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Visibility of lattice points
by

YONG-GAO CHEN (Nanjing) and LIN-FENG CHENG (Xuzhou)

1. Introduction. Two integer points P(ai,...,a;) and Q(by,...,bx)
are said to be wisible to each other if either P = () or there are no other
integer points on the line segment joining P and Q. It is not difficult to
verify that if P # @, then P and @ are visible to each other if and only if
ged(ag — by, ..., a — br) = 1. We say that an integer point set A is wvisible
from an integer point set B if each point of A is visible from some point
of B.

For k > 2, let

AR = {(zy,...,2p) : x; integers and 1 < x; <n (1 <i<n)}
Define
fe(n) = min{|S|: S c Z*, AF is visible from S},
Fi.(n) = min{|S| : S C AF AF is visible from S}.

It is clear that fix(n) < Fi(n). Erdés, Gruber and Hammer [4] asked for
an explicit construction of S such that S C A%, |S| = O(logn) and A2
is visible from S. A better construction of S was given by Adhikari and
Balasubramanian [2]. We have

1 logn
F > - — > Abbott [1
2(n) = 2 loglogn’ = no, (Abbott [1])
1 log log1
Fy(n) =0 BT 08 0B 0BT ,  (Adhikari, Balasubramanian [2])
loglogn
1
Fin)=0 —2" ) k>3, (Adhikari, Chen [3]).
loglogn
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In fact, the method in Abbott [1] implies that

Fu(n) > fi(n) > & 1087

>—-————  mn>ng, forallk>2.
2 loglogn

Thus, for £ > 3, the main orders of fi(n) and Fj(n) are logn/loglogn. In
this note we are interested in the constant factors. Let

oo

1 1
m=1 D
The following results are proved.
THEOREM 1. For k > 2 we have
logn
>((k) ——(1 1)).
film) = (k) 2 (14 o(1)
THEOREM 2. For k > 3 we have
logn
F <({(k—1)————(1 1)).
) < (k=) 2 (14 0(1)
REMARK. The first author conjectures that
logn logn
=((k)————(1 1 F =((k)————(1 1)).
Filn) = CR) o (1 0(1). Fe(m) = (k) o2 (14 of1)

By an analogous argument to the proof of Theorem 2, we can prove that
the conjecture for k > 3 follows from the conjecture that for every fixed s,
logn

Sinﬁgnw((m —1(m—=2)...(m—3s)) =(1+0(1)) Toglogn’

and the conjecture for k = 2 follows from the conjecture that

Jmax w((m—1)(m=2)...(m=s.)) = (1+0(1)) 121%

where s, = [2logn/loglogn].

2. Proofs. Let py,po,... be all positive primes in increasing order, that
is, p1 = 2, po = 3,... As usual, we will use p to denote a prime. For two
points P and Q in ZF and an integer m, we say that P and Q are congruent
mod m if all coordinates are congruent mod m.

LEMMA 1. Let B be a finite subset of ZF. Then there exist at least
|B|/p"* points in B which are congruent mod p.

Proof. Lemma 1 follows from the fact that points in Z* modp has p*
different possible values.
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Proof of Theorem 1. Let 0 < ¢ < 1/8. We take an integer ¢ such that

f[ (1 — %) <C(k)H1+e).

i=1 i
For n > nj (e, k) there exists an integer r such that

¢(k) (1—6¢) <7 <((k)

logn logn

w(1—55), piph . opp T

loglogn
Suppose that Q1,...,Q, are r distinct points in ZF. By Lemma 1 there
exists Ay C {Q1,...,Q,} such that |[A;| = r/p} and the points in A; are
congruent mod p;. Let By = {Q1,...,Q,}\ A;. Then |By| = (1 — 1/p¥)r is
divisible by p%. By Lemma 1 there exists As C Bj such that |Ay| = |By|/ph
and the points in Ay are congruent mod po. Let By = By \ As. Then |Bg| =
(1—1/pk)(1 —1/p¥)r is divisible by p4. Similarly, we obtain As, ..., A; and
Bs, ..., By, such that |A;| = |B;_1|/p¥, B; = B;_1 \ A; and the points in A;
are congruent mod p; for 3 < ¢ <t. Then

1 logn
Bil=(1——|B;_¢| = = I | —— (1 —4e).
1B < pf)’ -1l = - ( ) loglogn( )

Hence, for n > na(e, k),

logn

(1) t+‘Bt ( —36).

< loglogn

Let s =t+|By|. Let By = Aj11U...UA with |[4;] =1 and A,NA; =0 for
t+1<i,5 <sandi# j. By the Chinese Remainder Theorem, there exists

a point @) in A(T, S 1)pr1pe which is different from Q1,...,Q, and congruent

to the points of A; modpz for each i. For n > ns(e, k) by (1) we have

log((r + 1)p1 ...ps) <log(r+ 1) + slogps
<elogn+ (1 —2¢)logn < logn.

Hence, Q € AF and @ is invisible from any point of Q1,...,Q,. Therefore
fr(n) >r > ¢(k)

This completes the proof of Theorem 1.
Proof of Theorem 2. Let 0 < € < 1/4. Let t be an integer with

2k 1 Z )71'

P>pt

logn
—— (1 — 6¢e).
loglogn ( 2

For n > ny(e, k) there exists an integer r with

1 142 1 1+3
C(k—1) ogn + Egrkflgg(k—l) ogn + 3¢
loglogn 1—¢ loglogn 1—¢

. pip2...pi|T
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Let
G, ={(a1,...,ak-1,1) : a; integers, 1 < a; <r (1 <i<k-—-1)}
u{(2,2,...,2)}.
Given any point (z1,...,2;) € AF. If 2 = 1, then (21,..., ) is visible
from (2,2,...,2). Now we assume that x; > 1. We will show that there
exists at least one point (ay,...,ax_1,1) € G, such that
(ZEl —Q1y...yLh—-1 — Qf—1,Tk — 1) =1.
In order to prove this, we use a simple sieving argument. Let q1,..., g, be

the prime divisors of xp — 1. We know that
m=w(zy —1) < (14 0(1))logn/loglogn.
We want to find (a1, ...,ar—1,1) € Gy, so that no ¢; divides each z; —a;,1 <
j<k-1.
For the primes ¢; that are among pi,...,p; we use the combinatorial
sieve. We find that the number of remaining vectors is

e | (R e NSRS D

Each prime ¢; with p; < ¢; < r excludes at most (1+[r/q;])*=* < (2r/q;)**
vectors. The total number of these is
(2r)F-1 Z q_(k D« eC(k— 1)1k L,
q] >pt
Finally, a ¢; > r excludes at most one, altogether (1 + o(1))logn/loglogn
at most. Since

C(k — 1)—17,k—1 > (1+4¢) loi +eC(k— 1)—17,k:—1’

loglogn
we are done.
Therefore
1+3 1
Fr(n) <|Gnl+1<r* 141 <¢(k-1) toe _losm
1—¢ loglogn

This completes the proof.

Acknowledgements. I am grateful to the referee for his/her sugges-
tions to shorten the proof of Theorem 2 and to add more remarks pertaining
to Theorem 2.
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