Normal bases of rings of continuous functions
constructed with the \((q_n)\)-digit principle

by

S. Evrard (Amiens)

When \(K\) is a local field with valuation ring \(V\), K. Conrad [6] constructs normal bases of the ring \(C(V, K)\) of continuous functions from \(V\) to \(K\), using what he calls extension by \(q\)-digit expansion, where \(q\) denotes the cardinality of the residue field \(k\) of \(V\). In this article, we extend Conrad’s method to the ring \(C(S, K)\) of continuous functions from \(S\) to \(K\) where \(S\) denotes a subset of \(V\). Moreover, we no more assume the finiteness of the residue field \(k\), but replace this condition by the precompactness of \(S\).

We first recall in Section 1 the notion of normal basis and Conrad’s \(q\)-digit principle. In Section 2, we define extension by \((q_n)\)-digit expansion. Then, in Section 3, we generalize Conrad’s \(q\)-digit principle to a \((q_n)\)-digit principle (Theorem 3.6), which may be applied in particular to Amice’s regular compact subsets [1]. In Section 4, we end with several examples.

1. The \(q\)-digit principle. Let \((K, | \cdot |)\) be a complete valued non-archimedean field. Denote by \(V\) the corresponding valuation ring, \(\mathcal{M}\) its maximal ideal and \(k\) its residue field. Let \((E, \| \cdot \|)\) be an ultrametric Banach space over \(K\).

Definition 1.1. A sequence \((e_n)_{n \geq 0}\) of elements of \(E\) is called a normal basis of \(E\) (orthonormal basis in [6]) if

1. each \(x \in E\) has a representation as \(x = \sum_{n \geq 0} x_n e_n\) where \(x_n \in K\) and \(\lim_{n \to \infty} x_n = 0\),
2. in the representation \(x = \sum_{n \geq 0} x_n e_n\), we have \(\|x\| = \sup_n |x_n|\).

2000 Mathematics Subject Classification: Primary 12J25, 11S99; Secondary 13F20, 11B65.

Key words and phrases: non-archimedean valued field, regular compact, generalized Vandermonde determinant, normal bases, Legendre set.

The author wishes to thank Professor Chabert for his remarks and great help.
Let $E_0 = \{ x \in E : \|x\| \leq 1 \}$. Then $E_0/M E_0$ is a k-vector space. For $e_n \in E_0$, \overline{e}_n denotes the reduction of e_n modulo $M E_0$. The following proposition allows one to characterize normal bases in purely algebraic terms.

Proposition 1.2 ([2, Prop. 3.1.5]). Assume that the valuation is discrete and that $\|E\| = |K|$. A sequence $(e_n)_{n \in \mathbb{N}}$ of elements of E is a normal basis of E if and only if $e_n \in E_0$ for every $n \geq 0$ and $(\overline{e}_n)_{n \in \mathbb{N}}$ is a k-basis of $E_0/M E_0$.

Assuming that k is finite with cardinality q (hence K is a local field), K. Conrad [6] uses extension by q-digit expansion to construct some normal bases of the ring $C(V,K)$. We first recall this notion.

Definition 1.3. Let $(e_n)_{n \geq 0}$ be a sequence of elements of $C(V,V)$. We construct another sequence of functions (f_i) in the following way:

$$
\text{if } i = i_0 + i_1 q + \cdots + i_r q^r \ (0 \leq i_j < q) \ \text{ then } f_i = e_{i_0}^{i_1} \cdots e_{i_r}^{i_r}.
$$

The sequence (f_i) is called the extension of (e_n) by q-digit expansion.

In characteristic p, V contains a field which is isomorphic to k, and so it may be viewed as a k-vector space. In this case, the q-digit principle has the following form:

Proposition 1.4 (Digit principle in characteristic p [6, Theorem 2]). If the sequence (e_n) is a normal basis of the ring of continuous k-linear functions from V to K, then the extension of (e_n) by q-digit expansion is a normal basis of $C(V,K)$.

As noted by K. Conrad, in characteristic 0 there is no analogue of the subspace of linear functions. Nevertheless, there is another version that holds in any characteristic:

Proposition 1.5 (Digit principle in any characteristic [6, Theorem 3]). Let $(e_n)_{n \geq 0}$ be a sequence of elements of $C(V,V)$ such that the reductions $\overline{e}_i \in C(V,k)$ are constant on cosets modulo M^{i+1} and the map

$$
\phi_n : V/M^{n} \rightarrow k^n, \quad x \mapsto (\overline{e}_0(x), \ldots, \overline{e}_{n-1}(x)),
$$

is bijective. Then the extension of (e_n) by q-digit expansion is a normal basis of $C(V,K)$.

To generalize the q-digit principle to subsets S, the map ϕ_r will be required to be only injective, as S/M^r does not necessarily contain q^r elements.

2. The (q_n)-digit expansion. **Hypotheses and notation.** Let V be a discrete valuation domain, with valuation v. Denote by K the quotient field of V, by \mathfrak{M} the maximal ideal of V, by π a generator of \mathfrak{M} (with $v(\pi) = 1$), by $k = V/\mathfrak{M}$ the residue field and by q the cardinality (finite or not) of k. Let S be an infinite subset of V.
We denote by \(\hat{V}, \hat{K}, \text{and} \hat{S} \) the completions of \(V, K \) and \(S \) with respect to the \(\mathfrak{M} \)-adic topology. We still denote by \(v \) the extension of \(v \) to \(\hat{K} \). For every \(n \geq 0 \), we denote by \(S/\mathfrak{M}^n \) the set formed by the classes of \(S \) modulo \(\mathfrak{M}^n \) and we define \(q_n \) to be the cardinality of \(S/\mathfrak{M}^n \) \((q_0 = 1) \).

We assume that \(S \) is precompact, that is, \(\hat{S} \) is compact, and we know that this is equivalent to the fact that all the \(q_n \)'s are finite.

Of course, \((q_n) \) is a non-decreasing and non-stationary sequence. Now, we define the \((q_n) \)-digit expansion of a positive integer \(m \):

Proposition 2.1. Let \((q_n)_{n \geq 0} \) be a non-decreasing and non-stationary sequence of integers, with \(q_0 = 1 \). For every \(m > 0 \), there exists a unique representation of \(m \) as

\[
m = m_0 + m_1q_1 + \cdots + m_rq_r
\]

where \(r \) is such that

\[
q_r \leq m < q_{r+1}
\]

and where, for every \(j \) in \([1, r] \),

\[
m_j \geq 0 \quad \text{and} \quad m_0 + m_1q_1 + \cdots + m_jq_j < q_{j+1}.
\]

This representation is called the \((q_n) \)-digit expansion of \(m \).

Proof. Suppose there is such a representation of \(m \). For \(0 \leq k \leq r \), let

\[
N_k = m_0 + m_1q_1 + \cdots + m_kq_k.
\]

Hence, for \(1 \leq k \leq r \), one has

\[
N_k = N_{k-1} + m_kq_k \quad \text{with} \quad N_{k-1} < q_k.
\]

So, \(m_k \) is the quotient of the division of \(N_k \) by \(q_k \), and \(N_{k-1} \) is the rest. Consequently, the sequence \((m_k) \) is uniquely determined.

Conversely, let us prove that such a sequence satisfies our hypothesis. Consider the sequences \(N_r, N_{r-1}, \ldots, N_0 \) and \(m_r, m_{r-1}, \ldots, m_0 \) defined by induction in the following way:

\[
\begin{cases}
N_r = m, \\
m_k = [N_k/q_k] & \text{for } 0 \leq k \leq r, \\
N_{k-1} = N_k - m_kq_k & \text{for } 1 \leq k \leq r.
\end{cases}
\]

By definition of \(r \), \(m_r = [m/q_r] \neq 0 \). At each step \((1 \leq k \leq r) \), one has \(N_{k-1} < q_k \) and \(m = N_{k-1} + m_kq_k + \cdots + m_rq_r \). Indeed,

\[
\sum_{l=k}^{r} m_lq_l = \sum_{l=k}^{r} (N_l - N_{l-1}) = m - N_{k-1}.
\]

Hence,

\[
m = N_0 + m_1q_1 + \cdots + m_rq_r, \quad m_0 = \left[\frac{N_0}{q_0} \right] = N_0.
\]
Finally, \(m = \sum_{k=0}^{r} m_k q_k \) and, for \(0 \leq k \leq r \),
\[
m_0 + m_1 q_1 + \cdots + m_k q_k = m - (m_{k+1} q_{k+1} + \cdots + m_r q_r) = N_k < q_{k+1}.
\]

Remarks 2.2.

1. Let \(m = m_0 + m_1 q_1 + \cdots + m_r q_r \) be the \((q_n)\)-digit expansion of \(m \).
 Then, for \(0 \leq j \leq r \), one has:
 \- \(0 \leq m_j < q_{j+1}/q_j \).
 \- in particular, if \(q_j = q_{j+1} \) then \(m_j = 0 \).

2. The condition \(0 \leq m_j < q_{j+1}/q_j \) is not sufficient to define the \(m_j \)'s.
 If we consider the sequence \(q_n = 2n + 1 \) of odd integers, the \((q_n)\)-
 digit expansion of \(m = 5 \) is \(m = 5 = q_2 \), but one can also write
 \(m = 2 + 3 = 2q_0 + q_1 \) with \(m_0 = 2 < q_1/q_0 = 3 \).

3. On the contrary, the condition \(0 \leq m_j < q_{j+1}/q_j \) does characterize
 the \((q_n)\)-digit expansion when \(q_j \) divides \(q_{j+1} \). Indeed, if \(\alpha_j = q_{j+1}/q_j \) is
 an integer and \(0 \leq m_j < \alpha_j \), then \(m_0 < q_1 \), and by induction,
 \[
 (m_0 + m_1 q_1 + \cdots + m_{j-1} q_{j-1}) + m_j q_j < q_j + (\alpha_j - 1)q_j = \alpha_j q_j = q_{j+1}.
 \]

4. If the sequence \((q_n)\) is associated to a subset \(S \) (that is, \(q_n = \text{card}(S/\mathbb{Z}_q^m)) \), then we have \(q_n \leq q_{n+1} \leq q_{n+2} \).
 As already said, \((q_n)\) is a non-decreasing and non-stationary sequence. Note that it need not
 be strictly increasing and \(q_n \) does not necessarily divide \(q_{n+1} \), as shown by \(V = \mathbb{Z}_5 \) and \(S = 125\mathbb{Z}_5 \cup \{25 + 125\mathbb{Z}_5\} \cup \{1 + 125\mathbb{Z}_5\} \).
 One has: \(S/(5) = \{0,1\} \) and \(q_1 = 2 \); \(S/(25) = \{0,1\} \) and \(q_2 = 2 \); \(S/(125) \) = \{0,1,25\} and \(q_3 = 3 \); \(q_4 = 15 \) and, more generally, \(q_n = 3 \cdot 5^{n-3} \) for \(n \geq 3 \).

Definition 2.3. Let \((e_n)_{n \geq 0}\) be a sequence of elements of a commutative
monoid (with an identity element). The extension of the sequence \((e_n)_{n \geq 0}\)
by \((q_n)\)-digit expansion is the following sequence \((f_m)_{m \geq 0}\):
\[
f_m = e_0^{m_0} \times e_1^{m_1} \times \cdots \times e_r^{m_r}
\]
where \(m = m_0 + m_1 q_1 + \cdots + m_r q_r \) is the \((q_n)\)-digit expansion of \(m \).

Remarks 2.4.

1. \(f_0 = 1 \).

2. If there exists \(j \) such that \(q_j = q_{j+1} \), then the term \(e_j \) of the sequence
 \((e_n)\) never appears in any element of the sequence \((f_m)\).

3. For \(q_r \leq m < q_{r+1} \), if \(m = m_r q_r + N_r \) with \(N_r < q_r \), then
 \[
f_m = e_r^{m_r} \times f_{N_r}.
\]

We now try to find conditions on the subset \(S \) and on the sequence
\((e_n)_{n \geq 0}\) of elements of \(\mathcal{C}(\hat{S}, \hat{V}) \) for the sequence \((f_m)_{m \geq 0}\) to be a normal basis
of \(\mathcal{C}(\hat{S}, \hat{K}) \). We first assume that the sequence \((e_n)_{n \geq 0}\) satisfies a condition
similar to that considered by K. Conrad. More precisely, let \((e_n)_{n \geq 0}\) be a
sequence of elements of $C(\hat{S}, \hat{V})$ such that, for each $n \geq 0$, the reduction \bar{e}_n of e_n in $C(\hat{S}, k)$ is constant on cosets of S modulo M^{n+1}. Denote by $(f_m)_{m \geq 0}$ the extension of $(e_n)_{n \geq 0}$ by (q_n)-digit expansion. It is obvious that, for $0 \leq m < q_r$, the reductions f_m in $C(\hat{S}, k)$ are constant on cosets of S modulo M^r. In order to determine when this sequence is a normal basis of $C(\hat{S}, \hat{K})$, we use the following lemma.

Lemma 2.5 ([8]). Let $(g_n)_{n \geq 0}$ be a sequence of $C(\hat{S}, \hat{V})$ such that, for $0 \leq m < q_r$, the reductions \bar{g}_m in $C(\hat{S}, k)$ are constant on cosets of S modulo M^r. The following assertions are equivalent:

1. (g_n) is a normal basis of $C(\hat{S}, \hat{K})$,
2. (\bar{g}_n) is a k-linear basis of $C(\hat{S}, k)$,
3. for each integer $r \geq 1$, $(\bar{g}_m)_{0 \leq m < q_r}$ is a k-basis of $F(S/M^r, k)$, the space of functions from S/M^r to k,
4. for each n, the \bar{g}_m's $(0 \leq m < n)$ are k-linearly independent.

Proof. Proposition 1.2 gives the equivalence between assertions (1) and (2). The equivalence between (3) and (4) follows from the dimension of the vector space $F(S/M^r, k)$. Obviously, (2) implies (4). Finally, (3) implies (2), as a continuous function from \hat{S} to k is locally constant and can be viewed as a map from S/M^r to k for some r. ■

Proposition 2.6. Let $(g_n)_{n \geq 0}$ be a sequence of functions such that, for every $0 \leq m < q_r$, the reductions \bar{g}_m in $C(\hat{S}, k)$ are constant on cosets of S modulo M^r. For $r \geq 1$, let G_r be the following matrix:

$$G_r = (\bar{g}_j(a_i))_{0 \leq i,j < q_r},$$

where $(a_i)_{0 \leq i < q_r}$ denotes a complete set of residues of S modulo M^r. Then:

1. $\det G_r$ does not depend on the a_i's (except for the sign).
2. The \bar{g}_m's $(0 \leq m < q_r)$ are k-linearly independent if and only if $\det G_r \neq 0$.

Proof. (1) If $(b_i)_{0 \leq i < q_r}$ is another complete set of residues of S modulo M^r, there exists a permutation σ such that $b_i \equiv a_{\sigma(i)} \pmod{M^r}$. As the \bar{g}_j's are constant on cosets of S modulo M^r, the sets of rows of $(\bar{g}_j(a_i))_{0 \leq i,j < q_r}$ and of $(\bar{g}_j(b_i))_{0 \leq i,j < q_r}$ are permutations of each other.

(2) Suppose that the $\lambda_m \in k$ $(0 \leq m < q_r)$ are such that

$$\lambda_0 \bar{g}_0 + \lambda_1 \bar{g}_1 + \cdots + \lambda_{q_r-1} \bar{g}_{q_r-1} = 0.$$

Evaluating the g_m's $(0 \leq m < q_r)$ on the q_r elements of S/M^r, we obtain a system of q_r equations in the q_r unknowns λ_m. This system has a unique solution if and only if $\det G_r \neq 0$. ■
3. Normal basis obtained by the \((q_n)\)-digit principle. We still maintain the hypotheses and notation introduced in Section 2 and we complete them by the following:

Hypotheses and notation. Let \(r \in \mathbb{N} \) be fixed and denote by \((a_i)_{0 \leq i < q_r + 1}\) a complete set of residues of \(S\) modulo \(\mathcal{M}^{r+1}\) such that \((a_i)_{0 \leq i < q_r}\) is a complete set of residues of \(S\) modulo \(\mathcal{M}^r\). For \(0 \leq i < q_r\), let

\[
\gamma_i = \text{card}\{j : 0 \leq j < q_{r+1},\ a_j \equiv a_i \pmod{\mathcal{M}^r}\}.
\]

Moreover, we order the \(a_i\)'s \((0 \leq i < q_r)\) so that

\[
\gamma_0 \geq \cdots \geq \gamma_{q_r-1} \geq 1.
\]

Let \((e_n)_{n \geq 0}\) be a sequence of elements of \(C(\hat{S}, \hat{V})\) such that, for each \(n \geq 0\), the reduction \(\tilde{e}_n\) of \(e_n\) in \(C(\hat{S}, k)\) is constant on cosets of \(S\) modulo \(\mathcal{M}^{n+1}\). Denote by \((f_m)_{m \geq 0}\) the extension of \((e_n)_{n \geq 0}\) by \((q_n)\)-digit expansion. Clearly, we have:

Lemma 3.1. There are exactly \(\gamma_{q_r-1}\) complete sets of residues of \(S\) modulo \(\mathcal{M}^r\) in a complete set of residues of \(S/\mathcal{M}^{r+1}\). Moreover, for all \(0 \leq i, j < q_{r+1}\) such that \(a_i \equiv a_j \pmod{\mathcal{M}^r}\), one has:

1. \(\forall k < r, e_k(a_i) = e_k(a_j)\),
2. \(\forall k < q_r, f_k(a_i) = f_k(a_j)\).

3.1. A necessary condition

Lemma 3.2. Suppose that there exists \(r\) such that \(q_r\) divides \(q_{r+1}\) and write \(q_{r+1} = \alpha_r q_r\). If the \(f_m\)'s \((0 \leq m < q_{r+1})\) are \(k\)-linearly independent, then

\[
\gamma_0 = \gamma_1 = \cdots = \gamma_{q_r-1} = \alpha_r = q_{r+1}/q_r.
\]

Proof. Assume that \(\gamma_0 > \alpha_r\). First, note that \(q_r < q_{r+1}\) since, if \(q_r = q_{r+1}\), one has \(\gamma_i = 1 = \alpha_r\) for every \(i\). In the matrix \(G_{r+1} = (f_j(a_i))_{0 \leq i, j < q_{r+1}}\), we arrange the columns into the following sequence:

\[
1, e_r, \ldots, e_r^{\alpha_r-1}, f_1, \ldots, f_1 e_r^{\alpha_r-1}, \ldots, f_r e_r^{\alpha_r-1}, \ldots, f_{q_r-1} e_r^{\alpha_r-1}.
\]

We denote by \(C_{i,j}\) the column corresponding to \(f_i e_r^j\) and, for \(1 \leq i < q_r\) and \(0 \leq j < \alpha_r\), we use the following elementary transformations on columns:

\[
C_{i,j} \leftarrow C_{i,j} - f_i(a_0) C_{0,j}.
\]

For \(1 \leq l < q_{r+1}\), the term in the column \(C_{i,j}\) and the row \(L_l\) becomes

\[
f_i(a_l) e_r^j(a_l) - f_i(a_0) e_r^j(a_l).
\]

It follows from Lemma 3.1 that, whenever \(l\) \((0 \leq l < q_{r+1})\) is such that \(a_l \equiv a_0 \pmod{\mathcal{M}^r}\), then \(f_i(a_0) = f_i(a_l)\) and, after permuting the rows of the matrix, the first \(\gamma_0\) new rows (corresponding to such an \(a_l\) end with
zeros. Consequently, the new matrix is of the form
\[
\begin{pmatrix}
A & 0 \\
B & C
\end{pmatrix}
\]
where \(A \in M_{\alpha_r}(k) \), and, as \(\gamma_0 > \alpha_r \), the first line of \(C \) is null. Finally,
\[
\det G_{r+1} = \det A \cdot \det C = 0. \quad \blacksquare
\]

This necessary condition defines a class of subsets of \(V \) called Legendre subsets in [7]. Before stating our main theorem, we recall some properties of these sets.

3.2. Legendre sets

Definition 3.3. The subset \(S \) is called a Legendre set if, for every \(r \) in \(\mathbb{N} \), each class of \(S \) modulo \(\mathfrak{m}^r \) contains the same number of elements modulo \(\mathfrak{m}^{r+1} \).

If \(S \) is a Legendre set then, for every \(r \geq 0 \), \(q_r \) divides \(q_{r+1} \) and for every \(0 \leq i < q_r \), one has
\[
\gamma_i = q_{r+1}/q_r.
\]

Such subsets have been studied by Y. Amice [1] as regular compact subsets in the case when \(K \) is a local field and \(S \) is compact, and by Y. Fares and the author [7] in a more general setting. Let us recall a property of the Legendre sets that we will use in the applications. We first recall the following definitions:

Definition 3.4. Let \((a_n)_{n \geq 0} \) be a sequence of elements of \(S \).

1. The sequence is called a \(v \)-ordering of \(S \) (see [3]) when, for every \(n > 0 \),
 \[
v\left(\prod_{0 \leq k < n} (a_n - a_k) \right) = \inf_{x \in S} v\left(\prod_{0 \leq k < n} (x - a_k) \right).
 \]
2. The sequence is called a very well distributed sequence of \(S \) (see [1]) if, for every \(r > 0 \) and every \(\lambda \in \mathbb{N} \), \((a_{\lambda q_r}, \ldots, a_{(\lambda+1)q_r-1}) \) is a complete set of residues of \(S/\mathfrak{m}^r \).

We then have a very nice property:

Proposition 3.5 ([7]).

- A very well distributed sequence of a subset is a \(v \)-ordering.
- Every \(v \)-ordering of a Legendre set is a very well distributed sequence.

Here are some examples of Legendre sets:

Example 1. Assume that the residue field \(k \) is finite of cardinality \(q \).

1. \(V \) is a Legendre set and \(q_n = q q_{n-1} = q^n \).
(2) Let \(S = \bigcup_{j=1}^r b_j + \mathfrak{M} \), where \(b_1, \ldots, b_r \) are not congruent modulo \(\mathfrak{M} \). Then \(S \) is a Legendre set and \(q_n = rq^{n-1} \).

(3) Let \(u \in V \) be such that \(v(u) = 0 \). Then \(S = \{ u^n : n \in \mathbb{N} \} \) is a Legendre set.

We are ready to state our theorem.

3.3. Extension of Conrad’s \(q \)-digit principle

Theorem 3.6. Let \(V \) be a discrete valuation domain with maximal ideal \(\mathfrak{M} \) and residue field \(k = V/\mathfrak{M} \). Let \(S \) be a precompact subset of \(V \) and, for \(n \geq 0 \), let \(q_n = \text{card}(S/\mathfrak{M}^n) \). Assume that, for every \(r \), \(q_r \) divides \(q_{r+1} \). Let \((e_i) \) be a sequence of elements of \(C(\hat{S}, \hat{V}) \) such that the reductions \(e_i \in C(\hat{S}, k) \) are constant on cosets of \(S \) modulo \(\mathfrak{M} ^{r+1} \) and suppose that, for every \(r \geq 0 \), the following map is injective:

\[
\phi_r : S/\mathfrak{M}^{r+1} \to k^{r+1}, \quad x \mapsto (\bar{e}_0(x), \ldots, \bar{e}_r(x)).
\]

Then the extension \((f_m)_{m \geq 0} \) of \((e_n)_{n \geq 0} \) by \((q_n) \)-digit expansion is a normal basis of \(C(\hat{S}, \hat{K}) \) if and only if \(S \) is a Legendre set.

Proof. The necessity follows from Lemmas 2.5 and 3.2. Using Proposition 2.6, we now show that the condition is sufficient. We prove by induction on \(r \) that \(\det G_r \neq 0 \). For \(r = 0 \), one has

\[
\det G_1 = V(\bar{e}_0(a_0), \ldots, \bar{e}_0(a_{q_1-1}))
\]

where \(V(\cdot) \) denotes the Vandermonde determinant. By hypothesis, \(\phi_0 \) is injective, hence \(\det G_1 \neq 0 \). Now, we suppose that \(\det G_r \neq 0 \) and we show that \(\det G_{r+1} \neq 0 \). First, as there are exactly \(\alpha_r \) complete sets of residues of \(S \) modulo \(\mathfrak{M}^r \) in \((a_i)_{0 \leq i < q_r} \), we can assume that for \(0 \leq i < q_r \) and \(0 \leq l < \alpha_r \),

\[
a_{i+lq_r} \equiv a_i \pmod{\mathfrak{M}^r}.
\]

Then we compute \(\det G_{r+1} \) by ordering each row \(L_{r+1} \) in the matrix as follows:

\[
L_1 = (f_0, \ldots, f_{q_1-1}) = (1, \bar{e}_0, \ldots, \bar{e}_0^{q_1-1})
\]

and, for \(r \geq 1 \),

\[
L_{r+1} = (L_r, \bar{e}_r L_r, \ldots, \bar{e}_r^{\alpha_r-1} L_r).
\]

So we can write

\[
G_{r+1} = \begin{pmatrix}
I_{q_r} & J_0 & \cdots & J_{a_{r-1}}^{0, \ldots, 0} \\
\vdots & J_1 & \cdots & J_{a_{r-1}}^{0, \ldots, 0} \\
\vdots & \vdots & \ddots & \vdots \\
I_{q_r} & J_{a_{r-1}} & \cdots & J_{a_{r-1}}^{0, \ldots, 0}
\end{pmatrix}
\begin{pmatrix}
G_r & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & G_r
\end{pmatrix},
\]
with, for $0 \leq l < \alpha_r$,
\[
J_l = \begin{pmatrix}
\overline{e}_r(a_{lq_r}) & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & \overline{e}_r(a_{(l+1)q_r-1})
\end{pmatrix}.
\]

We now compute the determinant of B, noticing that the matrices J_l and J_j commute:
\[
\det B = V(J_0, \ldots, J_{\alpha_r-1}) = \prod_{0 \leq l < j < \alpha_r} \det(J_j - J_l).
\]

We then obtain
\[
\det G_{r+1} = \det G_r^{\alpha_r} \cdot \prod_{i=0}^{q_r-1} V(\overline{e}_r(a_i), \overline{e}_r(a_{q_r+i}), \ldots, \overline{e}_r(a_{(\alpha_r-1)q_r+i})).
\]

By induction hypothesis, $\det G_r \neq 0$. Moreover, as
\[
\overline{e}_j(a_i) = \overline{e}_j(a_{lq_r+i}) \quad \text{for } j < r \text{ and } 0 \leq l < \alpha_r,
\]
the injectivity of ϕ_{r+1} implies that
\[
\overline{e}_r(a_{i+jq_r}) \neq \overline{e}_r(a_{i+lq_r}) \quad \text{for } 0 \leq j < l \leq \alpha_r.
\]

Hence,
\[
V(\overline{e}_r(a_i), \overline{e}_r(a_{q_r+i}), \ldots, \overline{e}_r(a_{(\alpha_r-1)q_r+i})) \neq 0 \quad \text{for } 1 \leq i \leq q_r.
\]

4. Applications

4.1. Examples of normal bases obtained by the (q_n)-digit principle. For the following examples, the hypotheses of Theorem 3.6 are clearly satisfied.

Proposition 4.1. Let S be a Legendre set, and denote by F a complete set of residues of V modulo \mathfrak{M}. Each x in S has a unique representation of the form $x = x_0 + x_1 \pi + \cdots + x_j \pi^j + \cdots$ with $x_j \in F$. For each $j \geq 0$, let
\[
\omega_j : S \to V, \quad x \mapsto x_j.
\]
Then (Ω_m), the extension of (ω_n) by (q_n)-digit expansion, is a normal basis of $C(\hat{S}, \hat{K})$.

The second example uses hyperdifferential operators as defined by Voloch in [9]: We suppose here that the characteristic of V is $p > 0$, so we can consider V as a k-vector space. He defines a sequence of k-linear maps δ_r by the following condition:
\[
\forall r \in \mathbb{N}, \forall m \in \mathbb{N}, \quad \delta_r(\pi^m) = \binom{m}{r} \pi^{m-r}.
\]
Proposition 4.2. Let S be a Legendre set of V. Then the extension (Δ_m) of (δ_r) by (q_n)-digit expansion is a normal basis of $\mathcal{C}(\hat{S}, \hat{K})$.

4.2. A polynomial example. We end with a polynomial example. We already know ([5] or [4]) that, if S is a subset in a discrete valuation ring V and $(a_n)_{n \geq 0}$ is a v-ordering of S, then the sequence of polynomials

$$u_r(X) = \prod_{0 \leq i < r} \frac{X - a_i}{a_r - a_i}$$

is a normal basis of $\mathcal{C}(\hat{S}, \hat{K})$. Here is another example:

Proposition 4.3. Let S be a Legendre set and $(a_n)_{n \geq 0}$ be a v-ordering of S. Let (e_r) be defined by

$$e_0(X) = X, \quad e_r(X) = \prod_{0 \leq i < q_r} \frac{X - a_i}{a_q - a_i} \quad \text{for } r \geq 1.$$

Then the extension (f_m) of (e_r) by (q_n)-digit expansion is a normal basis of $\mathcal{C}(\hat{S}, \hat{K})$.

Proof. Of course, e_r is an integer-valued polynomial with $\deg(e_r) = q_r$. First, we prove that for every r, $e_r \in \mathcal{C}(\hat{S}, k)$ is constant on cosets of S modulo \mathfrak{M}^{r+1}. As recalled in Proposition 3.5, every v-ordering of a Legendre set S is very well distributed in S. So, for each x in S, there exists a unique s such that $0 \leq s < q_{r+1}$ and $x \equiv a_s \pmod{\mathfrak{M}^{r+1}}$. We have to prove that

$$e_r(x) = e_r(a_s).$$

First suppose that $s \geq q_r$. Then

$$\forall i \in \{0, \ldots, q_r - 1\}, \quad \frac{x - a_i}{a_s - a_i} = 1 + \frac{x - a_s}{a_s - a_i}.$$

As $v(x - a_s) \geq r + 1$ and $v(a_s - a_i) < r + 1$, we have

$$\frac{x - a_s}{a_s - a_i} \equiv 0 \pmod{\mathfrak{M}} \quad \text{and} \quad \prod_{0 \leq i \leq q_r - 1} \frac{x - a_i}{a_s - a_i} \equiv 1 \pmod{\mathfrak{M}}.$$

To conclude, write

$$e_r(x) = e_r(a_s) \cdot \prod_{0 \leq i < q_r} \frac{x - a_i}{a_s - a_i}.$$

Then $e_r(x) \equiv e_r(a_s) \pmod{\mathfrak{M}}$.

Suppose now that $s < q_r$. Then $e_r(a_s) = 0$. If we had

$$v\left(\prod_{0 \leq i < q_r} (x - a_i) \right) = v\left(\prod_{0 \leq i < q_r} (a_{q_r} - a_i) \right),$$
then x could replace a_{q_r} in a v-ordering. Meanwhile, we could construct a new v-ordering

$$a_0, \ldots, a_{q_r-1}, x, b_{q_r+1}, \ldots, b_{q_r+1-1}, \ldots$$

Since a v-ordering must be a very well distributed sequence,

$$a_0, \ldots, a_{q_r-1}, x, b_{q_r+1}, \ldots, b_{q_r+1-1}$$

must be a complete set of residues modulo \mathcal{M}^{r+1}. This is impossible, since $v(x - a_s) \geq r + 1$. So

$$v\left(\prod_{0 \leq i < q_r} (x - a_i) \right) > v\left(\prod_{0 \leq i < q_r} (a_{q_r} - a_i) \right) \quad \text{and} \quad \overline{e}_r(x) = 0.$$

We now prove by induction on r that the ϕ_r’s are injective. This is equivalent to proving that

$$\Phi_r(x) = \Phi_r(y) \Rightarrow x \equiv y \pmod{\mathcal{M}^{r+1}},$$

where

$$\Phi_r : S \rightarrow k^{r+1}, \quad x \mapsto (\overline{e}_0(x), \ldots, \overline{e}_r(x)).$$

Since $\overline{e}_0(X) = X$, clearly $\overline{e}_0(x) = \overline{e}_0(y)$ implies $x \equiv y \pmod{\mathcal{M}}$, so ϕ_0 is injective. Now suppose that ϕ_{r-1} is injective. If $x \not\equiv y \pmod{\mathcal{M}^r}$, it follows by induction that $\Phi_{r-1}(x) \neq \Phi_{r-1}(y)$ and then $\Phi_r(x) \neq \Phi_r(y)$. Thus we may assume that x and y are both in the class of some a_j ($j < q_r$) modulo \mathcal{M}^r:

$$x = a_j + b\pi^r \quad \text{and} \quad y = a_j + c\pi^r, \quad \text{with } b, c \in V.$$

Considering the classes of b and c in S/\mathcal{M}, we show that $\tilde{b} \neq \tilde{c}$ implies $\overline{e}_r(x) \neq \overline{e}_r(y)$.

1) We first note that, for $\tilde{b} \neq 0$, $\overline{e}_r(x) \neq 0$. Indeed, $a_0, \ldots, a_{q_r-1}, x$ are then in distinct classes modulo \mathcal{M}^{r+1}. They thus form the beginning of a very well distributed sequence, and hence this sequence is a v-ordering. Then

$$v\left(\prod_{0 \leq i < q_r} (a_{q_r} - a_i) \right) = v\left(\prod_{0 \leq i < q_r} (x - a_i) \right).$$

Consequently, $v(e_r(x)) = 0$, and $\overline{e}_r(x) \neq 0$.

If $\overline{c} = 0$, as \overline{e}_r is constant on cosets modulo \mathcal{M}^{r+1}, we have $\overline{e}_r(y) = \overline{e}_r(a_j) = 0$, and so $\overline{e}_r(y) \neq \overline{e}_r(x)$. Similarly, if $\tilde{b} = 0$ and $\overline{c} \neq 0$, we have again $\overline{e}_r(y) = 0$ and $\overline{e}_r(x) \neq 0$.

2) Now we suppose that $\tilde{b} \neq 0$ and $\overline{c} \neq 0$. Then $\overline{e}_r(x) \neq 0$ and $\overline{e}_r(y) \neq 0$. We have

$$\frac{e_r(x)}{e_r(y)} = \frac{x - a_j}{y - a_j} \cdot \prod_{0 \leq k < q_r, k \neq j} \frac{x - a_k}{y - a_k}.$$

For $k \neq j$,

$$\frac{x - a_k}{y - a_k} = 1 + \frac{x - y}{y - a_k}.$$
As \(v(x - y) = r \) and \(v(y - a_k) < r \), it follows that \(\frac{x - y}{y - a_k} \) is in \(V \) and \(\frac{x - a_k}{y - a_k} \equiv 1 \pmod{\mathfrak{M}} \).

On the other hand,
\[
\frac{x - a_j}{y - a_j} = \frac{b}{c}.
\]

As \(V \) is local and \(c \not\in \mathfrak{M} \), it follows that \(\frac{b}{c} \) is an element of \(V \), thus so is \(\frac{e_r(x)}{e_r(y)} \) and \(\frac{e_r(x)}{e_r(y)} \equiv \frac{b}{c} \pmod{\mathfrak{M}} \).

Now, \(\bar{b} \neq \bar{c} \) implies \(\frac{\bar{b}}{\bar{c}} \neq 1 \), hence \(\frac{\bar{e}_r(x)}{\bar{e}_r(y)} \neq 1 \), that is, \(\bar{e}_r(x) \neq \bar{e}_r(y) \).

References