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1. Introduction. The 3x + 1 problem concerns the iteration of the
3x+ 1 function T (n) = n/2 if n is an even integer, (3n+ 1)/2 if n is an odd
integer. The well known 3x + 1 Conjecture asserts that all integers n ≥ 1
eventually reach 1 under iteration of the 3x + 1 function. Results on this
problem are surveyed in Lagarias [5] and Wirsching [9].

Let π1(x) count the number of integers below x that eventually reach 1
under this iteration. There are a number of methods known for establishing
explicit lower bounds of the form π1(x) > xγ for a positive constant γ. The
first such bound was obtained in 1978 by Crandall [3], and other methods
are described in [1], [2], [4], [6]. There is also a recent approach of Sinai [7]
which gets information about preimages of the 3x + 1 map in an entropy
sense, but at present this approach does not yield explicit lower bounds
for π1(x). The strongest of the methods giving explicit bounds at present
appears to be one introduced by the first author in 1989 ([4]), which uses
systems of difference inequalities, and in this paper we consider it further.

This method formulates, for each k ≥ 2, a system Ik of functional dif-
ference inequalities (mod 3k), containing about 3k variables, which certain
functions, computed from 3x+ 1 iterates, satisfy; they are specified in Sec-
tion 2. One can establish an exponential lower bound for the growth rate
of positive monotone solutions to these inequalities, and this translates into
lower bounds for π1(x) of the form xγ for some positive γ. The original pa-
per [4] used the system k = 2 to obtain a lower bound x0.43 for the number
of such integers. Later Wirsching [8] used the system k = 3 to obtain the
lower bound x0.48 for all sufficiently large x.

In 1995 Applegate and Lagarias [2] introduced a nonlinear programming
method to systematically deduce lower bounds from the difference inequal-
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ities Ik. Their first step was to iterate the inequalities to obtain a derived
system of difference inequalities D such that any positive, monotone so-
lution to the original inequalities would remain a solution of the derived
inequalities. This step can be done in many ways. To each such system of
difference inequalities D they associated a parametrized family of auxiliary
linear programs LDk (λ) depending on the parameter λ. This parameter lies
in the interval 1 ≤ λ ≤ 2, and the coefficients of the linear program de-
pend nonlinearly on λ. If the derived system D contained only “retarded”
variables (as defined below) then any positive feasible solution to the lin-
ear program for a fixed λ yields a rigorous exponential lower bound for the
growth of any positive monotone solution of the system D with exponen-
tial growth constant λ; one then derives a lower bound π1(x) > cxγ with
γ = log2 λ. For a fixed system D the determination of the largest value of λ
for which a positive feasible solution exists is a nonlinear programming prob-
lem. To obtain inequality systems with retarded variables, Applegate and
Lagarias [2] found it necessary to apply at some point a “truncation” op-
eration which weakens the inequalities and presumably weakens the lower
bounds attained. Using the system k = 9, and a particular sequence of
derivations D, a large computation yielded a lower bound π1(x) ≥ x0.81 for
all sufficiently large x. Up to now this is the best asymptotic lower bound
obtained for π1(x).

The object of this paper is to improve the method for extracting lower
bounds from the difference inequalities Ik of Krasikov [4]. The nonlinear pro-
gramming approach given in [2] did not apply directly to the original system
of difference inequalities Ik (viewed as a derived system) because these in-
equalities contain terms with “advanced” variables (as defined below). Here
we establish that the nonlinear program lower bounds derived directly from
the original inequality system Ik do give legitimate lower bounds for the
3x+ 1 function. The main theorem is stated in Section 2; it applies to a lin-
ear program family denoted by LNTk (λ) below. The proof is based on deriving
from the original difference inequality system Ik an auxiliary inequality sys-
tem from which advanced variables have been eliminated without using any
truncation operations. The result is surprising because it is not obvious a
priori that advanced variables can be eliminated.

The main theorem yields an immediate improvement of the current
record exponent for lower bounds for the 3x+1 problem, relying on compu-
tations already given in [2]. That paper reported computations for certain
nonlinear programs LNTλ as a possible limit of what one might hope from
the nonlinear programming approach. In Section 6 we show that the system
LNTλ for a given k has the same maximal admissible value of λ as the family
of linear programs LNTk (λ) studied here, and for k = 9 it yields a small
improvement of the lower bound to x0.816. Using a further computation for
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k = 11, we report here in Section 6 the improved lower bound

π1(x) > x0.84,

valid for all sufficiently large x.
The main theorem may prove useful for further work on the 3x+1 prob-

lem. The linear program families LNTk (λ) have a relatively simple structure,
although they are of exponential size in k. One hopes that a bound of the
form π1(x) > x1−ε for any ε > 0 can eventually be proved by considering
LNTk (λ) for arbitrarily large k, and understanding better the structure of
the feasible solution sets to these linear program systems.

2. Main result. We first recall the difference inequalities Ik of Krasi-
kov [4]. We consider the 3x + 1 function T (n), and for a 6≡ 0 (mod 3) and
x ≥ 1 we define the function

πa(x) := #{n : 1 ≤ n ≤ x, some T (j)(n) = a}
and the related function

π∗a(x) := #{n : n ≤ x, some T (j)(n) = a, all T (i)(n) ≤ x for 0 ≤ i ≤ j}.
Note that π∗a(x) ≤ πa(x). For each residue class m (mod 3k) with m 6≡ 0
(mod 3), we define for y ≥ 0 the function

φmk (y) := inf{π∗a(2ya) : a ≡ m (mod 3j) and a not in a cycle}.
This function is well defined because there always exists some a ≡ m
(mod 3k) not in a cycle.

This definition immediately implies that for k ≥ 2 and all m (mod 3k)
with m 6≡ 0 (mod 3), these functions satisfy the three properties:

(P1) (Positivity) For all y ≥ 0,

φmk (y) ≥ 1.

(P2) (Monotonicity) For y ≥ 0,

φmk (y) is a nondecreasing function of y.

(P3) (Minimization) For m ∈ [3k−1] and all y ≥ 0,

φmk−1(y) = min[φmk (y), φm+3k−1

k (y), φm+2·3k−1

k (y)].

It is easy to see that

φmk (y) = φ2m
k (y − 1) if m ≡ 1 (mod 3),(2.1)

hence it suffices to study φmk (y) for y ≡ 2 (mod 3). For convenience in what
follows we let [3k] denote the set of congruence classes

[3k] := {m (mod 3k) : m ≡ 2 (mod 3)}.(2.2)

The difference inequality system of the first author [4] can be put in the
following form.
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Proposition 2.1. Let α := log2 3 ' 1.585. For each k ≥ 2, the set of
functions {φmk (y) : m ∈ [3k]} satisfy the following system Ik of difference
inequalities, valid for all y ≥ 2.

(D1) If m ≡ 2 (mod 9) then

φmk (y) ≥ φ4m
k (y − 2) + φ

(4m−2)/3
k−1 (y + α− 2).(2.3)

(D2) If m ≡ 5 (mod 9) then

φmk (y) ≥ φ4m
k (y − 2).(2.4)

(D3) If m ≡ 8 (mod 9) then

φmk (y) ≥ φ4m
k (y − 2) + φ

(2m−1)/3
k−1 (y + α− 1).(2.5)

In these inequalities the functions φmk−1(y) are defined by

φmk−1(y) := min[φmk (y), φm+3k−1

k (y), φm+2·3k−1

k (y)].(2.6)

Proof. This follows from [4, Lemma 4], and appears in [2, Prop. 2.1].

We regard the system Ik of inequalities as expressed entirely in terms
of the functions {φmk (y) : m ∈ [3k]}, by using the minimum formulas (2.6).
In that case all functions appearing are of the form φmk (y + βj) for various
real numbers βj. If βj ≥ 0 we call such a term advanced, while if β < 0
we call such a term retarded, since the terms have advanced arguments and
retarded arguments respectively, in terms of the “time” variable y.

As mentioned earlier, Applegate and Lagarias [2] associated to Ik various
auxiliary linear programs LDk (λ) depending on a parameter λ > 1; strictly
positive feasible solutions for admissible linear programs for a given λ lead
to exponential lower bounds for the functions φmk (y) ≥ c0λ

y. In this paper
we study a linear program family, LNTk (λ), which is similar in spirit (1) but
not quite of the form used in [2]. However it is equivalent to the system
LNTλ in [2] in the sense that matters for obtaining lower bounds, namely
that LNTk (λ) has a feasible solution for λ if and only if LNTλ has a strictly
positive feasible solution for the same λ, as we show in Section 6.

The linear program family LNTk (λ) is as follows:

LNTk (λ) : Minimize Cmax
k(2.7)

subject to:

(L0) For all m ∈ [3k],

1 ≤ cmk ≤ Cmax
k .(2.8)

(1) The linear program family LNTk (λ) is a modification of LNTλ in [2]. It differs in
having a different objective function variable, in minimizing rather than maximizing, and
in having certain nonnegativity constraints modified to make them strictly positive.
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(L1) For all m ∈ [3k] with m ≡ 2 (mod 9),

cmk ≤ c4m
k λ−2 + c

(4m−2)/3
k−1 λα−2.(2.9)

(L2) For all m ∈ [3k] with m ≡ 5 (mod 9),

cmk ≤ c4m
k λ−2.(2.10)

(L3) For all m ∈ [3k] with m ≡ 8 (mod 9),

cmk ≤ c4m
k λ−2 + c

(2m−1)/3
k−1 λα−1.(2.11)

(L4) For all m ∈ [3k],

cmk−1 ≤ cmk ,(2.12)

cmk−1 ≤ cm+3k−1

k ,(2.13)

cmk−1 ≤ cm+2·3k−1

k .(2.14)

Note that the inequality signs in (L1)–(L3) go in the opposite direction
from that in the difference inequalities Ik, while those in (L4) go in the same
direction.

We call the variables {cmk : m ∈ [3k]} principal variables in LNTk (λ), and
the variables {cmk−1 : m ∈ [3k−1]} auxiliary variables; the remaining vari-
able Cmax

k is the objective function variable. The objective function variable
itself plays no role in determining feasibility of the linear program; the in-
equalities it appears in can always be satisfied by setting it equal to the
maximum of the principal variables. If this linear program has any feasible
solution, then this solution may be rescaled by a multiplicative constant so
that min {cmk } = 1, while decreasing Cmax, hence any optimum value of this
linear program will have min {cmk } = 1. Given a feasible solution, set

c̄mk−1 := min{cmk , cm+3k−1

k , cm+2·3k−1

k }.(2.15)

The inequalities (L4) say that cmk−1 ≤ c̄mk−1. There are no lower bounds
imposed on the auxiliary variables cmk−1, but given any feasible solution,
there exists a positive feasible solution with the same principal variables
and with auxiliary variables

cmk−1 = c̄mk−1 ≥ 1.

Indeed (L4) still holds for this choice of auxiliary variables and the remaining
inequalities (L1)–(L3) stay the same or weaken.

The linear program LNTk (λ) encodes advanced variables, and the theo-
rems in [2] do not apply to it. Conjecture 4.1 of [2] asserts that the largest
value of λ for which LNTk (λ) has a positive feasible solution should give the
largest possible exponential lower bound for positive, monotone functions Φk
satisfying Ik. Our main result is that LNTk (λ) gives legitimate lower bounds
for positive solutions for such functions φmk (y).



242 I. Krasikov and J. C. Lagarias

Theorem 2.2. Let 1 ≤ λ ≤ 2 be such that the linear program LNTk (λ)
has a feasible solution with principal variables {cmk : m ∈ [3k]}. Then for all
m ∈ [3k] and all y ≥ 0,

φmk (y) ≥ ∆1 · cmk λy,(2.16)

in which

∆1 :=
1

4 max {cmk : m ∈ [3k]} .(2.17)

We believe that this result gives the largest exponential-type lower bound
that can be extracted from the difference inequalities Ik, for reasons given
at the end of Section 6. However we have no rigorous proof of this assertion.

Theorem 2.2 is established as follows. In Section 3 we show that there ex-
ists a sequence of back substitutions of the difference inequalities into them-
selves that results in a difference inequality system from which all advanced
variables have been eliminated. This results in a new system of difference
inequalities Ik(EL). We show that all solutions φmk of Ik which possess the
positivity and monotonicity properties (P1) and (P2) will also be solutions
of Ik(EL).

In Section 4 we consider linear programs. To each difference inequality
system D (of a specified kind) we associate in a strictly deterministic way
an auxiliary linear program family LD(λ). Let LELk (λ) denote the linear
program family attached to Ik(EL). The main result of Section 4 is the
deduction that if the linear program LNTk (λ) has a positive feasible solution
with principal variables {cmk : m ∈ [3k]}, then the linear program LELk (λ)
with the same value of λ also has a positive feasible solution with the same
principal variable values.

In Section 5 we show that any difference inequality system D in which
only retarded variables appear has the property that positive feasible solu-
tions to the auxiliary linear program LD(λ) for fixed λ yields lower bounds of
the form (2.16); the proof is similar to [2, Theorem 2.1]. It immediately fol-
lows that we get such lower bounds from the linear program family LELk (λ).
We then prove Theorem 2.2, by combining this result with the main result
of Section 4.

In Section 6 we present taxonomic data on the derived systems LELk (λ)
for 2 ≤ k ≤ 5 and information on positive feasible solutions of the system
LNTk (λ) for 2 ≤ k ≤ 11, computed by David Applegate, which yield the
lower bound πa(x) ≥ x0.84 for all sufficiently large x. The results of Section 4
imply that the linear program family LELk (λ) might conceivably give better
exponential lower bounds than are obtainable from the linear program family
LNTk (λ). Numerical experiments show this is not the case for 2 ≤ k ≤ 5; here
k = 5 was the limit of computability for the system LELk (λ).
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3. Eliminating advanced variables. We describe a recursive back-
substitution procedure to eliminate “advanced” terms of the inequality
system Ik. We view the inequality system Ik as expressed entirely in
terms of functions φmk (y + β) by replacing each term involving any variable
φm
′

k−1(y + β′) by the minimization expression on the right side of (2.6) in
terms of φmk functions.

We start with a single inequality (D3) of the system Ik associated to a
fixed m ∈ [3k], m ≡ 8 (mod 9), and perform a recursive back-substitution
process of the inequalities Ik into its right-hand side. At the lth stage of
this process we will have an inequality Imk (l) whose left side is φmk (y) and
whose right side is a nested series of minimizations of various functions
φm
′

k (y + β′). The step from Imk (l) to Imk (l + 1) has two substeps. First, one
picks an advanced term φm

′
k (y + β′), β′ ≥ 0, appearing on the right side of

Imk (l) and replaces it with the right side of the inequality of the system Ik
having left side φm

′
k (y′), where we take y′ = y+β′. (This is called “splitting”

a term in [2].) A new minimization term may appear in this process, which
contains three terms

φm
′

k (y + β′′), φm
′+3k−1

k (y + β′′), φm
′+2·3k−1

k (y + β′′).(3.1)

The second substep in obtaining Imk (l+1) is to apply a deletion rule described
below, which, if β′′ ≥ 0, may remove up to two of these terms. The resulting
inequality after the deletion substep is Imk (l + 1).

At each stage in this process the inequality Imk (l) has φmk (y) on its
left side and a sum of nested minimization terms on its right side, involv-
ing various functions φmk (y + βj); it will have each βj ≥ −2, because we
will only substitute for terms φmk (y + βj) with βj ≥ 0, and the formu-
las (D1)–(D3) produce new terms φm

′
k (y + β′j) which have β′j ≥ βj − 2.

The structure of the right side of an inequality Imk (l) is described by a
directed rooted labelled tree T mk (l), in which the root mode is labelled
with the left side φmk (y) of the original inequality, each node is either a
p-node (for “principal”) or an m-node (for “minimization”). The initial tree
for the inequality Imk for an m ∈ [3k] with m ≡ 8 (mod 9) is pictured in
Figure 1.

Here p-nodes are indicated by solid points and m-nodes by circled points.
Each p-node is labelled by data (m,β) specifying the function φmk (y + β)
with m viewed (mod 3k), while each m-node is assigned the label (m,β) of
the p-node of which it is a child. The root node is a p-node and has label
(m, 0). The inequality Imk (l) is uniquely specified by the tree T mk (l) and vice
versa; the root node specifies the left side φmk (y) of the inequality Imk (l),
leaf nodes specify functions appearing on the right side, and the internal
tree structure specifies the nested sequence of additions and minimizations
comprising the right side of the inequality.
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φmk (y) ≡ (m, 0)

(4m,−2)

( 2m−1
3 , α− 1) ( 2m−1

3 + 3k−1, α− 1) ( 2m−1
3 + 2 · 3k−1, α− 1)

Fig. 1. Rooted tree for inequality (D3)

A step from T mk (l) to T mk (l+1) consists of picking a leaf node with label
(m′, β′) which has β′ ≥ 0 and changing the tree in the following two substeps.
First we attach to the leaf node (as root node) the directed tree associated
to the formulas (D1)–(D3) of φm

′
k (y′) with variable y′ and then changing

variables y′ = y + β′. We term this “splitting” the leaf node, following [2].
The tree T̃ mk (l + 1) that results has a new p-node labelled (4m′, β′ − 2),
and may or may not have a new m-node with three new leaf nodes (3.1)
depending on it. If there is no m-node this tree will be T mk (l+ 1). Second, if
there is a new m-node, we apply the deletion rule given below to T̃ mk (l+ 1)
to remove some (possibly empty) subset of the three leaves in an m-term.

Deletion Rule. Suppose that a leaf node φm
′

k (y+β′) has label (m′, β′)
with β′ ≥ 0. Delete this leaf node if on the directed path from the root node
φmk (y) to it there is a p-node having label (m,β) with m = m′ and β ≤ β′.
If this rule removes all three leaves, then delete the m-node above it as well.

After the deletion rule is applied to T̃ mk (l + 1), the tree that results is
T mk (l+ 1), and the inequality corresponding to it is Imk (l+ 1). All leaf nodes
on the new tree T mk (l + 1) are p-nodes, so the process can continue. We
justify the deletion rule in Theorem 3.2 below. Actually it never occurs that
all three leaves are deleted, but we do not need this result in what follows.

The back-substitution process is not completely specified, in that one
has the freedom to choose to split any leaf node carrying an advanced term.
However the order of splitting does not matter as the following result asserts.

Theorem 3.1. Let k ≥ 2, and take m ∈ [3k] with m ≡ 8 (mod 9).
The back-substitution process applied to φmk (y) halts after a finite number of
steps at an inequality Imk (l) having no advanced terms on its right side. The
number of steps l and the final inequality Imk (l) are independent of the order
in which advanced terms are split ; let Imk (EL) denote this final inequality.

Proof. We first show that the back-substitution procedure always halts.
We suppose not, and obtain a contradiction. Let Tl ≡ T mk (l) denote the
rooted labelled tree associated to the inequality Imk (l) for l = 1, 2, . . . Then
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we have an infinite sequence of trees, each containing the last as a subtree
having the same root, and the process defines an infinite limiting tree T∞.
Without loss of generality we can suppose that T∞ has the property that in it
all nodes that can be split are split, if necessary by doing additional splittings
of any advanced nodes that were missed, using transfinite induction. By
König’s infinity lemma there is an infinite directed path in T∞ starting from
the root. Along that path there is some residue class m′ ∈ [3k] that occurs as
a label infinitely often. Let {(m′, βj) : j = 1, 2, . . .} be the successive labels
of the p-nodes on this path having residue class m′ (mod 3k), starting from
the root. We must have each βj ≥ 0 (or the process halts) and also

β1 > β2 > β3 > . . . ,(3.2)

because the deletion rule would have removed the p-node labelled (m′, βj)
if βj ≥ βi for some j > i.

The tree T∞ has a recursive self-similar structure, using the fact that all
nodes that could be split were split. Consider the subtree T∞[j] grown start-
ing from the root node φm

′
k (y+ βj) along this chain, using the new variable

yj = y + βj . These subtrees are all identical, and T∞[2] is obtained from
T∞[1] by shifting the argument of y by δ = β2−β1 > 0. The isomorphism of
T∞[2] and T∞[1] identifies T∞[j] with T∞[j− 1], and therefore, by induction
on j ≥ 2, we obtain βj − βj−1 = δ. Thus βj = β1 + (j − 1)δ for all j ≥ 2,
hence βj < 0 for sufficiently large j, which contradicts all βj ≥ 0.

The back-substitution process halts at a unique tree, regardless of the
order leaf nodes are split, because the back-substitution process on a given
leaf node v does not depend on any other leaf nodes, but only on the path
from the root node to v. One grows out all leaf nodes until they halt, and the
total number of steps l until halting is independent of the order of growth.

Theorem 3.2. Let Ik(EL) denote the difference inequality system con-
sisting of the inequalities (D1), (D2) of Ik plus the complete set of inequali-
ties {Imk (EL) : m ∈ [3k], m ≡ 8 (mod 9)}. If Φk = {φmk (y) : m ∈ [3k]} is any
set of functions in which each φmk (y) is strictly positive and nondecreasing
on R+ and satisfies the inequality system Ik for all y ≥ 2, then Φk also
satisfies the inequalities Ik(EL) for all y ≥ 2.

Proof. It suffices to show that if the set Φk := {φmk (y) : m ∈ [3k]} of
positive nondecreasing functions on R+ = {y ≥ 0} satisfies Ik for all y ≥ 2,
then they satisfy each inequality Imk (l) for each l ≥ 1, for all y ≥ 2.

We prove, by induction on l ≥ 1, that the set Φk satisfies T mk (l). The base
case l = 1 holds because T mk (l) has only one internal p-node, its root node,
and the corresponding inequality Imk (1) is a member of Ik. Now suppose
that the induction hypothesis holds for T mk (l), and consider T mk (l + 1). To
obtain T mk (l + 1) we first split a leaf of T mk (l) to obtain a tree T̃ mk (l + 1)
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and then, if a new m-node was added, we apply the deletion rule to the
three vertices of that m-node. The splitting procedure yielding T̃ mk (l + 1)
substitutes an inequality of Ik, hence Φk automatically satisfies T̃ mk (l + 1).

Consider the deletion step, applied to the three leaf-node labels of
T̃ mk (l + 1) inside the min-term

f(y) := min[φm
′

k (y + β′), φm
′+3k−1

k (y + β′), φm
′+2·3k−1

(y + β′)].(3.3)

The leaf node (m′, β′) is to be deleted if earlier in its directed path from the
root appears a p-node with label φm

′
k (y + β) with β < β′.

To justify the deletion rule, note that the inequality associated to each
tree T mk (l), for fixed functions Φk and a fixed value y ≥ 2, can be written
as a sum of terms corresponding to a subset of leaves of the tree which
are specified by choosing one of the terms in each min-term that attains
the minimum. (This choice is usually unique once the functions Φk and the
value y are specified, unless two terms in a min-term have equal values.) We
call this set of leaves a critical assignment, the leaves in it critical leaves,
and the set of paths to these leaves critical paths.

Claim. To each internal p-vertex v of the tree with label φmk (y+β), and
for each fixed value of y ≥ 2, exactly one of two possibilities occurs.

(a) There are no critical assignments A having a critical path passing
through v.

(b) There is at least one critical assignment A with a path passing
through v. For any such assignment

φmk (y + β) ≥
∑

w∈Av

φ
m(w)
k (y + β(w)),(3.4)

where Av denotes the set of critical leaves in A whose paths pass through v.

Warning: For fixed k,m, β, which of case (a) or (b) occurs depends on
the value of y. The key content of the claim is the inequality (3.4) given in
case (b).

We will prove the claim by induction on l, and justify the deletion rule
at the same time. Now (3.4) holds for the base case l = 1 where the only
internal p-node is the root node, and (3.4) is then an inequality in Ik. We
assume it holds for T mk (l) and wish to prove it for T mk (l + 1). First of all,
the relations (a), (b) hold for T̃ nk (l + 1). They hold for internal p-nodes
inherited from T mk (l), because we have back-substituted Ik on the right side
of (3.4). We have added one new internal p-node v∗, the one that was split;
let its label be (m∗, β∗). For the new internal p-node v∗ condition (3.4) in
(b) directly expresses the Ik inequality substituted; thus (a) and (b) hold
for this node in T̃ mk (l + 1).
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We now consider T mk (l + 1). If the deletion rule does nothing then the
induction step holds for T mk (l+1). The deletion rule can be applied only if v∗

has an m-node depending on it, and this occurs only when β∗ ≥ 0. We call a
vertex v of T̃ mk (l+1) totally noncritical if no critical path passes through it,
for any critical assignment A for any y ≥ 2; that is, case (a) holds for v for
all y ≥ 2. We can safely delete all totally noncritical vertices in T̃ mk (l + 1),
and property (b) will still hold for the resulting tree T ′. (The property that
a vertex in a tree is totally noncritical is hereditary in the sense that all
vertices below a totally noncritical vertex are also totally noncritical.)

We now show that, for those sets of functions Φk that are positive and
monotone, all vertices removed by the deletion rule are totally noncritical.
Suppose the deletion rule applies to the leaf vertex w with label (m′, β′) of
T̃ mk (l+1), and let v be a p-vertex on its directed path that has label (m′, β)
with β ≤ β′. To show that w is totally noncritical, we argue by contradic-
tion. Suppose not, so that there is some y ≥ 2 and a critical assignment
A containing w as a critical leaf. Formula (3.4) of (b) applies to v to give
φm
′

k (y + β) ≥∑(m̃,β̃)∈Av
φm̃k (y + β̃). We deduce

φm
′

k (y + β) ≥ φm′k (y + β′),(3.5)

because φm
′

k (y+β′) is the contribution of w ∈ Av. However there is at least
one more critical path in the sum Av; namely one which passes through
the last p-vertex v∗ in the path before w, and goes to its direct p-node
descendant with label (4m∗, β∗ − 2). Since β∗ ≥ 0 and y ≥ 2 we have
φ4m∗
k (y + β∗ − 2) > 0 by positivity and monotonicity of Φk. We conclude

that (3.5) can be sharpened to strict inequality

φm
′

k (y + β) > φm
′

k (y + β′).(3.6)

Since β < β′, this violates monotonicity of Φk, the desired contradiction.
Thus, the vertices removed by the deletion rule are totally noncritical. It

follows that for the resulting tree T mk (l + 1), the criteria (a), (b) and (3.4)
hold for all p-vertices, for the functions Φk, for all y ≥ 2. This completes the
claim’s induction step, and proves the claim.

Now (3.4) applies to the root vertex v, for all critical assignments A for
all y ≥ 2, and it is equivalent to saying that the Φk satisfy the inequality
Imk (l + 1) associated to T mk (l + 1) for all y ≥ 2. This completes the main
induction step.

Remark. The inequality system Ik(EL) involves nested minimization
to a depth d(k) which grows exponentially with k. The exponential growth
occurs because the deletion rule requires a node with label (m′, β′) to lie on
a path containing another node (m,β) with m ≡ m′ (mod 3k), and if the
values m are randomly distributed on the path one expects the path to have



248 I. Krasikov and J. C. Lagarias

length comparable to 3k. We present statistics in Table 1 on the size of this
inequality system Ik(EL) for 2 ≤ k ≤ 5, computed by D. Applegate. We
measure the size in two ways: the depth of nested minimizations, and the
total of the number of terms that appear in such an inequality. The data
is for the term φmk (y) that had the largest expansion under the elimination
procedure.

Table 1. Statistics on Ik(EL) inequalities

k Depth #(literals)

2 3 8

3 10 84

4 41 12829

5 > 226 > 109

4. Linear programs. We associate to a general difference inequality
system Dk (of a sort described below) a family of linear programs LDk (λ),
as follows. We suppose that Dk consists of inequalities {Dm

k : [m] ∈ 3k} in
which each inequality Dm

k is described by a rooted labelled tree T mk of the
type considered in Section 3, involving variables {cmk : [m] ∈ 3k}. The linear
program has the basic form:

LDk (λ) : Minimize Cmax(4.1)

subject to, for all m ∈ [3k],

1 ≤ cmk ≤ Cmax
k ,

together with all inequalities associated to each tree T mk as specified below.
The LP-inequality system associated to a given tree T involves the

principal variables {cmk : m ∈ [3k]} and certain auxiliary variables {av :
v an m-vertex of T }. These auxiliary variables are distinct for different trees
T mk . We associate to each node w the label (m(w), β(w)) which consists of
a residue class m(w) and a weight β(w). For a p-node w these labels are
determined by its associated function φ

m(w)
k (x + β(w)) with m(w) deter-

mined (mod 3k). For an m-node it is taken from the node function of any of
its children, where we view m(w) (mod 3k−1) in this case, noting that m(w)
(mod 3k−1) is the same for all the child nodes. To specify the inequalities,
we subdivide the tree T into levels: we say that a vertex w is at m-depth d
if there are exactly d− 1 internal m-nodes on the path from the root node
to w (not counting w itself). The LP inequalities associated to T are in
one-one correspondence with the leaf nodes of T . To each leaf node w we
assign a rooted subtree Tw which consists of:

(1) The terminal part of the path from the root node to the leaf node.
If an m-node occurs on the path, then it consists of that part of the path
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from the final m-node to the leaf; if no m-node occurs then it is the entire
path from the root. We denote this path Pw and call its top node the w-root
node. Every vertex on Pw is a p-node except possibly the w-root node.

(2) All other children of any p-node on the path Pw. These other children
are all m-nodes.

A typical subtree Tw is pictured in Figure 2.

 

 

m-node

w

Fig. 2. Subtree Tw of the leaf node w (m-nodes are circled)

All the edges of T are partitioned among the Pw and each Pw contains
exactly one leaf node. The trees in this partition are also in one-one corre-
spondence with: the root node v and all pairs (v,v′) consisting of an m-node
v and one of its children v′.

The LP-inequality associated to the unique leaf node w having no m-
nodes on its path is of the form

cmk ≤ λβ(w)c
m(w)
k +

∑

v∈Tw
m-node

λβ(v)av(4.2)

where m = m(v0) for the root vertex v0. For all leaf nodes w such that Tw
has a node v0 as w-root node, the associated LP-inequality is

λβ(v0)av0 ≤ λβ(w)c
m(w)
k +

∑

v∈Tw
m-node
v 6=v0

λβ(v)av.(4.3)

Note that the direction of this LP-inequality (4.2) for the root node is op-
posite to that of the φmk (y)-inequality.

For the original difference inequality system Ik, the linear program LIk (λ)
produced in this way is equivalent to LNTk (λ) in the following sense: to every
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feasible solution of LNTk (λ) with principal variables {cmk } there corresponds
a feasible solution to LIk (λ) with the same principal variables, and vice versa.
To see this, we note that LNTk (λ) has auxiliary variables cmk−1, while LIk (λ)
has auxiliary variables av in one-one correspondence with cmk for m ≡ 2 or
8 (mod 9); the LP-inequalities in LIk(λ) on these variables are equivalent to

av ≤ c̄(4m−2)/3
k−1 or av ≤ c̄(2m−1)/3

k−1 ,(4.4)

according as m ≡ 2 (mod 9) or m ≡ 8 (mod 9), respectively, where

c̄mk−1 := min
0≤j≤2

{cm+j·3k−1

k }.

The correspondence between feasible solutions of LNTk (λ) and LIk (λ) is ob-
tained by setting

av = c̄
(4m−2)/3
k−1 or av = c̄

(2m−1)/3
k−1 ,(4.5)

according as m ≡ 2 (mod 9) or m ≡ 8 (mod 9), respectively.
We let LELk (λ) denote the family of linear programs associated to the

derived inequality system Imk (EL) of Theorem 3.2.

Theorem 4.1. Suppose that for a given λ with 1 ≤ λ ≤ 2 the linear
program LNTk (λ) has a feasible solution with principal variables {cmk : m ∈
[3k]}. Then the linear program LELk (λ) has a positive feasible solution with
the same principal variables.

Proof. We prove this by starting with the inequality systemD1 := Ik and
then successively producing inequality systems {Dj : 1 ≤ j ≤ r}, in which
Dj+1 is obtained from Dj by a single back-substitution in one inequality,
and ending at the final system Dr = Ik(EL). For definiteness we choose to
do the back-substitution procedure on each inequality Imk , for m ∈ [3k], in
order until it halts, as guaranteed by Theorem 3.1, and go to the next m,
in the order m = 2, 5, 8, . . . , 3k − 1.

We prove by induction on j ≥ 1 that if {cmk : m ∈ [3k]} yields a feasible
solution of LNTk (λ), then these same principal variable values occur in some

positive feasible solution of LDjk (λ). The base case j = 1 holds because the
linear program LDk (λ) agrees with LNTk (λ); when the auxiliary variables av
are assigned the values (4.5) we obtain a positive feasible solution with the
given {cmk }.

For the induction step, first note that in going from Dj to Dj+1, we
“split” one leaf vertex w of a particular tree T mk (l), leaving all other trees
alone, and then perform a deletion operation. The vertex w, being a p-node,
has associated value m(v) (mod 3k). We let D̃j+1 denote the inequalities
resulting from the splitting operation before the deletion step. It suffices to

show that LD̃j+1
k has a feasible solution with the same principal variables,

for the deletion step merely deletes linear programming inequalities, which
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preserves feasible solutions. The splitting step changes exactly one of the
inequalities in L

Dj
k ; if it adds a new m-vertex v, then it adds up to three

new inequalities, each involving the new auxiliary variable av for the added
m-vertex. The corresponding tree is updated to T mk (l + 1).

Let m′ = m(w). If m′ ≡ 5 (mod 9), the unique LP-inequality containing
the term cm

′
k λβ(w) corresponding to w on its right side has this term replaced

by that of a new leaf vertex w′ with m(w′) = 4m′, β(w′) = β(w)−2 and w′

has the same depth as w; its new term is c4m′
k λβ(w)−2. However by hypothesis

{cmk } satisfies LNTk (λ), hence it satisfies the inequality

cm
′

k ≤ c4m′
k λ−2.

Thus we obtain cm
′

k λβ(w) ≤ c4m′
k λβ(w)−2, so the right side of the new in-

equality (4.2) or (4.3) is less binding than before, and the solution remains
feasible. If m′ ≡ 2 (mod 9), the term cm

′
k λβ(w) is replaced with

c4m′
k λβ(w)−2 + avλ

β(w),

where β(v) = β(w) + α− 2, and L
D̃j+1
k has three new inequalities

avλ
β(v) ≤ cm(v)+j·3k−1

k λβ(v)(4.6)

for 0 ≤ j ≤ 2, with m(v) = (4m(w)− 2)/3. We may choose

av = c̄
m(v)
k−1 := min

0≤j≤2
{cm(v)+j·3k−1

k }(4.7)

and satisfy (4.6); the fact that {cmk } satisfies LNTk (λ) gives

cm
′

k λβ(w) ≤ c4m′
k λβ(w)−2 + c

(4m′−1)/3
k−1 λβ(w)+α−2 = c4m′

k λβ(w)−2 − avλ
β(v).

Thus the right side of the equation is less binding than before, so remains
feasible. The case m′ ≡ 8 (mod 9) is handled by similar reasoning to the
case m′ ≡ 2 (mod 9), so feasibility is maintained in this case. The induction
step follows.

The final case of the induction step gives the inequality system Ik(EL),
and the theorem follows.

5. Lower bounds for difference inequalities. We obtain exponential
lower bounds for systems of positive nondecreasing functions Φk satisfying
difference inequalitiesD without advanced variables, using an associated lin-
ear program LDk . The following result is similar in spirit to [2, Theorem 2.1].

Theorem 5.1. Let Φk := {φmk (y) : m ∈ [3k]} be a set of positive non-
decreasing functions on R+ = {y : y ≥ 0}. Suppose that Φk satisfies a
system D of difference inequalities specified by a set of rooted labelled trees
{T mk : m ∈ [3k]}, such that all inequalities contain no advanced variables
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on their right side. If the associated linear program LDk (λ) for λ > 1 has a
positive feasible solution with principal variables {cmk } then, for all m ∈ [3k],

φmk (y) ≥ ∆cmk λy for all y ≥ 0,(5.1)

in which

∆ := λ−ν
min{φmk (0)}

max{cmk }
,(5.2)

and ν is the largest backward time-shift of a variable in D.

Proof. Suppose that the set of functions Φk satisfies the system D :=
{Dm

k : m ∈ [3k]} of difference inequalities. Set

µ := min{β : φm
′

k (y − β) appears on right side of some Dm
k }

and

ν := max{β : φm
′

k (y − β) appears on right side of some Dm
k }.

The hypothesis of no advanced variables in D means that µ > 0. Now the
inequalities (5.1) hold for all m ∈ [3k] on the initial interval [0, ν], since the
definition of ∆ gives

φmk (y) ≥ φmk (0) ≥ ∆max{cmk }λν ≥ ∆cmk λy for y ∈ [0, ν],(5.3)

by the monotonicity and inequality properties of φmk (y).
We now prove that (5.1) holds for all m ∈ [3k] on the interval y ∈

[0, ν + jµ] by induction on j ≥ 0. It holds for the base case j = 0 by (5.3).
For the induction step, suppose that (5.1) holds for j and we are to prove

it for j + 1. It suffices to consider a given y ∈ [ν + jµ, ν + (j + 1)µ]. The
induction step consists, schematically, of showing

φmk (y) ≥
∑

Dmk (EL)

nested-min[φm
′

k (y + β′)](5.4)

≥
∑

T mk (EL)

nested-min[cm
′

k λy+β′ ](5.5)

≥ ∆cmk λy.(5.6)

Here (5.4) represents schematically the inequality Dm
k (EL), with the right

side actually being a nested series of minimizations. Each function φm
′

k (y+β′)
that appears on the right side of (5.4) has −ν ≤ β ′ ≤ −µ, hence

0 ≤ jµ ≤ y + β′ ≤ ν + jµ,

so the induction hypothesis applies to each such term.
The induction hypothesis gives

φm
′

k (y + β′) ≥ ∆cm′k λy+β′ = ∆λy(cm
′

k λβ
′
).

Substituting these inequalities in (5.4) term by term yields the right side of
(5.5), because the nested minimization on the right side of (5.4) involves only
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the operations of addition and minimization and these operations are both
monotone in each variable appearing in them; also the structure T mk (EL) in
(5.5) is the tree structure of the inequality Dm

k (EL). Now let f(y) represent
the value of the right side of (5.5) as a function of y. Each minimization on
the right side of (5.5) corresponds to an m-vertex v of T mk (EL); we let fv(y)
equal the value of this minimization expression as a function of y. Next we
can apply the inequalities in LELk (λ) in a suitable order to prove that

fv(y) ≥ ∆λy(avλ
β(v))

for all m-vertices; the order starts with the innermost minimization and
works outward. At the last step we reach the root vertex and obtain

f(y) ≥ ∆λycmk λβ(w0) = ∆cmk λ
y,

since β(w0) = 0. This gives the right side of (5.6). Since this holds for all
k ∈ [3m], this completes the induction step.

We now prove the main Theorem 2.2 by combining the results of Sec-
tions 3–5.

Proof of Theorem 2.2. Theorem 3.2 shows that any set of positive nonde-
creasing functions Φk that satisfies the inequality system Ik also satisfies the
derived inequality system Ik(EL) which has inequalities with no advanced
variables on their right sides. The family of linear programs associated to
this inequality system in Section 4 is denoted by LELk (λ).

Suppose now that for a given λ > 1 the inequality system LNTk (λ) has
a feasible solution with principal variables {cmk : m ∈ [3k]}. Theorem 4.1
established that the linear program LELk (λ) has a positive feasible solution
with the same principal variables and the same value of λ.

Theorem 5.1 then applies to the system Ik(EL) to show that any positive
feasible solution of LELk (λ) yields the bounds, for all m ∈ [3k],

φmk (y) ≥ ∆ckmλy for all y ≥ 0,(5.7)

with

∆ := λ−ν
min{φmk (0)}

max{cmk }
(5.8)

where ν is the largest backwards timeshift.
For the system Φk = {φmk (y) : m ∈ [3k]} coming from the 3x+1 problem,

by (P1) we have φmk (0) ≥ 1. We also have λ ≤ 2 and the maximum retarded
term ν ≤ 2. Thus

∆ ≥ ∆1 =
1

4 max {cmk }
,

which, with (5.7), implies the desired bound (2.16).
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Remark. Theorem 2.2 has the counterintuitive feature that iterating
the inequalities seems potentially to strengthen, rather than weaken, the
resulting exponential lower bound. It allows the possibility that the lin-
ear program LELk (λ) has a positive feasible solution for a larger value of λ
than is obtainable using the original linear program family LNTk (λ). How-
ever we believe this cannot occur, and that the exponent obtained from
LNTk (λ) is the largest possible for positive monotone solutions to the orig-
inal difference inequalities Ik. We discuss this further at the end of Sec-
tion 6.

6. 3x+1 lower bounds. We obtain lower bounds for the number π1(x)
of integers below x that eventually iterate to 1 under the 3x+ 1 function.

Theorem 6.1. For each positive a 6≡ 0 (mod 3) the function

πa(x) := |{1 ≤ n ≤ x : some T (j(n) = a}|
satisfies, for all sufficiently large x ≥ x0(a),

πa(x) ≥ x0.84.

Proof. This follows from Theorem 2.2, by finding a positive feasible so-
lution by computer to the linear program family LNTk (λ) for k = 11, for
λ = 1.7922310; see Table 2 below. This yields the exponent γ = log2 λ ≈
0.84175.

Table 2 gives data on the bounds for the optimal λ for LNTk for 2 ≤ k
≤ 11. For 1 ≤ k ≤ 9 these are taken from [2]; the new values for k =
10, 11 were computed by D. Applegate. All values are rounded down in
the last decimal place given, computations were to higher precision than
shown.

Table 2. NLP lower bounds: No truncation of advanced terms

k γk λk Cmax
k c̄k,k c̄k−1,k c̄k,k − c̄k−1,k

2 0.4365 1.3534 1.8316 1.5237 1.0000 0.5237

3 0.6112 1.5275 3.4881 2.1014 1.6994 0.4020

4 0.6891 1.6122 5.4954 2.7869 2.4010 0.3858

5 0.7335 1.6627 9.0756 3.4648 3.0771 0.3876

6 0.7608 1.6944 12.8769 3.9667 3.5825 0.3841

7 0.7825 1.7201 20.1963 4.8122 4.4061 0.4061

8 0.8031 1.7449 29.1315 5.2028 4.8181 0.3846

9 0.8168 1.7615 43.3394 5.8102 5.4164 0.3937

10 0.8295 1.7771 64.9801 6.4567 6.0648 0.3919

11 0.8417 1.7922 98.4009 7.1552 6.7695 0.3856
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The last three columns in Table 2 present data on some average quanti-
ties formulated in [2]. Define

c̄k,k :=
1

3k−1

∑

m∈[3k]

cmk , c̄k−1,k :=
1

3k−2

∑

m∈[3k−1]

c̄mk−1.

Adding up all the inequalities in LNTk (λ) leads to

c̄k,k ≤ λ−2c̄k,k +
1
3

(λα−1 + λα−2)c̄k−1,k.

In [2] it was noted that a necessary and sufficient condition for a bound
like π1(x) > x1−ε to hold for each ε > 0 and all sufficiently large x is that
λk → 2 as k → ∞, and this in turn would follow from the existence of
feasible solutions with

ck−1,k

ck,k
→ 1 as k →∞.

Table 2 gives more empirical data on these quantities.
The supremum of the exponential lower bounds that can be extracted

from the linear program family LNTk (λ) is given by λk, the supremum of
values of λ for which LNTk (λ) has a feasible solution. These values satisfy
λk ≤ λk+1, because given a feasible solution to Lk(λ) with principal variables
cmk one can define

cm+j·3k
k+1 := cmk for 0 ≤ j ≤ 2,

and obtain a feasible solution to LNTk+1(λ). It remains an open problem to
show that the values λk are strictly increasing in k. As already noted in [2],
showing that λk → 2 as k → ∞ would imply a lower bound πa(x) ≥ x1−ε

holds for each positive ε, for each a 6≡ 0 (mod 3) and all sufficiently large
x ≥ x0(a).

We now establish that the linear program system LNTk (λ) used here is
equivalent to the linear program system denoted LNTλ (for the same k) in [2]
in the sense of Theorem 2.2; namely, the set of λ for which they have a strictly
positive feasible solution coincide. To see this, observe first that if LNTk (λ)
has a feasible solution, then it has a strictly positive feasible solution. One
may have to modify the auxiliary variables, which might be negative, while
holding the principal variables fixed. However the auxiliary variables can be
forced to their maximal values in terms of the principal variables without
affecting feasibility. Such a feasible solution has all values at least 1, so strict
positivity is attained, and this solution also satisfies LNTλ . Conversely, given
a positive feasible solution to LNTλ , it can be multiplicatively rescaled to
have objective function value c2

1 = 1, and this gives a feasible solution to
LNTk (λ), on taking Cmax

k := max {cmk }.
We conclude the paper by giving some reasons to believe that the lower

bound obtained in Theorem 2.2 give the largest that is implied by the dif-
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ference inequalities Ik. This would follow if one could exhibit a positive
monotone solution to Ik that has a growth rate matching the lower bound.
Such a pure exponential lower bound could potentially be constructed from
a solution to LNTk (λk). Two conditions must hold:

(1) The supremum λk is attained, that is, LNTk (λk) has a feasible solution.
(2) At the supremum value λk, there exists a feasible solution in which

all of the principal inequalities (L1)–(L3) hold with equality.

If conditions (1), (2) hold, then the functions φmk (y) = cmk λ
y
k would satisfy

Ik with equality for all times y ≥ 2, and would constitute a positive mono-
tone solution to Ik attaining the best lower bound given by Theorem 2.2.
Experimentally this is the case for k ≤ 11.

Regarding condition (1), LNTk (λk) could fail to have a feasible solution
at the supremum value λk only if the objective function value as λ → λk
from below diverges to ∞, so some variables cmk become unbounded. The
numerical evidence up to k = 11 indicates that this does not happen. Re-
garding condition (2), the complementary slackness conditions for an opti-
mal solution of a “generic” linear program of this type force all the principal
inequalities (L1)–(L3) to hold with equality. In particular (2) must hold for
any LNTk (λk) having an optimal solution at which all variables cmk take dis-
tinct values. We think it likely that properties (1), (2) hold for all k ≥ 2,
but that this may be difficult to prove.

The linear program LNTk (λk) at the supremum value λk has a finite op-
timal objective function value Cmax

k provided that condition (1) holds, as
we now assume: denote this value by C̃max

k . The value C̃max
k has an inter-

esting meaning: it measures the minimal spread attainable in the values of
cmk , while normalizing these variables by min {cmk } = 1. This quantity shows
up in the constant ∆1 in Theorem 2.2. One may view the value C̃max

k as
a quantitative measure of a rate of “mixing” between congruence classes
(mod 3k) that the 3x + 1 function produces. The fourth column of Table 2
indicates that the quantity C̃max

k exists for k ≤ 11, and it appears to grow
exponentially with k.

Acknowledgments. The authors thank David Applegate for compu-
tations reported in Tables 1 and 2, and the reviewer for helpful comments.

Appendix: Inequalities for k = 2. The case k = 2 is the only
case where the derived inequalities Ik(EM) and the linear program family
LEMk (λ) have sufficiently few terms to be easily written down. There are
three functions Φ2 := {φ2

2(y), φ5
2(y), φ8

2(y) : y ≥ 0}. Recall that α = log2 3 ≈
1.585. The inequalities I2 are

φ2
2(y) ≥ φ8

2(y − 2) + min[φ2
2(y + α− 2), φ5

2(y + α− 2), φ8
2(y + α− 2)],
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φ5
2(y) ≥ φ2

2(y − 2),

φ8
2(y) ≥ φ5

2(y − 2) + min[φ2
2(y + α− 1), φ5

2(y + α− 1), φ8
2(y + α− 1)].

Of these, only the inequality for φ8
2(y) contains advanced terms on its right

side.

φ8
2(y) ≡ (8, 0)

(8, α− 1)

(8, 3α− 5)

(8, 2α− 3)

(5, 3α− 5)

(8, 2α− 5)

(2, 3α− 5)

(2, 2α− 3) (5, 2α− 3)

(5, α− 1)

(5,−2)

(2, α− 1)

(8, α− 3)

Fig. 3. Tree T 8
2 (EL) (nodes marked ⊗ are deleted nodes)

The corresponding inequality I8
2(EL) has three leaves of nested mini-

mization. The corresponding tree T 8
2 (EL) is pictured in Figure 3, with the

deleted nodes indicated. The tree T 8
2 (EL) has three m-nodes and eight leaf

nodes. We let a1, a2, a3 be the auxiliary variables for the leaf nodes, num-
bered as in Figure 3, and its associated inequalities are:

φ8
2(y) ≥ φ5

2(y − 2) + min[φ8
2(y + α− 3) +M1(y), φ2

2(y + α− 3)],

in which
M1(y) := min[φ8

2(y + 2α− 5) +M2(y), φ5
2(y + 2α− 5)],

M2(y) := min[φ2
2(y + 3α− 5), φ5

2(y + 3α− 5), φ8
2(y + 3α− 5)].

The inequalities in the linear program LEL2 (λ) for the three trees T m2 (EL)
with m = 2, 5 and 8 are given in Table 3; they are associated to the leaves
of these trees, identified by their labels in Table 3.
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Table 3. LEL2 (λ) inequalities for trees T m2 (EL)

Tree Leaf node label Inequality

(8,−2) c22 ≤ c82λ−2 + a′1λ
α−2

T 2
2 (EL) (2, α− 2) a′1λ

α−2 ≤ c22λα−2

(5, α− 2) a′1λ
α−2 ≤ c52λα−2

(8, α− 2) a′1λ
α−2 ≤ c82λα−2

T 5
2 (EL) (2,−2) c52 ≤ c22λ−2

(5,−2) c82 ≤ c52λ−2 + a1λ
α−1

(8, α− 3) a1λ
α−1 ≤ c82λα−3 + a2λ

2α−3

(2, α− 3) a1λ
α−1 ≤ c22λα−3

T 8
2 (EL) (8, 2α− 5) a2λ

2λ−3 ≤ c82λ2α−5 + a3λ
3α−5

(2, 2α− 5) a2λ
2α−3 ≤ c22λ2α−5

(2, 3α− 5) a3λ
3α−5 ≤ c22λ3α−5

(5, 3α− 5) a3λ
3α−5 ≤ c52λ3α−5

(8, 3α− 5) a3λ
3α−5 ≤ c82λ3α−5
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