i.e.,

$$\mathcal{C}(\omega_j) = \sum_{i=1}^g a_{ij} \omega_i.$$

The corresponding Hasse–Witt matrix $\mathcal{A}(\mathcal{C})$ is obtained by taking pth powers, i.e.,

$$\mathcal{A}(\mathcal{C}) = (a_{ij}^p).$$

Because of $1/p$-linearity, the operator \mathcal{C}^n is represented with respect to the basis $\omega_1, \ldots, \omega_g$ by the product of the matrices below:

$$(a_{ij}^{1/p^n - 1}) \cdots (a_{ij}^{1/p}) \cdot (a_{ij}).$$

By raising the coefficients to p^nth powers we get the matrix

$$\mathcal{A}(\mathcal{C})^{[n]} = (a_{ij}^p) \cdot (a_{ij}^{p^2}) \cdots (a_{ij}^{p^n}).$$
It is remarkable that if \(n \geq g \) then the rank of the matrix \(\mathcal{A}(C)^{[n]} \) does not depend on \(n \) and it is equal to the Hasse–Witt invariant of \(C \).

Theorem 3.3. Let \(C \) be an algebraic curve defined over a finite field with \(q^2 \) elements, where \(q = p^n \) for some \(n \in \mathbb{N} \). If the curve \(C \) is maximal (or minimal) over \(\mathbb{F}_{q^2} \), then \(\mathcal{C}^n = 0 \).

Proof. From Lemma 2.7 we know that the Frobenius acting on the Tate module of the Jacobian of \(C \) acts as multiplication by \(\pm q \). Then one may apply Proposition 2.9 to conclude that \(\mathcal{F}^n = 0 \). Finally, since the Cartier operator acting on \(H^0(C, \Omega^1) \) is dual to the Frobenius acting on \(H^1(C, \mathcal{O}_C) \) by the Serre duality, one concludes that also \(\mathcal{C}^n = 0 \). ■

The next result (see [19, Corollary 2.7]) relates the Hasse–Witt matrix and the Weierstrass gap sequence at a rational point.

Proposition 3.4. Let \(C \) be a curve defined over a perfect field and \(n \in \mathbb{N} \). Let \(\mathcal{A}(C) \) denote the Hasse–Witt matrix of the curve \(C \). If \(P \) is a rational point on \(C \), then the rank of \(\mathcal{A}(C)^{[n]} \) is no smaller than the number of gaps at \(P \) divisible by \(p^n \).

Corollary 3.5. Let \(C \) be a curve defined over \(\mathbb{F}_{q^2} \). Let \(P \) be a rational point on the curve \(C \). If \(C \) is maximal over \(\mathbb{F}_{q^2} \) then \(q \) is not a gap number of \(P \).

Proof. If \(q = p^n \) for some integer \(n \) and \(C \) is a maximal curve over \(\mathbb{F}_{q^2} \) then Theorem 3.3 yields \(\mathcal{A}(C)^{[n]} = 0 \). Thus the result follows from Proposition 3.4. ■

Corollary 3.6. Let \(C \) be a hyperelliptic curve over \(\mathbb{F}_{q^2} \) where \(q = p^n \) and \(p > 2 \). If \(\mathcal{C}^n = 0 \), then

\[
g(C) \leq \frac{q - 1}{2}.
\]

Proof. As the genus is fixed under a constant field extension, we can suppose that \(k \) is algebraically closed. We know that a Weierstrass point on a hyperelliptic curve has the gap sequence \(1, 3, 5, \ldots, 2g - 1 \), so the result follows from Proposition 3.4. ■

Remark 3.7. If \(C \) is maximal over \(\mathbb{F}_{p^2} \) then \(\mathcal{C} = 0 \). On the other hand, the Cartier operator on a curve is zero if and only if the Jacobian of the curve is the product of supersingular elliptic curves (see [13, Theorem 4.1]). Now by Theorem 1.1 of [2] we also have

- \(g(C) \leq (p^2 - p)/2 \).
- \(g(C) \leq (p - 1)/2 \) if \(C \) is hyperelliptic and \((p, g) \neq (2, 1) \).
4. Fermat curves. In this section we give a characterization of maximal Fermat curves.

Let k be a finite field with q^2 elements, where $q = p^n$ for some integer n. Let $C(m)$ be the Fermat curve defined over k by

$$x^m + y^m = z^m,$$

where m is an integer such that $m \geq 3$ and $\gcd(m, p) = 1$.

As is well-known, the genus g of $C(m)$ is $g = (m - 1)(m - 2)/2$. The affine model of $C(m)$ is given by $x^m_1 + y^m_1 = 1$ ($x_1 = x/z$, $y_1 = y/z$). Let μ_m denote the set of mth roots of unity. If m divides $q^2 - 1$, then the group $\mu_m \times \mu_m$ operates on rational points of $C(m)$ by

$$(\xi, \zeta)(x_1, y_1) = (\xi x_1, \zeta y_1) \quad \text{with} \quad \xi, \zeta \in \mu_m.$$

Remark 4.1. If C is maximal over \mathbb{F}_{q^2}, then m divides $q^2 - 1$ (see the proof of Lemma 4.5 in [5]).

Lemma 4.2. With notation and hypotheses as above, if $C(m)$ is maximal over \mathbb{F}_{q^2}, then $m \leq q + 1$.

Proof. Since the genus is $g = (m - 1)(m - 2)/2$ and the curve $C(m)$ is maximal over \mathbb{F}_{q^2}, then

$$\#C(m)(\mathbb{F}_{q^2}) = 1 + q^2 + (m - 1)(m - 2)q.$$

Looking at the function field extension $\mathbb{F}_{q^2}(x, y)/\mathbb{F}_{q^2}(x)$, where $y^m = 1 - x^m$, we see that the points with $x^m = 1$ are totally ramified. Hence we also have

$$\#C(m)(\mathbb{F}_{q^2}) \leq m + (q^2 + 1 - m)m.$$

From (4.2) and (4.3) we conclude that $m \leq q + 1$. ■

If $m = q + 1$ then $C(q + 1)$ is the Hermitian curve over \mathbb{F}_{q^2}. Suppose m divides $q + 1$, i.e., $q + 1 = mr$ for some integer r. Then we can define the following morphism:

$$C(q + 1) \to C(m), \quad (x, y) \mapsto (x^r, y^r).$$

Hence $C(m)$ is covered by $C(q + 1)$. Thus by Remark 2.2 if m divides $q + 1$, then $C(m)$ is maximal over \mathbb{F}_{q^2}. Now we want to show the converse. We start with a remark:

Remark 4.3. Assume $q = p$ is a prime number. If the curve $C(m)$ is maximal over \mathbb{F}_{p^2}, then Theorem 3.3 implies that the Hasse–Witt matrix of $C(m)$ is zero. Hence from [9, Corollary 1] we find that $m \mid p + 1$. The next theorem generalizes this result.

Theorem 4.4. Let $C(m)$ be the Fermat curve of degree m prime to the characteristic p defined over \mathbb{F}_{q^2}. Then $C(m)$ is maximal over \mathbb{F}_{q^2} if and only if m divides $q + 1$.
Proof. If $m \mid q+1$, then the above discussion shows that $\mathcal{C}(m)$ is maximal over \mathbb{F}_{q^2}. Conversely, let $\mathcal{C}(m)$ be a maximal curve over \mathbb{F}_{q^2}. By Remark 4.1 we know that m divides $q^2 - 1$. As in the proof of the lemma above, looking at the function field extension $\mathbb{F}_{q^2}(x,y)/\mathbb{F}_{q^2}(x)$ we find that

$$\#\mathcal{C}(m)(\mathbb{F}_{q^2}) = m + \lambda m$$

for some integer λ. In fact, $\mathcal{C}(m)$ has m rational points which correspond to the totally ramified points with $x^m = 1$ and some others that are completely splitting. On the other hand, from the maximality of $\mathcal{C}(m)$ we have

$$\#\mathcal{C}(m)(\mathbb{F}_{q^2}) = 1 + q^2 + (m - 1)(m - 2)q.$$

Comparing (4.4) and (4.5) we deduce that $m \mid (q+1)^2$. Hence $m \mid 2(q+1)$, since $m \mid q^2 - 1$. Now we have two cases:

Case 1: $p = 2$. In this case since $\gcd(m, p) = 1$, we see that m is odd and hence it divides $q + 1$, since it divides $2(q+1)$.

Case 2: $p = odd$. In this case $\gcd(q + 1, q - 1) = 2$. Reasoning as for $p = 2$, we find that if d is an odd divisor of m, then $d \mid q + 1$. The only situation still to be investigated is the following: $q + 1 = 2^rs$ with s an odd integer and $m = 2^{r+1}s_1$ with $s_1 \mid s$. But according to Remark 2.2 and the following lemma, this situation does not occur.

Lemma 4.5. Assume that the characteristic p is odd and write $q+1 = 2^rs$ with s an odd integer. Set $m := 2^{r+1}$. Then the Fermat curve $\mathcal{C}(m)$ is not maximal over \mathbb{F}_{q^2}.

Proof. Writing $q = p^n$ we consider three cases:

Case 1: $p \equiv 1 \pmod{4}$. In this case we have $q + 1 = 2s$ with s odd. So we must show that the curve $\mathcal{C}(4)$ is not maximal over \mathbb{F}_{q^2}. But it follows from [9, Theorem 2] that $\mathcal{C}(4)$ with $p \equiv 1 \pmod{4}$ is ordinary and so it is not maximal.

Case 2: $p \equiv 3 \pmod{4}$ and n even. In this case we have again $q + 1 = 2s$ with s odd and we must show that the curve $\mathcal{C}(4)$ is not maximal over \mathbb{F}_{q^2}. Since $4 \mid p + 1$, the curve $\mathcal{C}(4)$ is maximal over \mathbb{F}_{p^2}. Hence $\mathcal{C}(4)$ is minimal over \mathbb{F}_{q^2} because n is even.

Case 3: $p \equiv 3 \pmod{4}$ and n odd. As n is odd, we have $q + 1 = 2^rs$ with $r \geq 2$ and s odd. Here we can assume that $r \geq 3$. In fact, for $r = 2$ according to [8, p. 204], the curve $\mathcal{C}(8)$ is not supersingular and hence cannot be maximal. Note that $r = 2$ implies $p \equiv 3 \pmod{8}$.

Consider now the curve $\mathcal{C}(m)$ with $m = 2^{r+1}$ and $r \geq 3$. As $m = 2^{r+1}$ is the largest power of 2 that divides $q^2 - 1$, -1 is not an mth power in $\mathbb{F}_{q^2}^*$. Hence the points at infinity on $y^m = 1 - x^m$ are not rational. This implies
that (see (4.1))

\[\#C(m)(\mathbb{F}_{q^2}) = m + \lambda_1 m^2 \]

for some integer \(\lambda_1 \).

Then from (4.5) and (4.6) we get

\[q^2 + 1 + 2q - 3mq - m \equiv 0 \pmod{m^2}. \]

Hence \((q+1)^2 - m(2q+2) - m(q-1) \equiv 0 \pmod{4m^2}\). Since \(m \mid 4(q-1)\), and this is impossible as \(r \geq 3 \) and \(4(q-1) = 8s_1 \) with \(s_1\) odd. This completes the proofs of Lemma 4.5 and of Theorem 4.4. ■

Remark 4.6. The particular case of Theorem 4.4 when \(m \) is of the form \(m = t^2 - t + 1 \) with \(t \in \mathbb{N} \) was proved in Corollary 3.5 of [1].

5. Artin–Schreier curves. In this section we consider curves \(C \) over \(k = \mathbb{F}_{q^2} \) given by an affine equation

\[y^q - y = f(x), \]

where \(f(x) \) is an admissible rational function in \(k(x) \), i.e., a rational function such that every pole of \(f(x) \) in the algebraic closure \(\overline{k} \) occurs with a multiplicity relatively prime to the characteristic \(p \). If \(C \) is a maximal curve over \(\mathbb{F}_{q^2} \), from [5, Remark 4.2] we can assume that \(f(x) \) is a polynomial of degree \(\leq q + 1 \). In the following we apply results introduced in the preceding sections to characterize maximal curves given by (5.1).

The following remark is due to Stichtenoth:

Remark 5.1. Suppose that \(q = p \) in (5.1) considered over a perfect field \(k \). Then we can change variables to assume that the curve \(C \) is given by (5.1) with an admissible rational function \(f(x) \). This follows from the partial fraction decomposition and from arguments similar to the proof of [17, Lemma III.7.7]. In fact, let \(u(x) \) in \(k[x] \) be an irreducible polynomial and suppose that the rational function \(f(x) \) involves a partial fraction of the form \(c(x)/u(x)^l \), with \(c(x) \) a polynomial in \(k[x] \) prime to \(u(x) \) and with \(l \) a natural number. Since the quotient field \(k[x]/(u(x)) \) is perfect, we can find polynomials \(a(x) \) and \(b(x) \) in \(k[x] \) such that \(c(x) = a(x)^p + b(x)u(x) \). Setting \(z = a(x)/u(x) \) we get

\[c(x)/u(x)^l - (z^p - z) = z + b(x)/u(x)^{l-1}. \]

Performing the substitution \(y \mapsto y - z \) and repeating this argument as in the proof of [17, Lemma III.7.7], we get the desired result.

Denote by \(\text{tr} \) the trace of \(\mathbb{F}_{q^2} \) over \(\mathbb{F}_q \). We have (see [23]):

Proposition 5.2. Let \(C \) be a curve defined over \(\mathbb{F}_{q^2} \) by the equation

\[y^q - y = ax^d + b \]
where \(a, b \in \mathbb{F}_{q^2}, a \neq 0 \) and \(d \) is any positive integer relatively prime to the characteristic \(p \). Suppose \(d \) divides \(q + 1 \) and define \(v \) and \(u \) by \(vd = q^2 - 1 \) and \(ud = q + 1 \). Then

(i) If \(C \) is maximal over \(\mathbb{F}_{q^2} \), then \(\text{tr}(b) = 0 \) and \(a^v = (-1)^u \).

(ii) If \(C \) is minimal over \(\mathbb{F}_{q^2} \) and \(q \neq 2 \), then \(d = 2, \text{tr}(b) = 0 \) and \(a^v \neq (-1)^u \).

Remark 5.3. Let \(q = 2 \) and \(b \in \mathbb{F}_4 \setminus \mathbb{F}_2 \); apart from the curves listed in item (ii) of the above proposition, we have another minimal one of the form (5.1): the minimal elliptic curve over \(\mathbb{F}_4 \) given by the affine equation \(y^2 + y = x^3 + b \).

Suppose \(q = p \) is a prime. Then a curve given by (5.1) is a \(p \)-cyclic extension of \(\mathbb{P}^1 \). In [7] we have a characterization of such curves, defined over an algebraically closed field, with zero Hasse–Witt matrix. Here we generalize their argument, and we characterize such curves in the general case \(q = p^n \) with nilpotent Cartier operator, \(\mathcal{C}^n = 0 \).

We now state the main result of this section:

Theorem 5.4. Let \(C \) be a curve defined by the equation \(y^q - y = f(x) \), where \(f(x) \in \mathbb{F}_{q^2}[x] \) has degree \(d \) prime to \(p \). If the curve \(C \) is maximal over \(\mathbb{F}_{q^2} \), then \(C \) is isomorphic to the projective curve defined over \(\mathbb{F}_{q^2} \) by the affine equation \(y^q + y = x^d \) with \(d \mid q + 1 \).

Proof. Write \(q = p^n \). As \(C \) is maximal over \(\mathbb{F}_{q^2} \), from Theorem 3.3 we know that \(\mathcal{C}^n = 0 \).

A basis for \(H^0(C, \Omega^1) \) is

\[
\mathcal{B} = \{y^r x^a dx \mid 0 \leq a, r \text{ and } a p^n + rd \leq (p^n - 1)(d - 1) - 2\}.
\]

Since \(y = y^q - f(x) \) we have

\[
\mathcal{C}^n(y^r x^a dx) = \mathcal{C}^n((y^q - f)^r x^a dx).
\]

From Remark 3.1 we get

\[
\mathcal{C}^n(y^r x^a dx) = \sum_{h=0}^{r} \binom{r}{h} (-1)^h y^{r-h} \mathcal{C}^n(f^h x^a dx).
\]

Hence

\[
\mathcal{C}^n(f^h x^a dx) = 0
\]

for all \(h, r \) and \(a \) such that \(0 \leq h \leq r, \binom{r}{h} \) is prime to \(p \) and

\[
ap^n + rd \leq (p^n - 1)(d - 1) - 2.
\]
First we show again that the degree of $f(x)$ is at most $q + 1$. In fact, if $d = \deg(f(x)) \geq q + 2$, then $x^{q-1}dx \in \mathcal{B}$, because

$$q(q - 1) \leq (q - 1)(q + 1) - 2.$$

From Remark 3.1 we get $\mathcal{C}^n(x^{p^n-1}dx) = dx$ and this contradicts $\mathcal{C}^n = 0$.

Now if $d = q + 1$, then the genus of the curve C is $g = q(q - 1)/2$. Hence according to [14], C is the Hermitian curve given by

$$y^q + y = x^{q+1}.$$

Hence we can assume $d \leq q$, and so $d \leq q - 1$. Then there exists $l \geq 1$ such that

$$ld + 1 \leq q < (l + 1)d + 1.$$

Again since $\gcd(p, d) = 1$, we have

(5.6) $$ld + 1 \leq q \leq (l + 1)d - 1.$$

For $r \in \mathbb{N}$ satisfying

$$(q - 1 - r)d \geq q + 1$$

we define

$$a(r) := \left\lfloor d - 1 - \frac{(r + 1)d + 1}{q} \right\rfloor,$$

which is the largest possible $a \in \mathbb{N}$ satisfying (5.5).

From (5.6) and $d \leq q - 1$, we find that $a(l) = d - 3$ and therefore

(5.7) $$\deg(f^l x^{a(l)}) = ld + a(l) = (l + 1)d - 3.$$

Suppose that $q - 1 = ld + a$ with $0 \leq a \leq a(l)$. Then the polynomial $f^l x^a$ has degree $q - 1$ and it follows from Remark 3.1 that

$$\mathcal{C}^n(f^l x^a dx) = a_d^{l/q} dx$$

where a_d denotes the leading coefficient of $f(x)$. But this contradicts (5.4) with $r = h = l$.

Therefore (5.7) implies that

(5.8) $$q - 1 \geq ld + a(l) + 1 = (l + 1)d - 2.$$

By (5.6) and (5.8), we have

(5.9) $$q + 1 = sd \quad \text{with } s := l + 1 \geq 2.$$

Since $\gcd(p, d) = 1$, we can change variable $x \mapsto x + \alpha$, for a suitable $\alpha \in \mathbb{F}_{q^2}$, so that

$$f(x) = a_d x^d + a_i x^i + \cdots + a_0 \quad \text{with } i \leq d - 2.$$

Therefore

$$f(x)^s = a_d^s x^{sd} + sa_d^{s-1}a_i x^{i+(s-1)d} + \cdots + a_0^s.$$
Suppose $d \geq 3$. In this case if $1 \leq i \leq d - 2$, then
$$0 \leq d - i - 2 \leq d - 3 = a(s).$$
We stress here that $a(l) = a(l + 1) = d - 3$. Therefore
$$i + (s - 1)d + d - i - 2 = sd - 2 = q - 1,$$
and we get
$$\mathcal{C}^n(f^s x^{d-i-2} dx) = s(a^{s-1}_d a_i)^{1/q} dx = 0.$$
This implies $a_i = 0$ since s is prime to p by (5.9). Hence $f(x)$ must be of the form (the case $d = 2$ is trivial)
$$f(x) = ax^d + b \quad \text{with } d \mid q + 1.$$
Now if the curve is maximal, from Proposition 5.2 we know that $\text{tr}(b) = 0$ and $a^v = (-1)^u$ where $u = (q + 1)/d$ and $v = (q^2 - 1)/d$. By Hilbert’s 90 Theorem, there exists $\gamma \in \mathbb{F}_{q^2}$ such that $\gamma^q - \gamma = b$ and by changing variable $y \mapsto y + \gamma$ we can assume $b = 0$.

Now we have two cases:

Case 1: u is even. In this case $a^v = 1$ and hence $a = c^d$ for some $c \in \mathbb{F}_{q^2}^*$. Changing variable $x \mapsto c^{-1}x$ we have
$$y^q - y = x^d \quad \text{with } d \mid q + 1.$$
Pick $\alpha \in \mathbb{F}_{q^2}$ with $\alpha^{q-1} = -1$. Substituting $y \mapsto \alpha^{-1}y$ we have $y^q + y = \alpha x^d$.
Again here $\alpha^v = \alpha^{(q-1)u} = (-1)^u = 1$ and hence $\alpha = \theta^d$ for some $\theta \in \mathbb{F}_{q^2}^*$, and we conclude that the curve is isomorphic to $y^q + y = x^d$.

Case 2: u is odd. In this case $a^v = -1$ and hence $(-a^{q-1})^u = 1$. So $-a^{q-1} = \beta^d(q-1)$ for some $\beta \in \mathbb{F}_{q^2}^*$. Set $\mu := a \beta^{-d}$; then $\mu^{q-1} = -1$. Now by changing variables $x \mapsto \beta^{-1}x$ and $y \mapsto -\mu y$ we conclude that the curve C is equivalent to
$$y^q + y = x^d \quad \text{with } d \mid q + 1.$$

Remark 5.5. Most of the argument above just uses the property $\mathcal{C}^n = 0$, and we see that the hypothesis that $d \mid q + 1$ in Proposition 5.2 is superfluous. We also infer that all maximal curves over \mathbb{F}_{q^2} given by $y^q - y = f(x)$ as in Theorem 5.4 are covered by the Hermitian curve.

We can also classify minimal Artin–Schreier curves over \mathbb{F}_{q^2}:

Theorem 5.6. Let C be a curve defined by the equation $y^q - y = f(x)$, where $f(x) \in \mathbb{F}_{q^2}[x]$ has degree prime to p and $p \neq 2$. If C is minimal over \mathbb{F}_{q^2} and $g(C) \neq 0$, then C is equivalent to the projective curve defined by the equation
$$y^q - y = ax^2 \quad \text{where } a \in \mathbb{F}_{q^2}, a \neq 0, \text{ and } a^{(q^2-1)/2} \neq (-1)^{(q+1)/2}.$$
Proof. We know that if a curve is minimal over F_{q^2}, with $q = p^n$, then again the operator C^n is zero. So by the above proof, the curve can be defined by $y^q - y = ax^d + b$ where $d \mid q + 1$. Now we can use again Proposition 5.2; it yields $d = 2$, $\text{tr}(b) = 0$ and $a^{(q^2-1)/2} \neq (-1)^{(q+1)/2}$. □

Remark 5.7. In the above theorem, if $q \equiv 1 \pmod{4}$, then on changing variable $x \mapsto \alpha^{-1}x$, where $a = \alpha^2$, the minimal curve C is equivalent to

$$y^q - y = x^2.$$

Clearly, this last curve is maximal over F_{q^2} if $q \equiv 3 \pmod{4}$.

Let $\pi : C \to D$ be a p-cyclic covering of projective nonsingular curves over the algebraic closure \overline{k}. Then we have the so-called Deuring–Shafarevich formula:

$$(5.10) \quad \sigma(C) - 1 + r = p(\sigma(D) - 1 + r),$$

where r is the number of ramification points of the covering π.

Corollary 5.8. Let C be a curve defined over $k = \mathbb{F}_{p^2}$ such that there exists a cyclic covering $C \to \mathbb{P}^1$ of degree p which is also defined over k. If the curve C is maximal over \mathbb{F}_{q^2}, then C is isomorphic to the curve given by the affine equation $y^p + y = x^d$, where d divides $p + 1$.

Proof. From Remark 5.1 we can assume that C is given by

$$y^p - y = f(x),$$

where every pole of $f(x)$ in \overline{k} occurs with a multiplicity relatively prime to p. Now if C is maximal, then $\sigma(C) = 0$ by Corollary 2.5. Note that from (5.10) we must have $r = 1$ and we can put this unique ramification point at infinity; hence we can assume that $f(x) \in k[x]$. Note here that the unique ramification point is k-rational. The result now follows from Theorem 5.4. □

6. Hyperelliptic curves. Let $k = \mathbb{F}_{q^2}$ be a finite field of characteristic $p > 2$. Let C be a projective nonsingular hyperelliptic curve over k of genus g. Then C can be defined by an affine equation of the form

$$y^2 = f(x),$$

where $f(x)$ is a polynomial over k of degree $2g + 1$, without multiple roots. If C is maximal over \mathbb{F}_{q^2} then by Corollary 3.6 we have an upper bound on the genus, namely

$$g(C) \leq \frac{q - 1}{2}.$$

In the next theorem we establish a characterization of maximal hyperelliptic curves in characteristic $p > 2$ that attain this upper bound.
Theorem 6.1. Suppose that $p > 2$. There is a unique maximal hyperelliptic curve over \mathbb{F}_{q^2} with genus $g = (q - 1)/2$. It can be given by the affine equation

$$y^2 = x^q + x.$$

Before proving this theorem, we need to explain how the matrix associated to \mathcal{C}^n, where $q = p^n$, is determined from $f(x)$.

The differential 1-forms of the first kind on \mathcal{C} form a k-vector space $H^0(\mathcal{C}, \Omega^1)$ of dimension g with basis $B = \{\omega_i = x^{i-1}dx/y \mid i = 1, \ldots, g\}$.

The images under the operator \mathcal{C}^n are determined in the following way. Rewrite

$$\omega_i = \frac{x^{i-1}dx}{y} = x^{i-1}y^{-q}y^{q-1}dx = y^{-q}x^{i-1} \sum_{j=0}^{N} c_j x^j dx,$$

where the coefficients $c_j \in k$ are obtained from the expansion

$$y^{q-1} = f(x)^{(q-1)/2} = \sum_{j=0}^{N} c_j x^j \quad \text{with} \quad N = \frac{q-1}{2}(2g+1).$$

Then for $i = 1, \ldots, g$ we get

$$\omega_i = y^{-q} \left(\sum_{i+j \not\equiv 0 \pmod{q}} c_j x^{i+j-1} dx \right) + \sum_l c_{(l+1)q-i} x^{(l+1)q-1} \frac{dx}{yq} \frac{x^l}{x}.$$

Note here that $0 \leq l \leq (N+i)/q - 1 < g - 1/2$. On the other hand, we know from Remark 3.1 that if $\mathcal{C}^n(x^{r-1}dx) \neq 0$ then $r \equiv 0 \pmod{q}$. Thus we have

$$\mathcal{C}^n(\omega_i) = \sum_{l=0}^{g-1} (c_{(l+1)q-i})^{1/q} \cdot x^{l/q} \cdot \frac{x^l}{y} \cdot dx.$$

If we write $\omega = (\omega_1, \ldots, \omega_g)$ as a row vector we have

$$\mathcal{C}^n(\omega) = \omega M^{1/q},$$

where M is the $(g \times g)$ matrix with elements in k given as

$$M = \begin{pmatrix}
 c_{q-1} & c_{q-2} & \cdots & c_{q-g} \\
 c_{2q-1} & c_{2q-2} & \cdots & c_{2q-g} \\
 \vdots & \vdots & \ddots & \vdots \\
 c_{gq-1} & c_{gq-2} & \cdots & c_{gq-g}
\end{pmatrix}.$$

Remark 6.2. In [22] the author found a characterization for hyperelliptic curves defined over an algebraically closed field whose Hasse–Witt matrix
is zero. In the proof below we use his ideas to classify hyperelliptic curves with a nilpotent Cartier operator.

Proof of Theorem 6.1. Let \mathcal{C} be a hyperelliptic curve of genus $g = (q - 1)/2$. Then \mathcal{C} can be defined by the equation $y^2 = f(x)$ with a square-free polynomial

$$f(x) = a_q x^q + a_{q-1} x^{q-1} + \cdots + a_1 x + a_0 \in \mathbb{F}_q[x] \quad \text{and} \quad a_q \neq 0.$$

As \mathcal{C} is maximal over \mathbb{F}_q^2, it has $1 + q^2 + q(q - 1)$ rational points. On the other hand, if we consider \mathcal{C} as a double cover of \mathbb{P}^1, the ramification points are the roots of $f(x)$ and the point at infinity. As the latter is a rational point and $1 + q^2 + q(q - 1)$ is an even number, $f(x)$ must have an odd number of rational roots. Hence $f(x)$ has at least one rational root in \mathbb{F}_q^2, say θ. By substituting $x + \theta$ for x, we can assume that \mathcal{C} is defined by the equation $y^2 = f(x)$ with $f(0) = 0$. We then write

$$f(x) = a_q x^q + a_{q-1} x^{q-1} + \cdots + a_1 x + a_0 \in \mathbb{F}_q[x] \quad \text{and} \quad a_1 a_q \neq 0.$$

Now as the curve \mathcal{C} is maximal over \mathbb{F}_q^2, with $q = p^n$ for some integer n, it follows that $\mathcal{C}^n = 0$. So the above matrix M is the zero matrix. Hence looking at the last row of M, we see that

$$c_{gq-1} = c_{gq-2} = \cdots = c_{gq-g} = 0.$$

We will show by induction that this means

$$a_{q-1} = a_{q-2} = \cdots = a_{q-g} = 0.$$

First we observe that

$$c_{gq-1} = g a_q^{q-1} a_{q-1}.$$

So $c_{gq-1} = 0$ implies $a_{q-1} = 0$. Now assume $a_{q-i} = 0$ for all $1 \leq i < m \leq g$. We want to show that $a_{q-m} = 0$. Under the assumption above, $f(x)$ reduces to

$$f(x) = a_q x^q + a_{q-m} x^{q-m} + \cdots + a_1 x.$$

Thus $c_{gq-m} = g a_q^{q-1} a_{q-m}$. So $c_{gq-m} = 0$ implies that $a_{q-m} = 0$. By induction, $f(x)$ reduces to

$$f(x) = a_q x^q + a_g x^g + \cdots + a_2 x^2 + a_1 x.$$

Now we want to show that $a_t = 0$ for all $2 \leq t \leq g$. Looking at the first row of the matrix M, we see that

$$c_{q-1} = c_{q-2} = \cdots = c_{g+1} = 0.$$

By induction we can show that this means

$$a_2 = a_3 = \cdots = a_g = 0.$$

In fact, we first observe that $c_{g+1} = g a_1^{g-1} a_2$. Because $a_1 \neq 0$, $c_{g+1} = 0$ implies $a_2 = 0$. Now assume that $a_i = 0$ for all i with $2 \leq i < m \leq g$. We
want to show that \(a_m = 0 \). Under the above assumption,

\[
 f(x) = a_q x^q + a_g x^g + \cdots + a_m x^m + a_1 x.
\]

Therefore \(c_{g-1+m} = g a_1^{q-1} a_m \). Again because \(a_1 \neq 0 \), we see that \(c_{g-1+m} = 0 \) implies \(a_m = 0 \). Thus by induction we have shown that

\[
 f(x) = a_q x^q + a_1 x \quad \text{with } a_1 a_q \neq 0.
\]

Now we can write the equation of the curve \(C \) as

\[
 x^q + \mu x = \lambda y^2
\]

for some \(\mu, \lambda \in \mathbb{F}_{q^2}^* \).

Since \(C \) is maximal over \(\mathbb{F}_{q^2} \), one can show easily that the additive polynomial

\[
 A(x) := x^q + \mu x
\]

has a nonzero root \(\beta \in \mathbb{F}_{q^2}^* \). In fact, more is true: it follows from [5, Theorem 4.3] that all roots of \(A(x) \) belong to \(\mathbb{F}_{q^2} \).

Set \(\alpha := \beta^q \) and \(x_1 := \alpha x \). Then

\[
 A(x) = \alpha^{-q} (\alpha x)^q + (\mu \alpha^{-1})(\alpha x).
\]

Hence

\[
 A(x) = \alpha^{-q} (x_1^q + \mu \alpha^{-1} x_1)
\]

has the root \(x_1 = \alpha \beta = \beta^{q+1} \in \mathbb{F}_q^* \). So \(\mu \alpha^{q-1} = -1 \), and this means that \(C \) is equivalent to the curve given by the equation

\[
 x_1^q - x_1 = ay^2, \quad \text{where} \quad a := \alpha^q \lambda.
\]

Now as we have seen at the end of the proof of Theorem 5.4, this curve is isomorphic to the curve given by the equation

\[
 y^2 = x^q + x.
\]

In the next theorem we also classify minimal hyperelliptic curves over \(\mathbb{F}_{q^2} \) in characteristic \(p > 2 \) with genus satisfying \(g = (q - 1)/2 \):

Theorem 6.3. Suppose that \(p > 2 \). There is a unique curve \(C \) which is a minimal hyperelliptic curve over \(\mathbb{F}_{q^2} \) with genus \(g = (q - 1)/2 \); it can be given by the affine equation

\[
 ay^2 = x^q - x \quad \text{with } a \in \mathbb{F}_{q^2}^* \text{ such that } a^{(q^2-1)/2} \neq (-1)^{(q+1)/2}.
\]

Proof. The curve \(C \) can be given by \(y^2 = f(x) \) with \(f(x) \) a square-free polynomial in \(\mathbb{F}_{q^2}[x] \) of degree \(\deg(f(x)) = q = p^n \). We have

\[
 \#C(\mathbb{F}_{q^2}) = q^2 + 1 - (q - 1)q = q + 1
\]

and in particular \(\#C(\mathbb{F}_{q^2}) \) is an even number. As in the proof of Theorem 6.1 we can assume that \(f(0) = 0 \), and from \(C^n = 0 \) we then conclude that

\[
 f(x) = a_q x^q + a_1 x \quad \text{with } a_1 a_q \neq 0.
\]

Hence the minimal curve \(C \) can be defined by

\[
 x^q + \mu x = \lambda y^2 \quad \text{for some } \mu, \lambda \in \mathbb{F}_{q^2}^*.
\]
The polynomial \(A(x) = x^q + \mu x \) must have a nonzero root in \(\mathbb{F}_{q^2} \); otherwise the map sending \(x \) to \(A(x) \) would be an additive automorphism of \(\mathbb{F}_{q^2} \) and hence the cardinality of rational points would satisfy
\[
\#C(\mathbb{F}_{q^2}) = 1 + q^2.
\]

Having such a nonzero root \(\beta \in \mathbb{F}_{q^2}^* \), we conclude as in the proof of Theorem 6.1 that the curve \(C \) can be given by the equation
\[
x_1^q - x_1 = ay^2 \quad \text{with } a \in \mathbb{F}_{q^2}^*.
\]

It now follows from Proposition 5.2 that
\[
a^v \neq (-1)^u \quad \text{with } u = \frac{q + 1}{2} \text{ and } v = \frac{q^2 - 1}{2}.
\]

The element \(a \in \mathbb{F}_{q^2}^* \) satisfies \(a^v = \pm 1 \). Consider two curves over \(\mathbb{F}_{q^2} \) given by \(a_1 y^2 = x^q - x \) and \(a_2 y^2 = x^q - x \) respectively, with \(a_1^v \neq (-1)^u \) and \(a_2^v \neq (-1)^u \). Hence \(a_1^v = a_2^v \) and \(a_2 = a_1 c^2 \) for some \(c \in \mathbb{F}_{q^2}^* \). The substitution \(y \mapsto cy \) shows that the two curves above are isomorphic to each other.

The theorem below is the analogue of Theorem 6.1 in characteristic \(p = 2 \):

Theorem 6.4. Suppose that \(p = 2 \). There exists a unique maximal hyperelliptic curve over \(\mathbb{F}_{q^2} \) with genus \(g = q/2 \). It can be given by the affine equation
\[
y^2 + y = x^{q+1}.
\]

Proof. With arguments as in the proof of Corollary 5.8, we find that the curve can be given by \(y^2 + y = f(x) \) with \(f(x) \in \mathbb{F}_{q^2}[x] \) of degree \(q + 1 \). The result now follows from item 3) of Theorem 2.3 of [3].

7. Serre maximal curves. In this section we consider curves \(C \) that attain the Serre upper bound (we call them SW-maximal curves), i.e., curves \(C \) defined over \(\mathbb{F}_q \) such that
\[
\#C(\mathbb{F}_q) = q + 1 + [2\sqrt{q}]g(C).
\]

Proposition 7.1. Let \(k \) be a field with \(q \) elements and set \(m = [2\sqrt{q}] \). For a smooth projective curve \(C \) of genus \(g \) defined over \(k = \mathbb{F}_q \), the following conditions are equivalent:

- The curve \(C \) is SW-maximal.
- The L-polynomial of \(C \) satisfies \(L(t) = (1 + mt + qt^2)^g \).

Proof. See [10] and [17, p. 180].

Corollary 7.2. Let \(C \) be a smooth projective curve of genus \(g \) defined over \(k = \mathbb{F}_q \) which attains the Serre upper bound. Then its Hasse–Witt
invariant satisfies
\[\sigma(C) = \begin{cases} g & \text{if } \gcd(p, m) = 1, \\ 0 & \text{if } p \mid m. \end{cases} \]

Proof. Since \(C \) is SW-maximal, from Proposition 7.1 we have

\[
L(t) = (1 + mt + qt^2)^g = 1 + \sum_{i=1}^{g} \binom{g}{i} t^i (m + qt)^i
\]

\[= 1 + \sum_{i=1}^{g} \left(\binom{g}{i} t^i \sum_{j=0}^{i} \binom{i}{j} m^{i-j} q^j t^j \right).\]

If \(p \mid m \), then it is clear from Proposition 2.3 that \(\sigma(C) = 0 \). Now suppose that \(\gcd(p, m) = 1 \). We have to show that the coefficient of \(t^g \) in the \(L \)-polynomial \(L(t) \) is not divisible by \(p \). Denote it by \(a_g \). From the last equality above, we then obtain

\[a_g \equiv m^g \pmod{p}. \]

We recall that an admissible rational function \(f(x) \in \mathbb{k}(x) \) is such that every pole of \(f(x) \) in the algebraic closure \(\overline{k} \) occurs with a multiplicity prime to the characteristic \(p \). We then have:

Theorem 7.3. Let \(C \) be an SW-maximal curve over \(\mathbb{F}_q \) given by an affine equation of the form

\[(7.1) \quad A(y) = f(x),\]

where \(A(y) \in \mathbb{F}_q[y] \) is an additive and separable polynomial and where \(f(x) \) is an admissible rational function. Set \(m = [2\sqrt{q}] \) and suppose that \(\gcd(p, m) = 1 \). Then all poles of \(f(x) \) are simple.

Proof. We know that a curve \(C \) given by (7.1) is ordinary if and only if the rational function \(f(x) \) has only simple poles (see [20, Corollary 1]). Thus Theorem 7.3 follows directly from Corollary 7.2.

Corollary 7.4. Let \(C \) be an SW-maximal curve as in the above theorem with \(\gcd(p, m) = 1 \). Then its genus satisfies \(g(C) = (\deg A - 1)(s - 1) \), where \(s \) denotes the number of poles of \(f(x) \).

We finish with two examples of SW-maximal Artin–Schreier curves. In the first example \(p \mid m \) and the rational function \(f(x) \) has a nonsimple pole; in the second, \(\gcd(p, m) = 1 \) and \(f(x) \) has only simple poles, as follows from Theorem 7.3.

Example 7.5. Let \(k = \mathbb{F}_2 \). So \(m = [2\sqrt{2}] = 2 \) and \(p \mid m \). Let \(C \) be the elliptic curve over \(\mathbb{F}_2 \), given by the affine equation

\[y^2 + y = x^3 + x. \]
One can easily see that C has five k-rational points, which means that C is SW-maximal over k. Note that $f(x) = x^3 + x$ has a pole of order 3 at infinity.

Example 7.6. Let $k = \mathbb{F}_8$. So $m = [2\sqrt{8}] = 5$ and $\gcd(p, m) = 1$. Let C be the elliptic curve over \mathbb{F}_8, given by the affine equation

$$y^2 + y = \frac{x^2 + x + 1}{x}.$$

Then the curve C is SW-maximal since it has 14 k-rational points. In fact, the two simple poles of $(x^2 + x + 1)/x$ are totally ramified in the extension $k(x,y)/k(x)$ and they correspond to two k-rational points on C. By Hilbert’s 90 Theorem, we have

$$\#C(\mathbb{F}_8) = 2 + 2B,$$

where $B := \#\{\alpha \in \mathbb{F}_8 \mid \text{tr}_{\mathbb{F}_8|\mathbb{F}_2}(\alpha^2 + \alpha + 1) = 0\}$. But one can show that $B = 6$; in fact, the points $x = \alpha \in \mathbb{F}_8 \setminus \mathbb{F}_2$ are completely splitting in $k(x,y)/k(x)$.

References

218 A. Garcia and S. Tafazolian

IMPA-Instituto Nacional de Matemática Pura e Aplicada
Estrada Dona Castorina 110, Jardim Botânico
22460-320, Rio de Janeiro, Brazil
E-mail: garcia@impa.br
saeed@impa.br

Received on 8.10.2007