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Inverse zero-sum problems and algebraic invariants
by

BENJAMIN GIRARD (Paris)

1. Introduction. Let G be a finite Abelian group, written additively.
We denote by exp(G) the exponent of G. If G is cyclic of order n, it will
be denoted by C,. In the general case, we can decompose G (see for in-
stance [23]) as a direct product of cyclic groups Cp, @ -+ @ C,, where
l<ni|...|n €N

In this paper, any finite sequence S = (gi1,...,g;) of | elements from
G will be called a sequence in G with length |S| = [. Given a sequence
S=(g1,...,q) in G, we say that s € G is a subsum of S when

S:Zgi for some 0 G I C {1,...,1}.
i€l

If 0 is not a subsum of S, we say that S is a zero-sumfree sequence.
If 22:1 g; = 0, then S is said to be a zero-sum sequence. If moreover >, ; g;
# 0 for all proper subsets ) C I C {1,...,l}, then S is called a minimal
Zero-sum Ssequence.

In a finite Abelian group G, the order of an element g will be written
ord(g) and for every divisor d of the exponent of G, we denote by Gy the
subgroup of G consisting of all elements of order dividing d:

Gqg={r € G|dr=0}.

For every divisor d of exp(G), and every sequence S in G, we denote by
g the number of elements, counted with multiplicity, contained in S and
of order d. Although «ay4 clearly depends on S, we will not emphasize this
dependence in the present paper, since there will be no risk of confusion.
Let P be the set of prime numbers. Given n € N* = N\ {0}, we denote
by D,, the set of positive divisors of n, and we set 7(n) = |D,|. If n > 1, we
denote by P~ (n) the smallest prime element of D,,, and we put by convention
P~(1) = 1. For every p € P, vp(n) will denote the p-adic valuation of n.
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Let G~ Cp, & & Cy,, with 1 <nj|...|n, €N, be a finite Abelian
group. We set
,
D(G)=) (ni—1)+1 and d*(G)=D*(G)-1.
i=1
Let D(G) denote the smallest integer ¢ € N* such that every sequence S in
G with |S| > t contains a non-empty zero-sum subsequence. The number
D(G) is called the Davenport constant of the group G.
We denote by d(G) the greatest length of a zero-sumfree sequence in G.
It can be readily seen that

d(G) =D(G) — 1.

IG~C) @ --®C,,,withy; > 1foralli € [1, s], is the longest possible
decomposition of G into a direct product of cyclic groups, then we set

S

k*(G):ZVi_l.

»
i=1 v

The cross number of a sequence S = (g,...,q), denoted by k(S), is then
defined by

1
k(S) = .
(%) ; ord(g;)
The notion of cross number was introduced by U. Krause [17] (see also [18]).
Finally, we define the so-called little cross number k(G) of G:

k(G) = max{k(S)| S a zero-sumfree sequence in G}.

Two elementary constructions (see [11, Proposition 5.1.8]) give the fol-
lowing lower bounds:

D*(G) < D(G) and k*(G) <k(G).

The invariants D(G) and k(G) play a key role in the theory of non-unique
factorization (see for instance Chapter 9 in [20], the book [11] which presents
various aspects of the theory, and also the survey [12]). They have been
extensively studied during the last decades and even if numerous results
were proved (see Chapter 5 of [11], [7] for a survey with many references,
and [14] for recent results on the cross number of finite Abelian groups),
their exact values are known for very special types of groups only. We will
need some of these values for finite Abelian p-groups and finite Abelian
groups of rank two, so we gather them in the following theorem (see [10],
[21] and [22]).
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THEOREM 1.1.

(i) Letpe P,r e N* anda; < --- < a,, where a; € N* for alli € [1,7].
Then, for the p-group G ~ Cpa1 @ - - - @ Cpar, we have

T

DE) =S (" 1) +1=D(G), k&)=Y pa;; L @)
i=1 i=1

(ii) For every m,n € N*,
D(Cp @ Cpn) =m+mn —1=D"(Cy, ® Crn)-
In particular, D(Cy) = n.

The aim of this paper is to study some inverse zero-sum problems of
a special type. Instead of trying to characterize explicitly, given a finite
Abelian group, the structure of long zero-sumfree sequences (see [5], [3], [9],
[25] and [8]), or the structure of zero-sumfree sequences with large cross
number (see [13]), we study to what extent a zero-sumfree sequence can be
extremal in both directions simultaneously. For instance, what is the maxi-
mal cross number of a long zero-sumfree sequence? Regarding this problem,
we propose the following general conjecture.

CONJECTURE 1.2. Let G~ Cp, ®---®Cy,, withl <ny|...|n, €N, be
a finite Abelian group. If S is a zero-sumfree sequence in G with |S| > d*(G),
then

n

k(S) gi”ifl.
i=1 ¢

In particular, k(S) < r.

Conjecture 1.2 is closely related to the distribution of the orders of ele-
ments in a long zero-sumfree sequence. We will see that when the conjecture
holds, it provides useful information on this question. In the following propo-
sition, we gather what is currently known, to the best of our knowledge, on
the structure of long zero-sumfree sequences in finite Abelian groups of rank
two. This result, due to W. Gao and A. Geroldinger, can be found under a
slightly different form in [11, Proposition 5.8.4].

ProrosiTiON 1.3. Let G ~ C,, ® Cpn, where m,n € N*, be a finite
Abelian group of rank two. For every zero-sumfree sequence S in G with
|S| = d(G) = m + mn — 2, the following two statements hold.

(i) m|ord(g) | mn for every g € S.
(ii) The sequence S contains at least
2m — 2

m+mn—n<P_(n)

—|—1>—12m—1

elements of order mn.
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The problem of the exact structure of a long zero-sumfree sequence in
groups of the form G ~ C, ® C,, is also closely related to an important
conjecture in additive group theory, which bears upon the so-called Prop-
erty B. Let n > 2 be an integer. We say that n has Property B if every
zero-sumfree sequence in G ~ C,, ® C,, with |S| = d(G) = 2n — 2 contains
some element repeated at least n — 2 times.

Property B was introduced and first studied in [4] (see also [11, Section
5.8], [19] and [9]). It is conjectured that every integer n > 2 has Property B,
and recently, it was proved that an integer n > 2 has Property B if each
prime divisor of n has this property (see [6, Section 8], and [8]). Therefore, it
remains to solve this problem for prime numbers. Regarding this, it can be
shown that Property B holds for n = 2,3,5,7 (see [6, Proposition 4.2]), for
n = 11,13,17,19 (see [1]) and consequently for every integer n representable
as a product of these numbers.

Moreover, W. Schmid [25] proved that if some integer m > 2 has Prop-
erty B, then the zero-sumfree sequences in G ~ C,, ® Cp,, with length
d(G) = m + mn — 2 can be characterized explicitly for all n € N*. This re-
sult provides a unified way to prove Theorem 3.3 of [5] and the Theorem of
[3]. It also implies, assuming that Property B holds for every integer n > 2,
that Conjecture 1.2 holds true for every finite Abelian group of rank two.

2. New results and plan of the paper. In this article, we prove
that Conjecture 1.2 holds for several types of finite Abelian groups. First, in
Section 3, we prove some consequences of this conjecture. For instance, Con-
jecture 1.2 would imply two classical and long-standing conjectures related
to the Davenport constant of finite Abelian groups of the form C7.

PROPOSITION 2.1. Let n,r € N* be such that Conjecture 1.2 holds for
the group C;.. Then
D(C})=r(n—1)+1.
Moreover, every zero-sumfree sequence S in C) with |S| = d(CJ) =r(n—1)
consists only of elements of order n.

More generally, Conjecture 1.2 would provide the following upper bound
for the Davenport constant of a finite Abelian group.

PROPOSITION 2.2. Suppose that Conjecture 1.2 holds for G ~ C,, ®

<@ Cy, withl <ni|...|n, €N. Then
an r n,
D < —(n; —1)+1=D* ——1 i —1).
(G)_Z;”i(n ) + (G)+;(m >(n )

In Section 3, we also prove that Conjecture 1.2 holds true for finite cyclic
groups and finite Abelian p-groups.
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ProprosiTION 2.3. Conjecture 1.2 holds whenever:

(i) G is a finite cyclic group,

(ii) G is a finite Abelian p-group.

In Section 4, we present a general method, introduced in [14] to study
the cross number of finite Abelian groups. Using this method, we prove
in Section 5 two lemmas, which will be useful in the special case of finite
Abelian groups of rank two.

In Section 6, we prove the two main theorems of this paper. The first
one states that Conjecture 1.2 holds for every finite Abelian group of rank
two. As already mentioned in Section 1, this result supports Property B
(see [25]).

THEOREM 2.4. Let G ~ Cp, ® Cpyp, where m,n € N*, be a finite Abelian
group of rank two. For every zero-sumfree sequence S in G with |S| >
d*(G) = m +mn — 2,

m—1 mn-—1
+ .

k <
(S) m mn

In particular, k(S) < 2.

The second theorem, which is proved in Section 6 as well, is an effective
result which states that, in a finite Abelian group of rank two, most of the
elements of a long zero-sumfree sequence must have maximal order. This
improves significantly the statement of Proposition 1.3(ii).

THEOREM 2.5. Let G ~ Cy, ® Cppn, where m,n € N*. For every zero-
sumfree sequence S in G with |S| = d(G) = m + mn — 2, the following two
statements hold.

(i) If n is a prime power, then S contains at least mn — 1 elements of

order mmn.
(ii) If n is not a prime power, then S contains at least
4 n n—>9
—mn
5 5

elements of order mn.

It may be observed that for every group G ~ C,,, ® C,,,,,, where m,n €
N* and n > 2, there exists a zero-sumfree sequence S in G with |S| =
d(G) = m+mn —2, and which does not contain more than mn — 1 elements
of order mn. Indeed, let (ej,e2) be a basis of G with ord(e;) = m and
ord(e2) = mn. Then it suffices to consider the zero-sumfree sequence S
consisting of e; repeated m — 1 times and es repeated mn — 1 times. From
this point of view, Theorem 2.5 proves to be “nearly optimal”. In addition,
the general method presented in Section 4 can be successfully used to prove
an analogue of Theorem 2.5 in the case of finite Abelian p-groups (see [15]).
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Finally, in Section 7, we will present and discuss a general conjecture
concerning the maximal possible length of a zero-sumfree sequence with
large cross number, which can be seen as a dual version of Conjecture 1.2.

3. Proofs of Propositions 2.1-2.3. We first prove the two corollaries
of Conjecture 1.2 announced in Section 2.

Proof of Proposition 2.1. Let S be a zero-sumfree sequence in G ~ C},
with maximal length |S| = d(G) = D(G) — 1. Then
D(G) -1 :ﬂgk(S)gr”_l,
n n n
which implies that D(G) < r(n — 1) + 1 = D*(G), and since D*(G) < D(G)
always holds, the equality follows. Consequently,
—1 D —1
k(S)=r = = (&) -1_ 181

n n n

and so every element g of S satisfies ord(g) = exp(G) =n. =

Proof of Proposition 2.2. Let S be a zero-sumfree sequence in G ~ C,,, ®
<+ @®Cy, with 1 <nj|...|n, € Nsuch that |S| =d(G) = D(G) — 1. Then

D(G)—1 |S] " n;—1
PR S S— < < E P
— k(S) = gt n; )

n, ny
which implies the desired result. =

We now prove that Conjecture 1.2 holds true for finite cyclic groups and
finite Abelian p-groups.

Proof of Proposition 2.3. (i) Let n > 2 be an integer and let S be a
zero-sumfree sequence in C, with |S| > d*(C,) = n — 1. Then it is well-
known (see for instance [11, Theorem 5.1.10(i)]) that there exists g € C),
with ord(g) = n such that

S=(g,---,9)
—

n—1 times

Consequently,
n—1

k(S) = :

n

which gives the desired result.
(ii) Let p€ P, r € N*, and G ~ Cpay @ - - - @ Cpar with a; < --- < a, and
a; € N* for all i € [1,7]. By Theorem 1.1(i),

K(G) = Z ol
=1

p
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Thus, for every zero-sumfree sequence S in G, in particular for those with
|S| > d*(G), one indeed has, by the very definition of the little cross number,

(8) <) =Y
i=1

and the proof is complete.

4. Outline of a new method. Let G be a finite Abelian group, and
let S be a sequence of elements in GG. The general method that we will use
in this paper (see also [14] and [15] for applications in two other contexts)
consists in considering, for every d',d € N such that 1 < d'|d|exp(G), the
following exact sequence:

0— Gaar — Ga SN Ga/Gaya — 0.
Now, let U be the subsequence of S consisting of all elements whose order
divides d. If, for some 1 < d'|d|exp(G), it is possible to find sufficiently
many disjoint non-empty zero-sum subsequences in 7T(d/7d)(U ), that is, suffi-
ciently many disjoint subsequences in U the sum of each being an element
of order dividing d/d’, then S cannot be a zero-sumfree sequence in G.

To make this idea more precise, we introduced in [14] the following num-
ber, which can be seen as an extension of the classical Davenport constant.

Let G=Cp, & ®C,,,withl <ny|...|n. € Nand d',d € N be such
that 1 < d’|d| exp(G). We denote by Dz q)(G) the smallest ¢ € N* such
that every sequence S in G4 with |S| > ¢ contains a non-empty subsequence
with sum in Gg/qr.

Using this definition, we can prove the following simple lemma, which is
an illustration of our idea. This result will be useful in Section 5 and states
that given a finite Abelian group, there exist strong constraints on the way
the orders of elements are distributed within a zero-sumfree sequence.

LEMMA 4.1. Let G be a finite Abelian group and let d',d € N be such
that 1 < d'|d| exp(G). Given a sequence S of elements in G, write T for
the subsequence of S consisting of all elements whose order divides d/d’,
and write U for the subsequence of S consisting of all elements whose order
divides d (in particular, T C U). Then S is not a zero-sumfree sequence
whenever

Ul —|T
7] + ["'J > Dy aya ().

Dar,a)(G)
Proof. Set A = D (/4 4/4'y(G). The above inequality implies that there
are A disjoint subsequences Si,...,Sa of S, the sum of each being an ele-

ment of order dividing d/d’. Then, by the very definition of D /4 4/4)(G),
S has to contain a non-empty zero-sum subsequence. m
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Now, in order to obtain effective inequalities from the symbolic con-
straints of Lemma 4.1, one can use a result proved in [14], which states that
for any finite Abelian group G and every 1 < d'|d| exp(G), the invariant
D(¢,4)(G) is linked with the classical Davenport constant of a particular
subgroup of G, which can be characterized explicitly. In order to define this
subgroup properly, we introduce the following notation.

For all ¢ € [1,7], we set

lcm(d, n,) / Az
STl d) = —
lem(d’,ng) (d.d) ged(A;, B;)

For instance, whenever d divides n;, we have v;(d’',d) = ged(d’,n;) = d’, and

in particular v,.(d',d) = d’. We can now state our result on D¢y 4(G) (see
[14, Proposition 3.1]).

Ai = gcd(d’,ni), Bi =

PROPOSITION 4.2. Let G~ Cy, & --- @& Cp,, with 1 <ny| ... |n, €N,
and let d',d € N be such that 1 < d'|d| exp(G). Then

Da,a)(G) = D(Cyy(ar,a) @ -+ ® Oy, (dr,a))-

5. Two lemmas related to zero-freeness in G ~ C,,, ® C},,,. In this
section, we show how the method of Section 4 can be used to obtain two key
lemmas for the proofs of Theorems 2.4 and 2.5. We first prove the following
result.

LeEMMA 5.1. Let G ~ C,, ® Cipn, where mymn € N*, n > 2, and let S be
a zero-sumfree sequence in G with |S| > d*(G) = m + mn — 2. Then, for

every | € Dy \ {n},
Z Qg <m — 1.
deDy

Proof. Let l € Dy \{n}, d =n/l and d = mn, which leads to d/d’ = ml.
Set m' = ged(d',m), and let T and U be the two subsequences of S defined
in Lemma 4.1. In particular, 7' C U = S, and by Proposition 1.3(i),

T =Y ang
deD,
To start with, we determine the exact value of D(z 4)(G). One has

/ / /

m m m
Ul (d/7 d) = == 7 - = 1,
ged (m/, 11(;0;11((57%)) ) eed(m, dmy ged(m/,m'l)

and since vo(d',d) = d’, Proposition 4.2 and Theorem 1.1(ii) yield
D(a,a)(G) = D(Cy, (ar,d) ® Cop(ar,a) = D(Crypi) = n/l.
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Now, suppose that |T| > m. Since | € D,, \ {n}, we obtain

|+ |U| — |T| Z’TH_l(7n+mn—2—|TDZm_’_l(mn—2)
D(d’,d)(G) n n
—(mtmi-1)— L2t
n n
l 1
> (m4ml—1) =~ =Dy qyan(G) — —————
( ) ~ = Daya /a0 (G) B (@

and, according to Lemma 4.1, .S must contain a non-empty zero-sum subse-
quence, which is a contradiction. Thus, |T'| < m — 1, as desired. »

Now, let n > 2 be an integer, and p, ..., p, be its distinct prime divisors.
Given m € N* and a zero-sumfree sequence S in G ~ C,, ® C,,, with
|S| > d*(G) = m + mn — 2, Lemma 5.1 implies that the integers a,,q € N,
where d € D,, \ {n}, satisfy the following r linear constraints:

Z amg <m—1 forallie[l,r].

deDn/pi

In the next lemma, we solve a linear integer programming problem on the
divisor lattice of n, in order to obtain the maximum value of the function

Umd
(amd)deDn\{n} = Z a
deDp\{n}
under the above 7 constraints (the reader interested in linear programming
methods is referred to the book [26] for an exhaustive presentation of the
subject).
LEMMA 5.2. Let m,n € N* with n > 2, and let (z4)4ep,\(n} e a se-

quence of positive integers such that for every prime divisor p of n, one has
the following linear constraint:

Z g <m— 1.

dGDn/p

Then one has the following inequality, which is best possible:
Z Td 1.
7=
deDp\{n}

Proof. Let p1,...,p, be the distinct prime divisors of n. For every k €
[0,m — 1], let Si be the set of all sequences x = (24)gep,\{n} Of positive
integers which satisfy the above linear constraints and have z1 = m —k — 1.
Now, we prove, by induction on k € [0, m — 1], that

Z % <m-—1 forevery z € S.
d€D7L\{n}
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If £ =0, then for every = € Sy, the linear constraints imply that x4 = 0
for all d € D, \ {1,n}, which gives

S Hene

7 :

deDp\{n}

Assume now that the inequality is valid for kK — 1 > 0. Define

fiDa\{n} = {A|0C AC[L, 7]}, d—{ic[l,7]|deDyp,}.
Let © € Sk and let £ be the set of d € D, \ {1,n} such that x4 > 1. By
definition, for every d € D,, \ {n}, |f(d)| is the number of linear constraints
in which the variable x4 appears. Thus, for every prime divisor p of n, x,/,

appears in only one linear constraint, and we may assume, without loss of
generality, that

n/p
Hence, for every i € [1,7], the set £N D, ,, is non-empty, and so
U f@ = [1.7].
del

Let £’ be a subset of £ of minimal cardinality such that
U f@ =[,7].
deLl’
Since f(d) is a non-empty set for every d € D,, \ {n},
U f@clir] foralldgc’cr
deLl”
Now, one can notice the following two facts.
FacT 1. For every d € L', one has f(d) <r—|L'|+1, and in particular,
1L <r.
This is a straightforward consequence of the following combinatorial

lemma.

LEMMA 5.3. Let r € N* and Ay, ..., As be non-empty subsets of [1,7]
such that

U A =1[1,7] and UAi C[1,7] forany® < I C[1,s].
1€[1,s] iel
Then |A;| <r —s+1 forallie [1,s].

Proof. By symmetry, it suffices to prove that |A;| < r — s+ 1. Assume
to the contrary that |A;| > r—s+2. Since, for all i € [1,s—1], the set A;+1
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must contain at least one element from [1,r] \ (A; U---UA4;), one obtains
the following inequality:

Aj U Ui > [A1 U UA| + 1.
Therefore, by an easy induction argument,
AU UAsq1| > (r—s+2)+(s—2) =,
and so A; U---UAs_1 = [1,r], which is a contradiction. m
FActT 2. For every d € Dy, \ {n},
d>minf(fd) > [ pn™>li@l
ic[L,r]\f(d)

Now, using Facts 1 and 2, we can prove the desired result, by considering
the sequence y = (Ya)4ep,\{n} Obtained from x in the following way:

r1+1 ifd=1,
Yyag=4 xzq—1 ifde L,
Ty otherwise.

It is readily seen that y € S_1. Therefore, Facts 1 and 2 give the following
inequalities:

R Rl )

deDy\{n} deDn\{n} deL’
T4 1
= ( 2 d) * (1 -2 2r—|f(d>|>
deDp\{n} der’
Xq 1
(.2, 7) (- Zaer)
deDp\{n} der’
> Td 1 ’E" > Td
=\ 2 ) lge=) 2 X o
deDp\{n} deDp\{n}

which completes the proof. =

6. Proofs of the two main theorems. We first show that every finite
Abelian group of rank two satisfies Conjecture 1.2. The proof is a direct
application of Lemmas 5.1 and 5.2.

Proof of Theorem 2.4. Let G and S be as in the statement of the the-
orem, in particular |S| > d*(G) = m + mn — 2. Since d(G) = d*(G) by
Theorem 1.1(ii), we obtain |S| = d*(G) = m + mn — 2.

If n = 1, then the desired result follows directly from Proposition 1.3(i),
since every element of S has order m. Now, suppose that n > 2. Using
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Proposition 1.3(i), we obtain
Qq Umd
k(S) = — = —
()= 2. 7=
and we can distinguish two cases.

CASE 1: ayny, > mn — 1. In this case, applying Proposition 1.3(i), one
obtains

Z AUmd = ‘S’ — Ompn,

deDp\{n}
which implies
k(S): Z amd+amn < ’S|_amn+amn

deDp\{n}
S| —(mn—-1) mn—-1 m-1 mn-1
< + = - .

m mn m mn
CASE 2: ayppn < mn — 1. Then, by Lemmas 5.1 and 5.2, we obtain
K(S) = Z amd+amn <m—1+amn Sm—1+mn—1

md mn — m mn m mn
deDp\{n}

)

which completes the proof. =

Now, we prove Theorem 2.5, which gives a lower bound for the number
of elements with maximal order in a long zero-sumfree sequence of a finite
Abelian group of rank two.

Proof of Theorem 2.5. Let G and S be as in the statement.

(i) Let p € P and a € N be such that n = p®. If a = 0, then G ~ C,,, &C,,
and, by Proposition 1.3(i), every element of S has order m. Now, suppose
that a > 1. Then, by Lemma 5.1,

’S|_amn: Z Qg <m — 1,
dera—l

which indeed implies that
mn > |S|—(m—1)=m+mn—-2—(m—1)=mn— 1.

(ii) If 7(n) < 3, then n has to be a prime power, and the result follows
by (i). Now, suppose that D,, = {dy =1 < d; < da < d3 < ---} contains at
least four elements. In particular, n > 6. By Lemmas 5.1 and 5.2,
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that is,
Q@ «
(1) d; mn/dq +dy mn/da +d mn/dg Z d mn/d
mn mn m
deDy,
d>ds
Now, we can distinguish two cases.
CASE 1: d3 = 4. Then d; = 2, do = 3 and (1) implies
« « m—1
(2) 9 mn/2 13 mn/3 ) Qmn/4 +5 Z mn/d < .
mn mn mn mn m
deD,
d>ds

But since

Z AUmn/d = |S| — Omn — Omn/2 = Omn/3 — Cmn/4,
deDny,
d>ds

relation (2) implies

m+mn—2_amn _3amn/2 _2amn/3 _amn/4 < m—1

5 )
mn mn mn mn -~ m
that is,
5m+mn_2_amn _ amn/2+amn/4 _Qamn/2+amn/3 m—1
mn mn mn - m

Now using the fact that, by Lemma 5.1,
Q)2 T Qmn /4 <m-—1 and Qmn/3 <m-—1,

we obtain
m+mn—2—m, m—1 22(m—1)<m—1
mn mn mn m

which is equivalent to

mn—1—om, m—1

) < )
mn m
that is,
5(mn —1) —n(m — 1) < 5amp,
and thus
4 n—>5
5 mn + < Qs

which is the desired result.

CASE 2: d3 > 5. Then (1) implies
amn mn mTL 1
(3) dy —h gy T g > < '

mn mn mn ~ m
deDy,
d>ds
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But since

Z Qmn/d = |S’ — Omn = Omp/d; — Omn/ds>

deDy,
d>ds

relation (3) implies

—_9_ «Q
5m+mn am"+(d1—5) mn/2 <
mn mn mn m

Therefore, since d; > 2 and dy > 3, we have

5m+mn—2—amn_3m—1_2m—1 Sm—l,
mn mn mn m
that is,
5mn—1—amn Sm—l7
mn m
which leads to
4 n—2>

ganrT < Qmn,

and the proof is complete. m

7. A concluding remark. Given a finite Abelian group G, the inves-
tigation of the maximal possible length of a zero-sumfree sequence S in G
with large cross number may also be of interest. Concerning this question,
we propose the following general conjecture, which can be seen as a dual
version of Conjecture 1.2.

CONJECTURE 7.1. Let G be a finite Abelian group and G ~ C,, & ---
®C,y,, withv; > 1 for alli € [1,s], be its longest possible decomposition into
a direct product of cyclic groups. If S is a zero-sumfree sequence in G such
that k(S) > k*(G), then

S| <> (v —1).
=1

It can easily be seen, by Theorem 1.1(i), that Conjecture 7.1 holds true
for finite Abelian p-groups. Even in the case of finite cyclic groups which are
not p-groups, this problem is still wide open. Yet, in this special case, the
following result supports the idea that a zero-sumfree sequence with large
cross number has to be “short”.

THEOREM 7.2. Suppose that n € N* is not a prime power, and let S be
a zero-sumfree sequence in C,, such that k(S) > k*(C,,). Then

S| < [n/2].

Proof. We use the notion of index of a sequence in a finite cyclic group,
introduced implicitly in [16, Conjecture, p. 344], and more explicitly in [2].
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Let g € C), with ord(g) = n, and let S = (g1,...,91) = (n1g,...,ng), where

ni,.

Since

..,ng € [0,n — 1], be a sequence in C,,. We define

l

1
Islly =3
i=1
d 7y 1 .
&¢ (Z n) = ord(g) for every i € [1,1],

one can notice that [|S|y > k(S5) for all g € C), with ord(g) = n. Then the
index of S, denoted by index(S), is defined by

index(S) = grrelicn IS ]lg-

ord(g)=n

Now, if n is not a prime power and S is a zero-sumfree sequence in C,

such that k(S) > k*(C},), one obtains, by the very definition of the index,

index(S) > k(S) > k*(Cyp,) > 1.

Therefore, a result of Savchev and Chen (see Theorem 9 in [24]) yields
S| < |n/2]. =

In particular, Theorem 7.2 implies that Conjecture 7.1 holds true for all

cyclic groups of the form Cape, where p € P and a € N.
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