Indivisibility of special values of Dedekind zeta functions of real quadratic fields

by

DONGHO BYEON (Seoul)

1. Introduction and statement of results. For a number field \(k \) and a prime number \(p \), we denote by \(h(k) \) the class number of \(k \) and by \(\lambda_p(k) \), \(\mu_p(k) \) the Iwasawa \(\lambda \)-, \(\mu \)-invariants of the cyclotomic \(\mathbb{Z}_p \)-extension of \(k \), where \(\mathbb{Z}_p \) is the ring of \(p \)-adic integers.

Let \(p \) be an odd prime number. Hartung [3] proved, using the Kronecker class number relation for quadratic forms, that there exist infinitely many imaginary quadratic fields \(k \) whose class numbers are not divisible by \(p \). Later, using the idea of Hartung and Eichler’s trace formula combined with the \(p \)-adic Galois representation attached to the Jacobian varieties of certain modular curves, Horie [4] proved that there exist infinitely many imaginary quadratic fields \(k \) such that \(p \) does not split in \(k \) and \(p \) does not divide \(h(k) \). Thus from a theorem of Iwasawa [7], there exist infinitely many imaginary quadratic fields \(k \) with \(\lambda_p(k) = \mu_p(k) = 0 \).

Let \(F \) be a totally real number field. For a prime number \(p \), we denote by \(n(p) \) the maximum value of \(n \) such that the primitive \(p^n \)-th roots \(\zeta_p^n \) of unity are at most of degree 2 over \(F \). If \(F \) is fixed, we have \(n(p) = 0 \) for all but finitely many \(p \). Thus we can put \(\omega_F = 2^{n(2)+1} \prod_{p \neq 2} p^{n(p)} \). Let \(\zeta_F(s) \) be the Dedekind zeta function of \(F \). Serre [11] proved that \(\omega_F \zeta_F(-1) \) is a rational integer. Let \(K \) be a totally imaginary quadratic extension over \(F \). Define

\[
\lambda_p^{-}(K) := \lambda_p(K) - \lambda_p(F), \quad \mu_p^{-}(K) := \mu_p(K) - \mu_p(F).
\]

Using a result of Shimizu about the trace formula of Hecke operators and a result of Ohta about the \(p \)-adic representation of the absolute Galois group over \(F \) related to automorphic forms, Naito [8], [9] generalized the above results of Hartung and Horie to the case of totally imaginary quadratic extensions over a totally real number field and obtained the following theorem.

2000 Mathematics Subject Classification: 11R16, 11R23, 11R29.

This work was supported by a new faculty grant from the Seoul National University in 2002 and KOSEF Research Fund (01-0701-01-5-2).
Theorem (Naito). Let F be a totally real number field. Let p be an odd prime number which does not divide $\omega_F\zeta_F(-1)$. Then there exist infinitely many totally imaginary quadratic extensions K over F such that the relative class number of K is not divisible by p and no prime ideal of F over p splits in K, that is, $\lambda_p^-(K) = \mu_p^-(K) = 0$.

Thus it would be interesting to know when or how often p does not divide $\omega_F\zeta_F(-1)$. In this direction, in this note we will show the following theorem.

Theorem 1. Let p be an odd prime number. Then there exist infinitely many positive fundamental discriminants $D > 0$ such that p does not divide $\omega_{Q(\sqrt{D})}\zeta_{Q(\sqrt{D})}(-1)$.

Then, from the above theorem of Naito, we immediately have the following theorem.

Theorem 2. Let p be an odd prime number. Then there exist infinitely many positive fundamental discriminants $D > 0$ such that the real quadratic field $Q(\sqrt{D})$ has infinitely many totally imaginary quadratic extensions K such that $\lambda_p^-(K) = \mu_p^-(K) = 0$.

2. Proof of Theorem 1. Let D be the fundamental discriminant of a quadratic number field and $\chi_D := (\frac{D}{\cdot})$ the usual Kronecker character. Let $M_k(\Gamma_0(N), \chi)$ denote the space of modular forms of weight k on $\Gamma_0(N)$ with character χ. Let r and N be nonnegative integers with $r \geq 2$. If $N \not\equiv 0, 1 \pmod{4}$, then let $H(r, N) = 0$. If $N = 0$, then let $H(r, 0) := \zeta(1 - 2r)$. If $Dn^2 = (-1)^r N$, then

$$ H(r, N) := L(1 - r, \chi_D) \sum_{d|n} \mu(d) \chi_D(d)d^{r-1}\sigma_{2r-1}(n/d), $$

where $\sigma_r(n) := \sum_{d|n} d^r$. Cohen [1] proved the following proposition.

Proposition (Cohen). Let $D \equiv 0$ or $1 \pmod{4}$ be an integer such that $(-1)^{r-1}D = |D|$. Then for $r \geq 2$,

$$ \sum_{N \geq 0} \left(\sum_{|s| \leq \sqrt{4N}} \sum_{s^2 \equiv 4N \pmod{D}} H\left(r, \frac{4N - s^2}{|D|}\right) \right) q^N \in M_{r+1}(\Gamma_0(D), \chi_D), $$

where $q := e^{2\pi iz}$.

Applying this proposition to the case $r = 2$, Cohen also obtained the following Kronecker–Hurwitz type formula for $H(2, N)$:

$$ -30 \sum_{|s| \leq \sqrt{N}} H(2, N - s^2) = \sum_{d|N} (d^2 + (N/d)^2) \left(-\frac{4}{d} \right). $$
Indisibility of values of Dedekind zeta functions

Lemma. Let $D > 0$ be a positive fundamental discriminant. Then

$$\omega_{\mathbb{Q}(\sqrt{D})} = \begin{cases} 2^3 \cdot 3 & \text{if } D \neq 5, \\ 2^3 \cdot 3 \cdot 5 & \text{if } D = 5. \end{cases}$$

For an odd prime number $p \neq 3$, we can choose l to satisfy the following:

(i) l is an odd prime number,
(ii) $l \equiv 3 \pmod{4}$,
(iii) $l^2 \not\equiv 1 \pmod{p}$,
(iv) $\left(\frac{l}{q}\right) = -1$ for all odd prime numbers q with $3 \leq q \leq X$, where $X > 5$ is an arbitrarily large number.

Then from (1) and (i), (ii), we have

$$\sum_{|s| \leq \sqrt{4l}} (-2H(2, 4l - s^2)) = l^2 - 1.$$

From (ii), (iv), for $|s| \leq \sqrt{4l}$, we have

$$4l - s^2 = D_{l,s}n^2,$$

where $D_{l,s} > X > 5$ is a positive fundamental discriminant.

From the above lemma, for $|s| \leq \sqrt{4l}$, we have

$$-2H(2, 4l - s^2) = \omega_{\mathbb{Q}(\sqrt{D_{l,s}})}\zeta_{\mathbb{Q}}(-1)H(2, 4l - s^2)$$

$$= \omega_{\mathbb{Q}(\sqrt{D_{l,s}})}\zeta_{\mathbb{Q}}(-1)L(-1, \chi_{D_{l,s}}) \sum_{d|n} \mu(d)\chi_{D_{l,s}}(d)d\sigma_3(n/d)$$

$$= \omega_{\mathbb{Q}(\sqrt{D_{l,s}})}\zeta_{\mathbb{Q}(\sqrt{D_{l,s}})}(-1) \sum_{d|n} \mu(d)\chi_{D_{l,s}}(d)d\sigma_3(n/d) \in \mathbb{Z}.$$

Finally from (iii), we see that there exist s such that $|s| \leq \sqrt{4l}$ and

$$-2H(2, 4l - s^2) \not\equiv 0 \pmod{p}, \quad \text{i.e.,} \quad \omega_{\mathbb{Q}(\sqrt{D_{l,s}})}\zeta_{\mathbb{Q}(\sqrt{D_{l,s}})}(-1) \not\equiv 0 \pmod{p}.$$

Since $D_{l,s} > X$ and X is arbitrarily large, for an odd prime number $p \neq 3$, there exist infinitely many positive fundamental discriminants D satisfying $p\mid \omega_{\mathbb{Q}(\sqrt{D})}\zeta_{\mathbb{Q}(\sqrt{D})}(-1).$

For the case of $p = 3$, we cannot choose l satisfying the above (iii). However we can choose u, v to satisfy the following:

(i) u, v are odd prime numbers,
(ii) $u \equiv 1 \pmod{4}$ and $v \equiv 3 \pmod{4}$,
(iii) $u^2v^2 \not\equiv -1 \pmod{3}$,
(iv) $\left(\frac{uv}{q}\right) = -1$ for all odd prime numbers q with $3 \leq q \leq X$, where $X > 5$ is an arbitrarily large number.
Then by the same method we can easily show that there exist s such that $|s| \leq \sqrt{4uv}$ and $-2H(2, 4uv-s^2) \not\equiv 0 \pmod{3}$ and there exist infinitely many positive fundamental discriminants D satisfying $3^j \omega_{Q(\sqrt{D})} \zeta_{Q(\sqrt{D})}(-1)$.

3. Remarks. For the case $p = 3$ or 5, by a different method, we can obtain stronger results. From the construction of the Kubota–Leopoldt p-adic L-function $L_p(s, \chi_D)$, the Kummer congruence and the p-adic class number formula, we have the following two congruence relations for $\omega_{Q(\sqrt{D})} \zeta_{Q(\sqrt{D})}(-1)$, when $D \neq 5$:

$$(2) \quad \omega_{Q(\sqrt{D})} \zeta_{Q(\sqrt{D})}(-1) = -2L(-1, \chi_D)$$

$$\equiv -2L_3(-1, \chi_D) \pmod{3}$$

$$\equiv -2L_3(1, \chi_D) \pmod{3}$$

$$\equiv -\frac{4h(Q(\sqrt{D})) R_3(Q(\sqrt{D}))}{\sqrt{D}} \left(1 - \frac{\chi_D(3)}{3}\right) \pmod{3},$$

$$(3) \quad \omega_{Q(\sqrt{D})} \zeta_{Q(\sqrt{D})}(-1) = -2L(-1, \chi_D)$$

$$\equiv -2L_5(-1, \chi_5D) \pmod{5}$$

$$\equiv -2L_5(1, \chi_5D) \pmod{5}$$

$$\equiv -\frac{4h(Q(\sqrt{5D})) R_5(Q(\sqrt{5D}))}{\sqrt{5D}} \pmod{5}.$$

Thus from (2) and a theorem of Davenport and Heilbronn [2], as refined by Horie and Nakagawa [6], we know that a positive proportion of positive fundamental discriminants $D > 0$ satisfy $3^j \omega_{Q(\sqrt{D})} \zeta_{Q(\sqrt{D})}(-1)$ and from (3) and a result of Ono [10], we have

$$\# \{0 < D < X \mid 3^j \omega_{Q(\sqrt{D})} \zeta_{Q(\sqrt{D})}(-1) \} \gg \sqrt{X}/\log X.$$

Finally, we mention that Horie and Kimura [5] recently showed that there always exist infinitely many totally imaginary quadratic extensions K over a totally real number field F such that $\lambda_3^F(K) = \mu_3^F(K) = 0$ whether $\omega_F \zeta_F(-1)$ is divisible by 3 or not.

References

Indivisibility of values of Dedekind zeta functions

School of Mathematical Sciences
Seoul National University
Seoul 151-747, South Korea
E-mail: dhbyeon@math.snu.ac.kr

Received on 5.2.2002
and in revised form on 14.10.2002

(4210)