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Additive inhomogeneous Diophantine inequalities
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D. Eric Freeman (Boulder, CO, and Princeton, NJ)

1. Introduction. In the study of Diophantine equations and inequali-
ties, most results concern homogeneous polynomials. For example, suppose
that G(x) is a homogeneous polynomial, of odd degree k in s variables, with
real coefficients. Schmidt [16] has given the impressive result that there ex-
ists a positive integer s0(k), which depends only on the degree k, so that if
s ≥ s0(k), then there is a vector x ∈ Zs \ {0} satisfying the inequality

|G(x)| < 1.(1)

In other words, if there are enough variables, in terms of the degree only,
then there is a non-trivial solution of the Diophantine inequality (1). Earlier,
Birch [4] had proved a similar theorem for Diophantine equations. But there
are still very few known results about inhomogeneous polynomials.

For Diophantine equations, this is perhaps to be expected, for reasons
more convincing than simply because homogeneous polynomials have a nicer
form. For if one considers equations such as

(G(x))3 − 2 = 0,(2)

where G(x) is an integral polynomial, we can see that there is good reason
to restrict to the homogeneous case: the number of variables s here can be
chosen as large as we like, and G(x) can even be chosen so that the equation
(2) has real solutions, yet there are clearly no integral solutions of (2).

Diophantine equations are specific cases of Diophantine inequalities, so
there is still cause to be careful in the inequality case. Moreover, if F (x) is a
real multiple of an integral form, then the inequality |F (x)| < ε reduces to
the equation F (x) = 0, for sufficiently small ε. Now consider the Diophantine
inequality |F (x)| < ε in the alternative case, when F is not a real multiple
of an integral form, or equivalently, when the coefficients of F are not all in
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rational ratio. Perhaps one can more often solve Diophantine inequalities in
such cases.

As a natural first step towards considering such inhomogeneous inequal-
ities, we look at inhomogeneous polynomials which are themselves sums
of polynomials in one variable. Thus suppose that κ is a real number and
that h1(y), . . . , hs(y) are real polynomials, each in one variable. We look for
integral solutions (y1, . . . , ys) to Diophantine inequalities of the type

|h1(y1) + . . .+ hs(ys)− κ| < ε.(3)

We give two definitions so that we may state our result more easily.

Definition. Suppose that k and s are positive integers. Also, for
1 ≤ i ≤ s, suppose that hi(y) is a polynomial with real coefficients, given by

hi(y) = βiky
k + βi(k−1)y

k−1 + . . .+ βi1y + βi0.

Then we say that the polynomials h1, . . . , hs satisfy the irrationality condi-
tion if there exist integers i1 and i2 with 1 ≤ i1, i2 ≤ s and integers j1 and
j2 with 1 ≤ j1, j2 ≤ k for which one has

βi1j1
βi2j2

6∈ Q.

Of course here we assume that βi2j2 is non-zero.

This condition will serve to guarantee that one of the ratios of the coeffi-
cients of the sum polynomial h1(y1)+ . . .+hs(ys) is irrational, and to ensure
that we are not essentially considering a Diophantine equation. We make a
few observations. Note that we could have i1 = i2, so that the coefficients
whose ratio is irrational could come from only one polynomial. Another ob-
servation, which is very important, is that we require j1 ≥ 1 and j2 ≥ 1.
In other words, neither of the coefficients whose ratio is irrational is one of
the constant terms. To see why we make such a requirement, consider the
simple inequality

|y3
1 + . . .+ y3

s−1 + (y3
s + π)| < ε.

This is an inequality of the form (3) with κ = 0 and with hs(ys) = y3
s + π.

For ε ≤ 1/10, say, this inequality has no solutions in integers y1, . . . , ys, even
though there is clearly an irrational ratio among the coefficients. The prob-
lem here is that we are essentially still dealing with an integral polynomial
in this case. We give one more definition.

Definition. Suppose that H(x) is a sum of non-constant polynomials
hi(xi), each of degree at most k, where k is a positive integer. Then we say
that H(x) is an indefinite polynomial if not all of the leading coefficients of
the polynomials hi are of the same sign, or if any of the polynomials hi has
odd degree. We say that H(x) is a positive-definite polynomial (respectively,
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negative-definite polynomial) if all of the leading coefficients of the polyno-
mials hi are positive (respectively, negative) and all of the polynomials hi
are of even degree.

We note that a definition of a somewhat similar nature has been given
by Cook and Raghavan [7].

Having given the above definitions, we may now state our main result.

Theorem 1. Suppose that k is a positive integer. Then there is a posi-
tive integer s0(k) such that any integer s with s ≥ s0(k) has the following
property :

Suppose that , for 1 ≤ i ≤ s, the polynomial hi(y) has real coefficients,
is non-constant and is of degree at most k, and that the polynomials
h1, . . . , hs satisfy the irrationality condition. Fix a positive number ε and
any real number κ. Set

H(y) = H(y1, . . . , ys) =
s∑

i=1

hi(yi).

Finally , suppose that H(y) is an indefinite polynomial. Then there exist
infinitely many s-tuples of integers z = (z1, . . . , zs) for which

|H(z)− κ| < ε.(4)

Moreover , we in fact may take s0(k) to satisfy

s0(k) ∼ 4k log k.

Note that, for example, Theorem 1 states that the values taken at integer
points by a sum of s0(k) polynomials, which are of odd degree k and satisfy
the irrationality condition, are dense on the real line.

For sums of general polynomials, Theorem 1 is one of the first results of
its kind. However, the theorem is essentially already known in the special
case in which every polynomial hi takes the simple form hi(yi) = βiky

k
i .

(See the paper of Brüdern and Cook [6]. They only prove the theorem in
this special case for κ = 0, but their argument extends to prove this special
case for all κ.) In fact, in this case, one can take s0(k) asymptotic to k log k
by combining the smooth number methods of Wooley with the work in [6].
Currently, we cannot use these methods for general polynomials however,
so we need the constant 4 here. We also note that we could follow our proof
carefully and give an error term of order k in the asymptotic formula for
s0(k), and we could also likely fine-tune our method to give better bounds
of this type, but we choose not to, for ease of exposition. Such techniques
would not allow us to reduce the constant factor 4 at any rate, without some
new ideas.
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Before stating another result, we must give some notation and defini-
tions. For real vectors x ∈ Rs, we define

|x| = max
1≤i≤s

|xi|.

Also, as is usual, by a non-trivial solution x of an inequality we mean that
x is a solution which is not the zero vector.

We give a more technical version of the above result, which in fact im-
plies Theorem 1. In Theorem 1, we only considered polynomials which were
indefinite. Now we consider both definite and indefinite polynomials.

Theorem 2. Suppose that k is a positive integer. Then there is a posi-
tive integer s0(k) such that any integer s with s ≥ s0(k) has the following
property :

Suppose that , for 1 ≤ i ≤ s, the polynomial

hi(y) = βiky
k + βi(k−1)y

k−1 + . . .+ βi1y + βi0

has real coefficients, is non-constant , and is of degree at most k, and that
h1, . . . , hs satisfy the irrationality condition. Set

H(y) = H(y1, . . . , ys) =
s∑

i=1

hi(yi).

Now fix a positive number ε. Then there are positive constants C1, C2 and
C3 with C2 < C3, which depend only on k and the coefficients βij , such
that , given any positive number P which is sufficiently large in terms of
k and ε and the coefficients βij , the following two statements hold:

(i) Suppose that H(y) is an indefinite polynomial. If M is a real number
with |M | ≤ C1P , then there exists a non-trivial s-tuple of integers z =
(z1, . . . , zs) with |z| ≤ P for which

|H(z)−M | < ε.(5)

(ii) If H(y) is a positive-definite polynomial and if M is a real number
with C2P ≤ M ≤ C3P , then there exists an s-tuple of integers z =
(z1, . . . , zs) with |z| ≤ P for which

|H(z)−M | < ε.(6)

Moreover , we in fact may take s0(k) to satisfy

s0(k) ∼ 4k log k.

We observe that we also of course have a result similar to case (ii) of this
theorem if H(x) is a negative-definite polynomial where we instead assume
that −C3P ≤M ≤ −C2P holds. Such a result can of course be obtained by
applying case (ii) of this theorem to −H(x). We also note that if we assumed
that each of the polynomials hi were of degree k, then we could take the
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solutions z in cases (i) and (ii) to satisfy |z| ≤ P 1/k instead of |z| ≤ P . We
note as well that we could give some sort of bounds for the constants C1,
C2 and C3. However, in our proof, we focus on keeping the number s0(k)
of variables necessary from being too large, and this comes at the price of
any chance of determining the best possible constants here, so we do not
concern ourselves with such bounds.

We also note, as Professor Schmidt observed, that in case (ii) one can
show by a straightforward argument that we can assume only that M satis-
fies M ≥ C4 for some positive constant C4, if one allows C4 to depend on k,
the coefficients βij , and ε.

We turn now to considering some related results. We do not mention
any more results on Diophantine inequalities involving homogeneous poly-
nomials, having already mentioned the work of Schmidt [16] above. We now
consider instead results about Diophantine inequalities which involve in-
homogeneous polynomials. First, there is the recent work of Bentkus and
Götze. Let k be an even integer and suppose that s satisfies s ≥ s1(k), where
s1(k) is a function they give which satisfies s1(k)� k44k. Then let

F (x) = λ1x
k
1 + . . .+ λsx

k
s +R(x),

where R(x) is a polynomial in x = (x1, . . . , xs) of degree strictly less than k.
Suppose that λi > 0 for 1 ≤ i ≤ s. Also, suppose that for some 1 ≤ i < j ≤ s,
we have λi/λj 6∈ Q. Next, fix a positive number ε. Then for any positive
number M which is sufficiently large in terms of k and s and ε and the
coefficients of F (x), they prove that there is a solution of

|F (x)−M | < ε.

(See [3]. In fact, they give a much stronger result concerning the distribution
of the values of F (x).) This is one of the first forays into the study of
inhomogeneous Diophantine inequalities. And indeed, as they remark in
their paper, their methods can most likely be used to non-trivially solve
inequalities of the type |F (x)| < ε, where F (x) is as above but is indefinite
in nature.

There are fundamental differences between their result and ours, and also
in the methods used. The polynomial F (x) is of course of a more general
type than H(x), the sum of polynomials which we consider. However, if
one restricts F (x) to be a sum of polynomials, the work of Bentkus and
Götze requires one to assume that there is an irrational ratio among the
coefficients of the highest degree terms of these polynomials, rather than
our more relaxed assumption that there is an irrational ratio among the
coefficients which are not constant terms. Of course, they require many
more variables for large k, but this is hardly surprising concerning the more
general form of the polynomial F (x).
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Most other known results about Diophantine inequalities involving inho-
mogeneous polynomials concern sums of constant multiples of mixed powers.
We consider, for example, the following result due to Brüdern [5], which we
state in a simplified form. Suppose that λ1, . . . , λ6 are non-zero real num-
bers such that at least one of the ratios λi/λj is irrational. Then for any real
number ε > 0 and any real number µ, there are integers x1, . . . , x6, not all
zero, such that one has

|λ1x
2
1 + λ2x

3
2 + λ3x

3
3 + λ4x

3
4 + λ5x

3
5 + λ6x

3
6 − µ| < ε.

There are other results of a similar nature. (See for example [11], or see
also [5] for references to other such results.) Finally, we mention that there
are a few other sporadic results which concern inhomogeneous Diophantine
inequalities. We direct the reader to the work of Cook and Raghavan [7] and
the work of Watson [19], both concerning inequalities involving quadratic
polynomials.

There has also been some work on inhomogeneous Diophantine equa-
tions. Let f(x) be a polynomial of degree k with integer coefficients which
satisfies the property that if d is a positive integer which divides f(x) for all
integers x, then d = 1. Kamke [14] showed in 1921 that there is an integer s,
depending on the polynomial f , such that for sufficiently large n there is an
integer solution of the equation

f(x1) + . . .+ f(xs) = n.

See the work of Wooley ([23], Theorem 9), Ford [12] and Nathanson ([15],
Sections 11.4 and 12.4) for recent work on this type of problem and references
to earlier results.

Now suppose that F (x) is a general polynomial, not necessarily homo-
geneous, of degree k in s variables. Then we call the sum of the terms of
degree 3 the cubic part of the polynomial, and we refer to the sum of the
terms of degree 2 as the quadratic part. Watson [20] has given a result
about quadratic integral polynomials whose quadratic part is a positive-
definite quadratic form, in particular concerning the values the polynomials
take at integer points, under certain congruence conditions. Davenport and
Lewis [9] have given conditions under which one can solve the Diophantine
equation C(x) = 0, where C(x) is a cubic integral polynomial. They require
C(x) to satisfy certain congruence conditions, and require certain algebraic
restrictions on the cubic part of C(x).

We briefly discuss the methods we use to prove Theorems 1 and 2. We
use the Davenport–Heilbronn method, with variations based on the ideas of
Bentkus and Götze [2]. We note that we need not use the ideas of Bentkus
and Götze to attack the case in which H(x) is an indefinite polynomial.
However, we use the method since it also gives us a result in the case in
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which H(x) is positive-definite. We note that it also allows us to obtain an
asymptotic lower bound of a certain kind for the number of solutions in a
box of size P for every large positive number P , which the usual Davenport–
Heilbronn method does not yield.

As in most applications of the Davenport–Heilbronn method, there are
two key ingredients: an analogue of Hua’s inequality and an analogue of
Weyl’s inequality. To obtain our analogue of Hua’s inequality, we use a di-
minishing ranges argument and bounds essentially due to Vinogradov, and
some ideas of Davenport and Roth [10]. We must take more care, how-
ever, because of the nature of the techniques of Bentkus and Götze. Of-
ten, when using the Hardy–Littlewood circle method or the Davenport–
Heilbronn method, one considers an exponential sum T (α) of length P , say.
Then an analogue of Hua’s inequality is usually of the form

1�

0

|T (α)|s dα� P s−k+η,

where η can be taken to be any positive number. When using the techniques
of Bentkus and Götze, one instead must be able to replace the right hand
side above by simply P s−k. We call such a bound an “exact Hua inequality”,
as often this is the best possible bound (up to a constant factor) that one
can expect. We obtain our exact Hua inequality by first proving a more typ-
ical analogue of Hua’s inequality, and then applying the Hardy–Littlewood
method with some mild twists. Here we also use some techniques of Baker,
Hua and Vaughan.

To obtain our analogue of Weyl’s inequality, we must also do a bit more
because we have chosen to use the techniques of Bentkus and Götze. In
fact, as remarked above, it would be possible (in the indefinite case) to not
use these techniques; to do so, we would employ a result of Baker (Theo-
rem 5.1 of [1]) as our analogue of Weyl’s inequality. However, as with most
analogues of (technically, the contrapositive of) Weyl’s inequality, Baker’s
result states that if an exponential sum T (α) is large, then one has good
rational approximations to α, but where the quality of these rational ap-
proximations is described by bounds which have a factor of P ε in them.
We cannot use such results because of these factors. When we have simi-
lar results without such factors, we call them “exact Weyl inequalities”. In
a previous version of the paper, we developed work from [13], using tech-
niques of Schmidt [17], in order to obtain such an exact Weyl inequality.
However, Professor Wooley has pointed out a much more straightforward
proof, which we give below. This simplifies the proof to a very large ex-
tent.

Finally, we note that we could also take s0(k) = k2k−1 +1 in Theorems 1
and 2, and in this case we could even find an asymptotic lower bound of
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the expected order of magnitude for the number of solutions of our inequal-
ity. We briefly note that to do so, one would use a largely similar method
but without the diminishing ranges, and one would give some alterations
to obtain a different version of Lemma 5. To obtain the required version
of Lemma 5, one would only need to treat differently the version of the
minor arcs given in the proof of Lemma 5. This may be done by using a
slight modification of the result of Baker mentioned above. (See Theorem 5.1
of [1].)

I would like to take this opportunity to thank Professor Schmidt for a
conversation during which this question arose. I would also like to thank
Professor Wooley for making an important observation which led to a con-
siderable simplification of the proof of Lemma 6. I am grateful to him as
well for pointing out that my original results, in which all of the polynomials
hi were of degree k, could be readily extended to yield the current result.

2. A proposition. In this section, we give a technical proposition which
implies Theorems 1 and 2. In fact, it will be enough to show that the propo-
sition implies Theorem 2, as we now demonstrate by proving that Theorem 2
implies Theorem 1. This is clear, except for the infinitude of solutions of the
inequality (4). Even this part is fairly straightforward, but we prove it for
completeness.

To see this, fix a real number κ and a positive number ε. We construct
a sequence of distinct integral solutions zn of (4) as follows. For positive
integers n, let

Mn = κ+ ε(1− 2/4n) and εn = ε/4n.(7)

For each n ∈ Z+, we apply Theorem 2 with P large enough in terms of
ε, k and the coefficients βij and with |Mn| ≤ C1P . In this manner, we have
zn ∈ Zs with

|H(zn)−Mn| < εn.(8)

Observe from (7) and (8) that

H(zn−1) < κ+ ε(1− 1/4n−1) < κ+ ε(1− 3/4n) < H(zn)(9)

and

κ− ε ≤ κ+ ε(1− 3/4n) < H(zn) < κ+ ε(1− 1/4n) ≤ κ+ ε.(10)

By (9), the vectors zn are distinct, and by (10), the vectors zn are solutions
of (4). Thus Theorem 2 implies Theorem 1.

We now state the proposition which implies Theorems 1 and 2. In this
section, we demonstrate how the proposition implies Theorem 2. The re-
mainder of the paper is dedicated to the proof of the proposition.
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Proposition 1. Fix a positive number ε. Suppose that k is an integer
satisfying k ≥ 2. Define

φ = φ(k) =
(
8k2( log k + 1

2 log log k + 2
))−1

.(11)

Also, for convenience, set m = m(k) = 2k + 4. Define t to be the smallest
positive integer which satisfies

(1− 1/k)t < (2k + 1)φ/k.(12)

Now , for 1 ≤ i ≤ 2t and 1 ≤ n ≤ m, suppose that vi and wn are integers
satisfying 2 ≤ vi, wn ≤ k. As well , for 1 ≤ i ≤ 2t and 1 ≤ n ≤ m, suppose
that the polynomials

fi(x) = λivix
vi + λi(vi−1)x

vi−1 + . . .+ λi1x,

gn(y) = µnwny
wn + µn(wn−1)y

wn−1 + . . .+ µn1y

have real coefficients, and are of degree vi and wn, respectively. Assume
that for every j with 2 ≤ j ≤ k, there are an even number of the degrees vi
which equal j. Also assume that for some j1 and j2 with 1 ≤ j1 ≤ w1 and
1 ≤ j2 ≤ w2, we have

µ1j1/µ2j2 6∈ Q,
where of course here we assume that µ2j2 is non-zero. Suppose as well that
P is a positive number which is sufficiently large in terms of k and ε and
the coefficients λij and µnj. Consider the inequality

|f1(x1) + . . .+ f2t(x2t) + g1(y1) + . . .+ gm(ym)−M | < ε.(13)

The following two statements hold.

(i) Suppose that µ1w1 > 0 and µ2w2 < 0. Suppose in addition that
1 ≤ |µ1w1/µ2w2 | ≤ 2. Also suppose that

2t∑

i=1

vi∑

j=1

|λij |+
m∑

n=3

wn∑

j=1

|µnj| ≤
µ1w1

2k+3 .(14)

Finally , suppose that M is a real number with

|M | ≤ µ1w1P/8.(15)

Then there exists a non-trivial (2t+m)-tuple of integers

(x,y) = (x1, . . . , x2t, y1, . . . , ym) with |x|, |y| ≤ 2P

such that (13) holds.
(ii) Suppose that µ1w1 > 0 for 1 ≤ i ≤ s and that M is a real number

with
µ1w1P/4 ≤M ≤ 3µ1w1P/4.(16)
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Additionally , suppose that
2t∑

i=1

vi∑

j=1

|λij |+
m∑

n=2

wn∑

j=1

|µnj| ≤
µ1w1

2k+3 .(17)

Then there exists a non-trivial (2t+m)-tuple of integers

(x,y) = (x1, . . . , x2t, y1, . . . , ym) with |x|, |y| ≤ 2P

such that (13) holds.

We note that the numerical constants appearing in conditions (14)–(17)
could all doubtlessly be improved, but we do not concern ourselves with the
optimal choices for these constants.

We show now that Proposition 1 implies Theorem 2. Note first of all
that it is enough to prove Theorem 2 in the case in which the coefficients
βi0 are all zero. For suppose that we have established the theorem in this
special case. We may choose a positive constant C ′1, for P large in terms of
the coefficients βi0, such that |M | ≤ C ′1P implies that the required condition
|M−∑s

i=1 βi0| ≤ C1P holds. Thus case (i) of Theorem 2, in the special case
in which the coefficients are all zero, implies case (i) of Theorem 2 in the
general case, albeit with a different constant C1. In a similar manner, we
may deduce case (ii) of Theorem 2 in general, if we have established it in
the special case in which all of the coefficients βi0 are zero. Thus, in what
remains, we assume that all of these constant terms are zero.

Now observe that Theorem 2 holds in the case in which at least one
of the polynomials hi has degree one. To see this, it is enough to show
that the theorem holds for a sum of polynomials β11y1 + h2(y2), where
β11y1 and h2 satisfy the irrationality condition, as one may set the variables
corresponding to all other polynomials equal to zero, while ensuring that
the irrationality condition still holds; after all, the ratios of β11 to the other
(non-constant term) coefficients cannot all be rational. It follows from the
irrationality condition that g2(y2) = h2(y2)/β11 has at least one irrational
coefficient. By a famous result of Weyl [21], the values of g2(y2) are uniformly
distributed modulo one for integers y2. Thus for sufficiently large P , and M
with M ≤ (max(C1, C3))P , we may find an integer y2 with |y2| ≤ c0P , for
some positive constant c0, such that

‖g2(y2)−M/β11‖ < ε/|β11|;
here, as usual, we denote the nearest integer to a real number x by ‖x‖. For
sufficiently small choices of c0, C1 and C3, we may choose |y1| ≤ P so that

|y1 + g2(y2)−M/β11| < ε/|β11|.
Clearly we then have |β11y1 + h2(y2)−M | < ε. Observe that in this special
case, which includes the case k = 1 of the theorem, we could take s0(k) = 2.
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We now turn to the deduction of Theorem 2 in the special case in which
all of the polynomials hi have degree at least 2, and, as remarked above, in
which all of their constant terms are zero.

We first observe that, for k ≥ 2, there exists a function s0(k) for which

2t+m ≤ s0(k) and s0(k) ∼ 4k log k.

Although this may be seen fairly readily, we give a simple elementary proof
for completeness. Observe from calculus that 1−x ≤ e−x for all real numbers
x, and thus for all real numbers y with y ≥ 1, we have

(1− 1/y)y ≤ 1/e.

For any real number C ′ with C ′ ≥ 1, it follows that if we set

w = k(2 log k + logC ′ + log log k),

we have (1−1/k)w ≤ (C ′k2 log k)−1. Thus for a sufficiently large number C ′,
we can see that w satisfies

(1− 1/k)w < (2k + 1)φ/k.

Now let t′ = dwe. Note that w ∼ 2k log k, whence we certainly have t′ ∼
2k log k. But recall that t is the least integer for which (12) holds, whence
t ≤ t′. Recalling as well that m = 2k+ 4, we see that we may take 2t+m ≤
s0(k), where s0(k) ∼ 4k log k. We now assume that s is an integer which
satisfies s ≥ s0(k), and thus

s ≥ 2t+m.(18)

Now, for 1 ≤ i ≤ s, suppose that the polynomial hi is of degree di,
where 2 ≤ di ≤ k. Note that therefore βidi is non-zero for 1 ≤ i ≤ s. The
polynomials h1, . . . , hs satisfy the irrationality condition, so there exist i1,
i2, j1 and j2 with 1 ≤ i1, i2 ≤ s and 1 ≤ j1 ≤ di1 and 1 ≤ j2 ≤ di2 such
that βi1j1/βi2j2 is irrational. Suppose that i1 = i2. Fix some i0 with i0 6= i1
and 1 ≤ i0 ≤ s. Then at least one of βi1j1/βi0di0 and βi1j2/βi0di0 must be
irrational. In this manner, we can assume that i1 6= i2.

Now suppose that we are in the setting of case (i) of Theorem 2, so
that H(y) is an indefinite polynomial. We claim that there exists i0 with
1 ≤ i0 ≤ s for which βi1di1/βi0di0 is negative. In the case in which di is even
for 1 ≤ i ≤ s, this is clear, as not all of the coefficients βidi can have the
same sign. If there exists some i0 for which di0 is odd, then by replacing
zi0 by −zi0 if necessary, we may assume that βi1di1/βi0di0 is negative. Fix
this i0. Observe that we must have i0 6= i1.

Now assume as well that βi1di1/βi2di2 is positive; note in particular that i0
then must be distinct from both i1 and i2. In this case, both βi1di1/βi0di0 and
βi2di2/βi0di0 are negative, while at least one of βi1j1/βi0di0 and βi2j2/βi0di0
is irrational. So without loss of generality, in case (i) of Theorem 2, we may
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assume that βi1j1/βi2j2 is irrational and that βi1di1/βi2di2 is negative. By
relabeling variables, we may assume that both β(2t+1)j1/β(2t+2)j2 6∈ Q for
some j1 and j2 with 1 ≤ j1 ≤ dj1 and 1 ≤ j2 ≤ dj2 and also, in case (i) of
Theorem 2, that β(2t+1)d2t+1 > 0 and β(2t+2)d2t+2 < 0.

Recall now that by (18) and the definition of m, we have s ≥ 2t+2k+4.
We will now relabel the polynomials h1, . . . , h2t so that we may assume that,
for each j with 2 ≤ j ≤ k, there are an even number of polynomials hi among
h1, . . . , h2t of degree j. To do so, we consider each j with 2 ≤ j ≤ k. We
start with j = 2, and work our way up to j = k. If there is an even number
of polynomials of degree j among h1, . . . , h2t, we proceed and consider the
polynomials of degree j + 1. Now suppose that there is an odd number of
polynomials of degree j among h1, . . . , h2t. As 2t is of course even, there
is another degree j′ such that there is an odd number of polynomials of
degree j′ among h1, . . . , h2t. Let one of these polynomials of degree j ′ be
hij′ , say. If there is some polynomial of degree j among h2t+3, h2t+4, . . . , hs,
say hij , then we switch the indices of hij′ and hij . In so doing, we are left
with an even number of polynomials of both degrees j ′ and j among the
polynomials h1, . . . , h2t. Now, alternatively, suppose that there is an odd
number of polynomials of degree j among h1, . . . , h2t but that none of the
polynomials h2t+3, . . . , hs have degree j. Then, as s ≥ 2t + 2k + 4, there is
certainly at least one degree j ′′ with 2 ≤ j′′ ≤ k for which there are at least
two polynomials hi of degree j′′ among h2t+3, . . . , hs. We exchange these two
polynomials with a polynomial of degree j and a polynomial of degree j ′,
each among h1, . . . , h2t, where j′ 6= j is such that there is an odd number
of polynomials of degree j ′ among h1, . . . , h2t. Then among h1, . . . , h2t, we
are left with an even number of polynomials of degrees j and j ′, and the
parity of the number of polynomials of degree j ′′ is unchanged. Now we may
proceed to consider the polynomials of degree j+1, repeating this step until
we reach the degree j = k. In this manner, we are left with an even number
of polynomials of every degree j with 2 ≤ j ≤ k, among the polynomials
h1, . . . , h2t.

We now define sets of polynomials f1, . . . , f2t and g1, . . . , gm such that if

|f1(x1) + . . .+ f2t(x2t) + g1(y1) + . . .+ gm(ym)−M | < ε(19)

has an integral solution (x,y), then there is a corresponding integral solu-
tion of

|H(z)−M | < ε.(20)

We will then apply Proposition 1 to the inequality (19), and thus show that
(20) has an integral solution. Our polynomials fi and gn are similar in both
cases (i) and (ii) of Theorem 2, although with slight differences.

Now recall that the polynomials hi are of degree di for 1 ≤ i ≤ s. We
define
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vi = di for 1 ≤ i ≤ 2t and wn = d2t+n for 1 ≤ n ≤ m.
In both cases (i) and (ii) of Theorem 2, let c1 and c2 be positive integers, to
be chosen later, and set

λij = βij for 1 ≤ i ≤ 2t and 1 ≤ j ≤ vi,(21)

while, for 1 ≤ n ≤ m and 1 ≤ j ≤ wn, set

µnj =





cj1β(2t+1)j for n = 1,

cj2β(2t+2)j for n = 2,

β(2t+n)j for 3 ≤ n ≤ m.

(22)

We then define, for 1 ≤ i ≤ 2t and 1 ≤ n ≤ m, the polynomials fi(x)
and gn(y) by

fi(x) = λivix
vi + λi(vi−1)x

vi−1 + . . .+ λi1x,

gn(y) = µnwny
wn + µn(wn−1)y

wn−1 + . . .+ µn1y.

Note that the polynomials fi are of degree vi for 1 ≤ i ≤ 2t and the polyno-
mials gn are of degree wn for 1 ≤ n ≤ m, that is, their leading coefficients
are non-zero.

Now, in case (i) of Theorem 2, we choose large positive integers c′1 and c′2
so that

1 ≤ (c′1)w1

(c′2)w2

∣∣∣∣
β(2t+1)w1

β(2t+2)w2

∣∣∣∣ ≤ 2;(23)

to do so, first find a positive number L that is large enough so that
(L + 1)w1 ≤ 2Lw1 . Then choose c′2 to be a positive integer which is large
enough so that

(c′2)w2

∣∣∣∣
β(2t+2)w2

β(2t+1)w1

∣∣∣∣ ≥ Lw1 .

By our choice of L, we may choose a positive integer c′1 with c′1 ≥ L for
which (23) holds. Now set c1 = uc′1 and c2 = uc′2, where u is a positive
integer. Recalling the definitions (21) and (22), we may ensure that (14)
holds by choosing u sufficiently large. Note that by (22) and (23), we have
1 ≤ |µ1w1/µ2w2 | ≤ 2.

In case (ii) of Theorem 2, our choices are easier. We simply set c2 = 1,
and, recalling the definitions (21) and (22), we see that by choosing c1 suf-
ficiently large, we may ensure that (17) holds.

Note that in either case (i) or (ii), by (22), we have

µ1j1

µ2j2
=
cj11 β(2t+1)j1

cj22 β(2t+2)j2

,

which is irrational as c1 and c2 are positive integers. Also, recall that we have
assumed that β(2t+1)d2t+1 > 0 and β(2t+2)d2t+2 < 0 in case (i) of Theorem 2.
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In case (ii) of Theorem 2, we must have β(2t+1)d2t+1 > 0, as the polynomial
H(y) is positive-definite. It follows from the fact that c1 and c2 are positive
integers, and the definition (22), that µ1w1 > 0 and µ2w2 < 0 in case (i) of
Theorem 2, and that µ1w1 > 0 in case (ii) of Theorem 2.

Now we apply cases (i) and (ii) of Proposition 1 to deduce, respectively,
cases (i) and (ii) of Theorem 2. Note that our work above shows that the
set of polynomials f1, . . . , f2t, g1, . . . , gm satisfy the respective assumptions
of each case of the proposition. Thus, setting P ′ = P/(2c1c2), and applying
Proposition 1 for large P ′, we may see that for |M | ≤ µ1w1P

′/8 in case (i),
and for µ1w1P

′/4 ≤ M ≤ 3µ1w1P
′/4 in case (ii), we may find an integral

solution (x,y) of the inequality
∣∣∣

2t∑

i=1

fi(xi) +
m∑

n=1

gn(yn)−M
∣∣∣ < ε.

Then set

zi =





xi for 1 ≤ i ≤ 2t,
c1y1 for i = 2t+ 1,
c2y2 for i = 2t+ 2,
yi−2t for 2t+ 3 ≤ i ≤ 2t+m,
0 for i ≥ 2t+m+ 1.

(24)

(Observe that here we have again implicitly used the condition s ≥ s0(k) ≥
2t+m.) By (21), (22) and (24), noting that c1 and c2 are integers, we find
that z is an integral solution of |H(z)−M | < ε. Note also that if (x,y) is a
non-trivial solution, then by (24), z is a non-trivial solution as well. Finally
observe that because |x|, |y| ≤ 2P ′, the condition |z| ≤ P follows from our
choice of P ′.

This completes the proof that Proposition 1 implies Theorem 2. As we
have remarked, Proposition 1 thus also implies Theorem 1.

3. The Davenport–Heilbronn method. We now start the proof of
Proposition 1, which comprises the rest of the paper. We use the Davenport–
Heilbronn method, and in addition some of the recent ideas of Bentkus and
Götze [2]. We also rely heavily on the methods of Davenport and Roth [10].

Before we begin, we need some standard notation. For real numbers x,
we set

e(x) = e2πix.

At this point, we also take a moment to note that throughout the proof,
all sums run only over integers. Also, implicit constants in the notations�,
�, o() and O() may depend throughout on k, t, ε and the coefficients λij
and µnj.

As is usual with the method, we need a special kernel function which
allows us to give a lower bound for the number of solutions of the inequal-
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ity (13). We have the following lemma, essentially due to Davenport and
Heilbronn. (See Lemma 4 of [8].)

Lemma 1 (Davenport and Heilbronn). Fix a positive number η. Then
for any real number α, define

K(α) =
(sin(πηα))2

π2α2η
.

Observe that K(α) is a real-valued function which is positive and even. K(α)
satisfies

�

R
e(αt)K(α) dα = max

(
0, 1−

∣∣∣∣
t

η

∣∣∣∣
)

(25)

for all real numbers t. Also, K(α) satisfies the bound

K(α)�η min(1, |α|−2).(26)

Proof. The lemma can be deduced from the original result of Davenport
and Heilbronn by a trivial change of variable.

For the remainder of the paper, we fix K as in the lemma with the
choice η = ε. Also, let P be a large positive number; we shall require it to
be sufficiently large at various points throughout the proof.

We now relabel the polynomials f1, . . . , f2t to make our notation more
convenient. Suppose that for each integer j satisfying 2 ≤ j ≤ k, there are
2aj polynomials of degree j, where aj is a non-negative integer. We assume,
by relabeling, that the first ak polynomials f1, . . . , fak are of degree k, the
next ak−1 are of degree k − 1 and so on, so that finally the polynomials
ft−a2+1, . . . , ft are of degree 2. We relabel the polynomials ft+1, . . . , f2t sim-
ilarly, whence the degree of ft+i is the same as the degree of fi for 1 ≤ i ≤ t.
Observe that ak + ak−1 + . . .+ a2 = t.

Now, for 2 ≤ j ≤ k, define

Lj = ak + ak−1 + . . .+ aj+1.

Observe that the polynomials fi with Lj+1 ≤ i ≤ Lj+aj are the polynomials
of degree j among f1, . . . , ft, if there are any at all, i.e., if aj is positive.
Now we define exponents κi for 1 ≤ i ≤ t, as follows. For i satisfying
Lj + 1 ≤ i ≤ Lj + aj , we define

κi = κt+i =
1

j − 1

(
j − 1
j

)i−Lj k∏

l=j+1

(
l − 1
l

)al
.(27)

Observe that we of course only define such exponents if aj is positive, and
the product above is of course understood to be one in the case when
j = k. Essentially, these are the natural exponents to be used in a dimin-
ishing ranges argument involving polynomials of different degrees. Also, for
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1 ≤ i ≤ t, define

Pi = P κi .(28)

Now we collect some observations about the exponents κi and the num-
bers Pi which will be important for future reference. Note from (27) that
for Lj + 1 ≤ i ≤ Lj + aj , recalling that vi is the degree of the polynomial fi,
we have

κivi ≤
j

j − 1

(
j − 1
j

)i−Lj
≤ 1.

It follows that

P vii ≤ P for 1 ≤ i ≤ t.(29)

Observe that for Lj + 1 ≤ i ≤ Lj + aj − 1, we have κi+1 = κi((j − 1)/j).
Note that in this case, vi+1 = vi = j, so κi+1vi+1 = κi(vi−1). For i = Lj+aj ,
assuming that 1 ≤ i ≤ t− 1 and that r is the largest integer less than j for
which ar > 0, we have κi+1 = κi((j − 1)/r). In this case, vi = j, whereas
vi+1 = r, so κi+1vi+1 = κi(vi − 1) again. Thus

κi+1vi+1 = κi(vi − 1) for 1 ≤ i ≤ t− 1.

By the definition (28) of Pi, we therefore have

P
vi+1
i+1 = P vi−1

i for 1 ≤ i ≤ t− 1.(30)

Finally, we consider the sum
∑t

i=1 κi. One obtains
t∑

i=1

κi =
k∑

j=2

1
j − 1

( k∏

l=j+1

(
l − 1
l

)al) aj∑

i=1

(
j − 1
j

)i

=
k∑

j=2

1
j − 1

( k∏

l=j+1

(
l − 1
l

)al)
(j − 1)

(
1−

(
j − 1
j

)aj)

=
k∑

j=2

( k∏

l=j+1

(
l − 1
l

)al
−

k∏

l=j

(
l − 1
l

)al)

=
(

1−
k∏

l=2

(
l − 1
l

)al)
.

From this calculation, we clearly have
t∑

i=1

κi =
(

1−
k∏

l=2

(
l − 1
l

)al)
≥
(

1−
(
k − 1
k

)t)
.

Therefore from (12) one obtains
t∑

i=1

κi > 1− (2k + 1)φ
k

.(31)
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Now we define the generating functions we shall use. For 1 ≤ i ≤ t and
any real number α, we define

Si(α) = Si(α,P ) =
∑

Pi≤x≤2Pi

e(αfi(x)),

St+i(α) = St+i(α,P ) =
∑

Pi≤x≤2Pi

e(αft+i(x)).
(32)

Also, for any real numbers α and N , and any polynomial g(x), we set

U(α, g) = U(α, g,N) =
∑

1≤x≤N
e(αg(x)).(33)

Recall that wn is the degree of the polynomial gn. For 1 ≤ n ≤ m and any
real number α, we define

Un(α) = Un(α,P ) = U(α, gn, P 1/wn).(34)

Also define

W =
m∑

n=1

1
wn

.(35)

Note that 1/wn ≥ 1/k and m = 2k + 4, whence clearly

W ≥ (2k + 4)/k.(36)

Considering all of the above definitions and the identity (25), one may
see in a standard manner that the number of integral solutions (x,y) of the
inequality (13) with |x| ≤ 2P and |y| ≤ 2P is at least

�

R

( 2t∏

i=1

Si(α)
)( m∏

n=1

Un(α)
)
e(−Mα)K(α) dα.(37)

We will show that in fact this integral is � (P1 . . . Pt)2PW−1 for large P ,
which in turn certainly shows that there is a non-trivial solution of the
inequality (13). So for all large P , we will in fact have an asymptotic lower
bound of this type for the number of solutions of the inequality (13); this
is one of the benefits of using the techniques of Bentkus and Götze. With
the standard Davenport–Heilbronn method, we would only obtain such an
asymptotic lower bound for a sequence of large P tending to infinity.

As is usual, our strategy will be to give a dissection of the real line into
three regions, and consider the contributions to the integral (37) from each
of the three regions. For the remainder of the paper, we fix a positive number
δ satisfying

0 < δ < 1/k.(38)

We could fix a value of δ for definiteness if we so desired, but we choose not
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to. We then define the region M, which we call the major arc, by setting

M = {α ∈ R : |α| ≤ P δ−1}.(39)

In Section 7, we will show that the contribution to the integral (37) from the
major arc is� (P1 . . . Pt)2PW−1 for large P . During the course of the proof,
we shall define a function T (P ) which depends only on the coefficients µnj,
and tends to infinity as P tends to infinity. Using this function, we define
the so-called minor arcs m by

m = {α ∈ R : P δ−1 < |α| ≤ T (P )}.(40)

This will be the most difficult region to treat. Finally, we define the so-called
trivial arcs t by

t = {α ∈ R : |α| > T (P )}.(41)

We will show in Section 6 that the contribution to the integral (37) from each
of the last two regions is o((P1 . . . Pt)2PW−1). Combined with our treatment
of the major arc, this will show that the integral (37) is� (P1 . . . Pt)2PW−1

for large P . We now proceed to the treatment of the minor arcs and trivial
arcs, by establishing an analogue of Hua’s inequality.

4. An analogue of Hua’s inequality. We first give a version of a
lemma essentially proved originally by Vinogradov. We state the lemma in
a form very close to that given by Baker. (See Theorem 4.4 of [1].)

Lemma 2. Fix a positive number η. Suppose that k is an integer satis-
fying k ≥ 2. Let J(k) = 8k2(log k+ (1/2) log log k+ 2). Suppose that N is a
positive number which is sufficiently large in terms of k. For real numbers
α1, . . . , αk, let f(x) = αkx

k + αk−1x
k−1 + . . .+ α1x. Suppose also that∣∣∣

∑

1≤x≤N
e(f(x))

∣∣∣ ≥ γN,

where γ is a positive number satisfying

γ ≥ N−1/J(k).(42)

Then there are integers y, u1, . . . , uk with

1 ≤ y ≤ γ−kNη and |yαj − uj | ≤ γ−kNη−j for 1 ≤ j ≤ k,
and

(y, uk, uk−1, . . . , u2) ≤ 2k2, (y, uk, uk−1, . . . , u1) = 1.

The lemma can be obtained by adjustments of the proof of the case
M = 1 of Theorem 4.4 of [1]; we give a proof for the sake of completeness,
although we will be brief. We also note that the bounds of the lemma could
be improved by combining the proof with the work of Wooley [22], but a
superior version of this type does not yield significant improvement of our
final results.
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Proof of Lemma 2. We first consider the case k ≥ 4. As in the proof
of Theorem 4.4 of [1], we choose l = [k log(4k2 log k)] + 1. One has J(k) >
4kl(1− 2θ)−1 exactly as in that proof, where

θ = θ(k) =
1
2

(k − 1)2
(
k − 2
k − 1

)l
.

Set A = γN . Then it follows from (42) that

(NA−1)4(k−1)l � N4(k−1)l/J(k) � N1−2θ−4η(43)

for sufficiently small η.
Now consider the cases k = 2 and k = 3. We set l = 3 in these cases,

whence θ(2) = 0 and θ(3) = 1/4, where θ(k) is defined as above. We set
A = γN . A calculation reveals that J(2) ≥ 80 and J(3) ≥ 226. Thus,
from (42), one can check that the condition (43) also holds in these cases.

Now we consider all of the cases k ≥ 2 simultaneously. As (43) holds for
k ≥ 2, we can apply Theorem 4.3 of [1] with A = γN for large N . It follows
that there are coprime pairs of integers qj and aj for 2 ≤ j ≤ k such that

qj ≥ 1 and |qjαj − aj | ≤ Nη−j+θ(NA−1)2(k−1)l for 2 ≤ j ≤ k,
and such that the least common multiple q0 of q2, . . . , qk satisfies

q0 ≤ (NA−1)2(k−1)lN θ+η.

As the condition (43) holds for k ≥ 2, it follows that for sufficiently small η
we have

1 ≤ q0 ≤ N1−2η,

and that there are integers bj for 2 ≤ j ≤ k such that

|q0αj − bj | � N1−j−2η for 2 ≤ j ≤ k;

in fact, one simply chooses bj = q0aj/qj for 2 ≤ j ≤ k. We note that by a
simple argument one also has

(q0, bk, . . . , b2) = 1.

Now, following the proof of Theorem 4.4 of [1], for large N we may ap-
ply Lemma 4.6 of [1] with r = q0 and H = A, noting that d = 1. We
then set y = tq0, and uj = tbj for 2 ≤ j ≤ k, and let u1 be the integer
closest to tq0α1. If necessary, we can remove a factor so that we also have
(y, uk, uk−1, . . . , u1) = 1. This completes the proof of Lemma 2.

We now need a generalization of a lemma due to Davenport and Roth.
(See Lemma 3 of [10].) We give a proof for completeness, although our proof
is similar to theirs.
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Lemma 3. Suppose that we are in the setting of Proposition 1, and that
Si(α) is defined as in (32). Then

�

R

( 2t∏

i=1

|Si(α)|
)
K(α) dα� P1 . . . Pt.(44)

Proof. We first use the Cauchy–Schwarz inequality, bearing in mind that
K is positive, whence we see that the left hand side of (44) is

�
( �

R

( t∏

i=1

|Si(α)|2
)
K(α) dα

)1/2( �

R

( 2t∏

i=t+1

|Si(α)|2
)
K(α) dα

)1/2
.(45)

We shall show that
�

R

( t∏

i=1

|Si(α)|2
)
K(α) dα� P1 . . . Pt.(46)

A similar bound holds for the other integral in (45). We omit its proof as
the method is the same.

Using the identity (25) and the definition (32), one can see that the
integral in (46) is less than or equal to the number of integral solutions
(x,y) = (x1, . . . , xt, y1, . . . , yt) of the inequality

|f1(x1)− f1(y1) + f2(x2)− f2(y2) + . . .+ ft(xt)− ft(yt)| < ε,(47)

where one has Pi ≤ xi, yi ≤ 2Pi for 1 ≤ i ≤ t. We bound the number of such
solutions by induction.

First, we make a general observation. If x and y are positive numbers
with x > y and l is a positive integer, then

xl − yl ≥ l(x− y)yl−1.(48)

Also, recall from (30) that P vi+1
i+1 = P vi−1

i for 1 ≤ i ≤ t − 1. It follows by
induction that given an integer i0 with 1 ≤ i0 ≤ t− 1, we have

P vii ≤ P
vi0−1
i0

for i0 < i ≤ t.(49)

Now fix any choice of y1 which satisfies P1 ≤ y1 ≤ 2P1. Suppose that
there are integers x1, x2, . . . , xt, y2, . . . , yt, with Pi≤ xi, yi≤ 2Pi for 2≤ i≤ t
and P1 ≤ x1 ≤ 2P1, such that (x,y) is a solution of (47). By (49), one has

∣∣∣
t∑

i=2

(fi(xi)− fi(yi))
∣∣∣� P v1−1

1 ;(50)

here the implied constant in Vinogradov’s notation may depend on the co-
efficients λij , but not on P . Now we also have |f1(x1) − λ1v1x

v1
1 | � P v1−1

1
and |f1(y1)− λ1v1y

v1
1 | � P v1−1

1 , whence

|λ1v1(xv1
1 − yv1

1 )| � P v1−1
1 .

As y1 ≥ P1 and x1 ≥ P1 and λ1v1 is non-zero, by the observation (48)
there are only finitely many possible choices x1, given this fixed choice
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of y1, for which the vector (x1, . . . , xt, y1, . . . , yt) could possibly be a solu-
tion of the inequality (47). So there are � P1 choices of the integral vector
(x1, y1), with P1 ≤ x1, y1 ≤ 2P1, which could extend to an integral solution
(x1, . . . , xt, y1, . . . , yt) of (47), with Pi ≤ xi, yi ≤ 2Pi for 1 ≤ i ≤ t.

Now assume that for some j with 2 ≤ j ≤ t, there are � P1 . . . Pj−1
choices of the integral vector (x1, . . . , xj−1, y1, . . . , yj−1), with Pi ≤ xi, yi
≤ 2Pi for 1 ≤ i ≤ j − 1, which could extend to an integral solution
(x1, . . . , xj−1, . . . , xt, y1, . . . , yj−1, . . . , yt) of (47), with Pi ≤ xi, yi ≤ 2Pi for
1 ≤ i ≤ t. Note this does indeed hold in the case j = 2, as we have demon-
strated. We aim of course to establish this result for the case j + 1.

To this end, fix a choice (x1, . . . , xj−1, y1, . . . , yj−1) as above. Also fix a
choice of yj with Pj ≤ yj ≤ 2Pj . Then suppose that the vector given by
(x1, . . . , xj , . . . , xt, y1, . . . , yj , . . . , yt) is a solution of the inequality (47) with
Pi ≤ xi, yi ≤ 2Pi for j + 1 ≤ i ≤ t and with Pj ≤ xj ≤ 2Pj . Then, as above,

∣∣∣λjvj (x
vj
j − y

vj
j ) +

j−1∑

i=1

(fi(xi)− fi(yi))
∣∣∣� P

vj−1
j .

By (48), the integers zvj with Pj ≤ z ≤ 2Pj are spaced apart by at least
some constant multiple of P vj−1

j , whence, because λjvj is non-zero, for a
fixed choice of yj , there are finitely many choices of xj for which the last
bound could possibly hold. Thus there are� P1 . . . Pj possible choices of the
(2j)-tuple (x1, . . . , xj , y1, . . . , yj) which could possibly extend to a solution
(x,y) ∈ Z2t of the inequality (47) with the constraint Pi ≤ xi, yi ≤ 2Pi on
the variables.

Therefore by induction we obtain the desired bound (46) and hence com-
plete the proof of Lemma 3.

We now quote a lemma. (See Lemma 4.4 of [1].)

Lemma 4 (Baker). Fix a positive number η. Suppose that k is an integer
with k ≥ 2 and that N is a real number with N ≥ 1. For real numbers
α1, . . . , αk, let f(x) = αkx

k + . . . + α1x and suppose that q, a1, . . . , ak are
integers with

|qαj − aj | ≤
N1−j

2k2 for 1 ≤ j ≤ k.

Set d = (q, ak, . . . , a2) and write

βj = αj −
aj
q

for 1 ≤ j ≤ k, g(x) =
k∑

j=1

βjx
j ,

G(x) =
k∑

j=1

ajx
j , S(q) =

q∑

v=1

e

(
G(v)
q

)
.
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Then
T∑

x=1

e(f(x)) =
S(q)
q

T�

0

e(g(y)) dy +O(q1−1/k+ηd1/k)

for all real numbers T with 1 ≤ T ≤ N .

Note that Baker only states the above lemma for integers T , but the
result clearly extends to real numbers T by absorbing a number of size at
most 1 on each side into the error term.

We can now give the central lemma of this section. It is our version of
Hua’s inequality.

Lemma 5. Suppose that we are in the setting of Proposition 1. Define
the functions Si(α) as in (32) and the functions U(α, g) as in (33). Also let
K(α) be as in Lemma 1 with η = ε. Suppose that r is an integer satisfying
r ≥ 2k+ 1. Then for 1 ≤ n ≤ r, let wn be an integer satisfying 2 ≤ wn ≤ k
and let

hn(x) = γnwnx
wn + γn(wn−1)x

wn−1 + . . .+ γn1x

be a real polynomial with zero constant term, where γnwn 6= 0 for 1 ≤ n ≤ r.
Let

V =
r∑

n=1

1
wn

.

Then

(51)
�

R

( 2t∏

i=1

|Si(α)|
)( r∏

n=1

|U(α, hn, P 1/wn)|
)
K(α) dα� (P1 . . . Pt)2P V−1.

We note that for many applications of such an inequality, a weaker bound
of the type (P1 . . . Pt)2P V−1+η, where this holds for any small positive num-
ber η, would be sufficient. Such a bound does not suffice for our purposes
however, since we are using some of the techniques of Bentkus and Götze.

Proof of Lemma 5. We essentially use the Hardy–Littlewood method, in
a way which is not exactly standard. Thus we shall give the whole proof.

Observe that r∑

n=1

1
V wn

= 1.

Thus by Hölder’s inequality, and the fact that K(α) is positive, we may see
that the integral in (51) satisfies

�

R

( 2t∏

i=1

|Si(α)|
)( r∏

n=1

|U(α, hn, P 1/wn)|
)
K(α) dα

�
r∏

n=1

( �

R

( 2t∏

i=1

|Si(α)|
)
|U(α, hn, P 1/wn)|V wnK(α) dα

)1/(V wn)
.
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Therefore, in order to prove the lemma, it suffices to show that

(52)
�

R

( 2t∏

i=1

|Si(α)|
)
|U(α, hn, P 1/wn)|V wnK(α) dα� (P1 . . . Pt)2P V−1

for 1 ≤ n ≤ r.
We thus fix n with 1 ≤ n ≤ r and prove (52). Fix as well a positive num-

ber η, which we shall later choose to be sufficiently small. For convenience
of notation throughout the proof, we set

u = wn.

Recall the definition (11) of φ. We now give some other definitions. For
integers q and a1, . . . , au with q ≥ 1, we write a = (a1, . . . , au) and define

N (q,a) = {α ∈ R : |γnjαq − aj | < P φ−j/u for 1 ≤ j ≤ u}.
For any integers q and au with q ≥ 1, we define

N0(q, au) = {α ∈ R : |γnuαq − au| < P φ−1}.
Now, set

N =
⋃

1≤q≤Pφ

⋃

a:(q,au,...,a1)=1
(q,au,...,a2)≤2u2

N (q,a).

For the purposes of this lemma, we think of N as a version of the major
arcs. Now we define a corresponding version of the minor arcs, namely the
set

n = R \ N .
We show first that

(53)
�

n

( 2t∏

i=1

|Si(α)|
)
|U(α, hn, P 1/u)|uVK(α) dα� (P1 . . . Pt)2P V−1.

In fact, we show that the left side is strictly smaller in order than the right
side, although this is not needed.

Suppose now that α ∈ n, and that |U(α, hn, P 1/u)| ≥ P 1/u−φ/u+η. We
can then apply Lemma 2 with N = P 1/u, with γ = P−φ/u+η and k = u,
and with αj = αγnj . Note that we have assumed u ≥ 2. We obtain integers
q, a1, . . . , au with

1 ≤ q ≤ P φ, |γnjαq − aj | < P φ−j/u for 1 ≤ j ≤ u,
and

(q, au, . . . , a2) ≤ 2u2, (q, au, . . . , a1) = 1.

But then α ∈ N , which contradicts the assumption α ∈ n. Therefore

|U(α, hn, P 1/u)| ≤ P 1/u−φ/u+η for α ∈ n.
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It follows from Lemma 3 that

(54)
�

n

( 2t∏

i=1

|Si(α)|
)
|U(α, hn, P 1/u)|uVK(α) dα

� sup
α∈n
|U(α, hn, P 1/u)|uV

�

n

( 2t∏

i=1

|Si(α)|
)
K(α) dα

� P V−V φ+uV ηP1 . . . Pt.

Now, by (28), we have

P V−V φ+uV ηP1 . . . Pt = PΓ (P1 . . . Pt)2,(55)

where

Γ = V − V φ+ uV η −
t∑

i=1

κi.

By (31), for sufficiently small η we have

Γ < V − V φ− 1 + (2k + 1)φ/k.

Observe that

V =
r∑

n=1

1
wn
≥

r∑

n=1

1
k
≥ 2k + 1

k
.(56)

Thus
Γ < V − 1.

By (54) and (55), the bound (53) follows.
To obtain the bound (52) and thus to finish the proof of the lemma, it

remains only to prove that

(57)
�

N

( 2t∏

i=1

|Si(α)|
)
|U(α, hn, P 1/u)|uVK(α) dα� (P1 . . . Pt)2P V−1.

We make a few observations which enable us to prove this bound.
First, suppose that α ∈ N (q,a) ⊆ N . We may see from (11) that uφ ≤

kφ < 1. Moreover, P is large, so we may apply Lemma 4 with k = u and
N = P 1/u, and thus we obtain

U(α, hn, P 1/u) =
S(q)
q

P 1/u�

0

e(g(y)) dy +O(q1−1/u+η),

where

βj = γnjα−
aj
q

for 1 ≤ j ≤ u, g(y) =
u∑

j=1

βjy
j ,

G(x) =
u∑

j=1

ajx
j , S(q) =

q∑

v=1

e

(
G(v)
q

)
.



Additive inhomogeneous Diophantine inequalities 233

By Theorems 7.1 and 7.3 of [18], for α ∈ N (q,a) ⊆ N , we therefore have

U(α, hn, P 1/u)

� q−1/u+ηP 1/u(1 + |β1|P 1/u + |β2|P 2/u + . . .+ |βu|P )−1/u + q1−1/u+η.

It certainly follows that

U(α, hn, P 1/u)� q−1/u+η(min(P 1/u, |βu|−1/u) + q),

whence also

U(α, hn, P 1/u)uV � q−V+uV η((min(P 1/u, |βu|−1/u))uV + quV ).(58)

For any integers q and au with q ≥ 1, define

R(q, au) =
⋃
N (q,a),

where the union is taken over all integer (u − 1)-tuples (a1, a2, . . . , au−1)
such that

(q, au, . . . , a1) = 1 and (q, au, . . . , a2) ≤ 2u2.

Then we certainly have

R(q, au) ⊂ N0(q, au).(59)

We need to make one more observation. Suppose that α ∈ N (q,a) ⊆ N .
Then |γnuαq − au| < P φ−1. But γnu is non-zero, as the polynomial hn has
degree u. One certainly has φ < 1, whence for non-zero au and sufficiently
large P we have

|α| ≥ |au|
2q|γnu|

� |au|
q
.(60)

Note on the other hand that this statement trivially follows if au = 0. So it
holds regardless of the value of au.

We now consider the integral in (57). By the definitions of N and
R(q, au), by trivial bounds, and by noting that K is positive, we have

�

N

( 2t∏

i=1

|Si(α)|
)
|U(α, hn, P 1/u)|uVK(α) dα

� (P1 . . . Pt)2
∑

1≤q≤Pφ

∑

au∈Z

�

R(q,au)

|U(α, hn, P 1/u)|uVK(α) dα.

Now for α ∈ R(q, au), one has α ∈ N (q,a) for some integers a1, . . . , au−1
which satisfy the conditions (q, au, . . . , a1) = 1 and (q, au, . . . , a2) ≤ 2u2.
Thus (60) holds, whence by the bound (26) we have

(61)
�

N

( 2t∏

i=1

|Si(α)|
)
|U(α, hn, P 1/u)|uVK(α) dα

� (P1 . . . Pt)2
∑

1≤q≤Pφ

∑

au∈Z
min(1, |au|−2q2)

�

R(q,au)

|U(α, hn, P 1/u)|uV dα.
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Now for α ∈ R(q, au) and q ≤ P φ, we have α ∈ N (q,a) for some integers
a1, . . . , au−1 satisfying the conditions (q, au, . . . , a1) = 1 and (q, au, . . . , a2) ≤
2u2, so the bound (58) holds. Using also (59) and the fact that q ≤ P φ, we
obtain

�

R(q,au)

|U(α, hn, P 1/u)|uV dα

�
�

N0(q,au)

q−V+uV η((min(P 1/u, |βu|−1/u))uV + quV ) dα

�
q−1Pφ−1�

0

q−V+uV η((min(P 1/u, β−1/u
u ))uV + quV ) dβu

� q−V+uV η
[ P−1�

0

P V dβu +
∞�

P−1

β−Vu dβu + quV−1Pφ−1
]

� q−V+uV η[P V−1 + P uV φ−1],

as we have V > 1 certainly, from (56). But uφ ≤ kφ < 1, whence
�

R(q,au)

|U(α, hn, P 1/u)|uV dα� q−V+uV ηP V−1.

By combining with (61), we have

�

N

( 2t∏

i=1

|Si(α)|
)
|U(α, hn, P 1/u)|uVK(α) dα

� (P1 . . . Pt)2
∑

1≤q≤Pφ

∑

au∈Z
min(1, |au|−2q2)q−V+uV ηP V−1

� (P1 . . . Pt)2P V−1
∑

1≤q≤Pφ
q−V+uV η

[ q∑

au=0

1 +
∞∑

l=1

(l+1)q∑

au=lq+1

1
l2

]

� (P1 . . . Pt)2P V−1
∑

1≤q≤Pφ
q1−V+uV η

� (P1 . . . Pt)2P V−1

for sufficiently small η, since V > 2 from (56). If we recall that we have
already established the bound (53), the proof of Lemma 5 is complete.

5. An analogue of Weyl’s inequality. We now proceed to establish
an analogue of Weyl’s inequality. (For the traditional Weyl inequality, see,
for example, Lemma 2.4 of [18].) Our aim is to show, following the method
of [2], that there is a function T (P ), which tends to infinity as P tends to
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infinity, such that we have

sup
P δ−1≤|α|≤T (P )

|U1(α,P )U2(α,P )| = o(P 1/w1+1/w2).(62)

We now give a lemma which allows us to find good rational approxima-
tions to the coefficients of a polynomial if the corresponding exponential sum
is large in absolute value. In the following lemma, it is crucial to eliminate
extra factors of Nη that might appear on the right side of the first inequality
in (65). When using the ideas of Bentkus and Götze, it is crucial to elimi-
nate this extra factor. Otherwise, we could simply quote Theorem 5.1 of [1].
We note that an observation by Professor Wooley has enabled us to give a
much shorter proof. The following proof is based on his ideas, and I am very
grateful to him for pointing out the improvement.

Lemma 6. Suppose that k is a positive integer and that r(x) is a poly-
nomial of degree k with real coefficients. We write

r(x) = λkx
k + λk−1x

k−1 + . . .+ λ1x+ λ0.

Fix any positive number η. Suppose as well that N is a positive number
which is sufficiently large in terms of k and η. Define the exponential sum

S(N) =
∑

1≤x≤N
e(r(x)).

Suppose that γ is a positive number for which

|S(N)| ≥ γN.(63)

Then there are positive constants C4 and C5, each of which depends only
on k, such that if γ satisfies

Nη max(N−21−k
, N−1/(k+1)) ≤ γ ≤ 1,(64)

then there exists a positive integer q and integers a1, . . . , ak, satisfying
(a1, . . . , ak, q) = 1 with

q < C4γ
−k−2k2η, |λj − aj/q| < C5γ

−kN−j for 1 ≤ j ≤ k.(65)

We observe that the case k = 1 of Lemma 6 can be proved easily from
the standard estimate ∑

1≤x≤N
e(λ1x)� min(N, ‖λ1‖−1).

In fact, in this case, one can prove a much stronger result, namely that if
(63) holds, then ‖λ1‖ � γ−1N−1. In this case, we can replace (64) with the
simple condition that γ is a positive number. Thus we no longer consider
the case k = 1.

Proof of Lemma 6. We may clearly assume that η ≤ 1/(2k). As
γ ≥ N−21−k+η, we can apply Theorem 5.1 of [1], whence there are integers
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q, a1, . . . , ak with

(66) (a1, . . . , ak, q) = 1, 1 ≤ q < γ−kNη,

|λjq − aj | < γ−kNη−j for 1 ≤ j ≤ k.
For real vectors β = (β1, . . . , βk), positive integers q and integral vectors
a = (a1, . . . , ak), define

I(β ) =
N�

0

e(β1γ + β2γ
2 + . . .+ βkγ

k) dγ,

S(q,a) =
q∑

x=1

e

(
a1x+ a2x

2 + . . .+ akx
k

q

)
.

Then, if we write βj = λj − aj/q for 1 ≤ j ≤ k, by Theorem 7.2 of [18], it
follows that

S(N) = q−1S(q,a)I(β ) +O
(
q
(

1 +
k∑

j=1

|βj|N j
))
.

By (66), it follows that

S(N) = q−1S(q,a)I(β ) +O(γ−kNη).

As γ ≥ Nη−1/(k+1), for large N we must have

γN ≤ |S(N)| ≤ |q−1S(q,a)I(β )|.
By Theorems 7.1 and 7.3 of [18],

γN � qη−1/kN

(
1 +

k∑

j=1

∣∣∣∣λj −
aj
q

∣∣∣∣N j

)−1/k

,

whence

q1/k−η � γ−1, |λj − aj/q|N j � γ−k for 1 ≤ j ≤ k.
The proof of Lemma 6 follows.

From this point onward, we follow [13] quite closely, which we note was in
turn motivated by the work of Bentkus and Götze [2]. We have the following
lemma, which is similar to Lemma 3 of [13] and to Theorem 6.1 of [2]. The
proof follows that of Lemma 3 of [13] quite closely, so we omit it.

Lemma 7. Suppose that we are in the setting of Proposition 1. Suppose
that T0 and T are real numbers with 0 < T0 ≤ 1 ≤ T . Then

sup
T0≤|α|≤T

|U1(α,P )U2(α,P )| = o(P 1/w1+1/w2).

Now we give a result which is an almost exact analogue of Lemma 4
of [13]. The present lemma follows in much the same manner as Lemma 4
of [13], so we omit its proof.
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Lemma 8. Suppose that we are in the setting of Proposition 1. Then
there are positive real-valued functions T0(P ) and T (P ), depending only on
the coefficients µ1j1 and µ2j2, for which

lim
P→∞

T0(P ) = 0 and lim
P→∞

T (P ) =∞,(67)

and so that
P−δ ≤ T0(P ) ≤ 1 for P ≥ 3,(68)

and
sup

T0(P )≤|α|≤T (P )
|U1(α,P )U2(α,P )| = o(P 1/w1+1/w2).(69)

This completes our analogue of Weyl’s inequality for one part of the
minor arcs. We note that now we have chosen the function T (P ) which is
used to define the minor arcs.

Now we need to handle the remaining, easier, region of the minor arcs.
The following lemma is very similar to Lemma 5 of [13], and is proved in
much the same manner. We omit the proof.

Lemma 9. Suppose that we are in the setting of Proposition 1. Then

sup
P δ−1≤|α|≤T0(P )

|U1(α,P )| = o(P 1/w1).

6. The minor arcs and trivial arcs. We first apply our analogues of
Hua’s inequality and Weyl’s inequality to treat the minor arcs. We have the
following lemma.

Lemma 10. Suppose that we are in the setting of Proposition 1, and that
the functions Si(α) and Un(α) and K(α) are defined as above. Then

�

m

( 2t∏

i=1

|Si(α)|
)( m∏

n=1

|Un(α)|
)
K(α) dα = o(PW−1(P1 . . . Pt)2).

Proof. Observe first that

(70)
�

m

( 2t∏

i=1

|Si(α)|
)( m∏

n=1

|Un(α)|
)
K(α) dα

� (sup
α∈m
|U1(α,P )U2(α,P )|)

�

R

( 2t∏

i=1

|Si(α)|
)( m∏

n=3

|Un(α)|
)
K(α) dα.

The integral on the right side of (70) is O((P1 . . . Pt)2PW−1/w1−1/w2−1), by
Lemma 5. On the other hand, by applying Lemmas 8 and 9, and recalling
the definition (40) of m, we have

sup
α∈m
|U1(α,P )U2(α,P )| = o(P 1/w1+1/w2).

Inserting these two observations in the bound (70) proves Lemma 10.
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At this point, we treat the contribution to the integral (37) from the
trivial arcs. We first must state a slight generalization of a lemma due to
Davenport and Roth. (See Lemma 2 of [10].)

Lemma 11 (Davenport and Roth). Fix a positive number η. Let

F (α) =
∑

e(αf(x1, . . . , xs)),

where f is any real function of s variables, and the summation is over any
finite set of values of x1, . . . , xs. Define the function L by

L(α) =
(sin(πηα))2

π2α2η
.

Then for any real number A with A > 4/η, we have
�

|α|>A
|F (α)|2L(α) dα ≤ 16

ηA

�

R
|F (α)|2L(α) dα.

We observe that in the case η = 1, the lemma is exactly Lemma 2 of [10].
The proof of the general case can be deduced easily from the case η = 1 by
a change of variable, so we omit the details.

Now we can complete the treatment of the trivial arcs. We have the
following result.

Lemma 12. Suppose that we are in the setting of Proposition 1, and that
the functions Si(α) and Un(α) and K(α) are defined as above. Then

�

t

( 2t∏

i=1

|Si(α)|
)( m∏

n=1

|Un(α)|
)
K(α) dα = o(PW−1(P1 . . . Pt)2).(71)

Proof. Recall from the statement of Proposition 1 that m = 2k+4. Thus
we may use Hölder’s inequality and the fact that K(α) is positive to see that
the left hand side of (71) is

�
( �

|α|>T (P )

( t∏

i=1

|Si(α)|2
)(m/2∏

n=1

|Un(α)|2
)
K(α) dα

)1/2
(72)

×
( �

|α|>T (P )

( 2t∏

i=t+1

|Si(α)|2
)( m∏

n=m/2+1

|Un(α)|2
)
K(α) dα

)1/2
.

We will show only that

(73)
�

|α|>T (P )

( t∏

i=1

|Si(α)|2
)(m/2∏

n=1

|Un(α)|2
)
K(α) dα

= o(P (
∑m/2
n=1 2/wn)−1(P1 . . . Pt)2).
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One can show the corresponding bound

�

|α|>T (P )

( 2t∏

i=t+1

|Si(α)|2
)( m∏

n=m/2+1

|Un(α)|2
)
K(α) dα

= o(P (
∑m
n=m/2+1 2/wn)−1(P1 . . . Pt)2)

for the other integral in (72) in a very similar fashion, so we omit that part
of the proof.

Note that our choice of K(α), made using Lemma 1, is of course exactly
the function L(α) of Lemma 11 with η = ε. Thus, for sufficiently large P , if
we recall that T (P ) tends to infinity as P tends to infinity, Lemma 11 yields

�

|α|>T (P )

( t∏

i=1

|Si(α)|2
)(m/2∏

n=1

|Un(α)|2
)
K(α) dα

�ε
1

T (P )

�

R

( t∏

i=1

|Si(α)|2
)(m/2∏

n=1

|Un(α)|2
)
K(α) dα.

Combining this bound with Lemma 5 yields

�

|α|>T (P )

( 2t∏

i=1

|Si(α)|2
)(m/2∏

n=1

|Un(α)|2
)
K(α) dα

� 1
T (P )

(P1 . . . Pt)2P (
∑m/2
n=1 2/wn)−1;

observe that here we have used the special case of Lemma 5 in which
λ(t+i)j = λij for 1 ≤ i ≤ t and 1 ≤ j ≤ vi. But T (P ) was chosen in
Lemma 8 to satisfy limP→∞ T (P ) = ∞, whence the bound (73) follows.
Therefore the proof of Lemma 12 is complete.

7. The major arc. We now come to the contribution of the major arc
to the integral (37). We show that

�

M

( 2t∏

i=1

Si(α)
)( m∏

n=1

Un(α)
)
e(−Mα)K(α) dα� (P1 . . . Pt)2PW−1(74)

for sufficiently large P . This will complete the proof of Proposition 1, in view
of Lemmas 10 and 12. The following treatment is largely very standard, but
we give the proof for the sake of completeness.

We start off by applying Lemma 4 to the generating functions Un(α).
For α ∈M, we have |α| ≤ P δ−1. From (38), we have δ < 1/k ≤ 1/wn. Thus



240 D. E. Freeman

for α ∈ M, for 1 ≤ n ≤ m, and for large P , we certainly have

|αµnj| ≤
P (1−j)/wn

2w2
n

for 1 ≤ j ≤ wn.

Therefore, for α ∈M and 1 ≤ n ≤ m, Lemma 4 yields

Un(α) = In(α) +O(1),

where

In(α) =
P 1/wn�

0

e
( wn∑

j=1

αµnjx
j
)
dx.

It follows by a telescoping series argument that for α ∈ M,
m∏

n=1

Un(α) =
m∏

n=1

In(α) +O(PW−1/k).

Using this approximation, trivial estimates and the bound (26), we obtain

(75)
�

M

( 2t∏

i=1

Si(α)
)( m∏

n=1

Un(α)
)
e(−Mα)K(α) dα

=
�

M

( 2t∏

i=1

Si(α)
)( m∏

n=1

In(α)
)
e(−Mα)K(α) dα

+O((P1 . . . Pt)2PW−1+δ−1/k).

But now, using (26), trivial estimates and Theorem 7.3 of [18], we also
have

(76)
�

R\M

( 2t∏

i=1

Si(α)
)( m∏

n=1

In(α)
)
e(−Mα)K(α) dα

� (P1 . . . Pt)2
�

R\M

m∏

n=1

|µnwnα|−1/wn dα

� (P1 . . . Pt)2(P δ−1)1−W

� (P1 . . . Pt)2PW−1P δ(1−W );

here we have used the fact that W > 1, which clearly follows from (36).
Combining (75) and (76) and using (38), we have

�

M

( 2t∏

i=1

Si(α)
)( m∏

n=1

Un(α)
)
e(−Mα)K(α) dα

=
�

R

( 2t∏

i=1

Si(α)
)( m∏

n=1

In(α)
)
e(−Mα)K(α) dα+ o((P1 . . . Pt)2PW−1).
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Thus to prove that (74) holds for large P , it suffices to show that for large P
we have

(77)
�

R

( 2t∏

i=1

Si(α)
)( m∏

n=1

In(α)
)
e(−Mα)K(α) dα� (P1 . . . Pt)2PW−1.

Now, by (26) and trivial estimates, the integral on the left side of (77) is
absolutely convergent. Thus we may rewrite this integral as

∑

P1≤x1,xt+1≤2P1

. . .
∑

Pt≤xt,x2t≤2Pt

�

∏m
n=1[0,P 1/wn ]

�

R

e(α(f1(x1) + . . .+ f2t(x2t) + g1(y1) + . . .+ gm(ym)−M))K(α) dαdy.

Therefore, by the identity (25), we may see that the integral on the left side
of (77) is bounded below by

1
2

∑

P1≤x1,xt+1≤2P1

. . .
∑

Pt≤xt,x2t≤2Pt

�

R
dy,

where one defines R = R(x1, . . . , x2t) to be the set
{

y ∈
m∏

n=1

[0, P 1/wn] :
∣∣∣

2t∑

i=1

fi(xi) +
m∑

n=1

gn(yn)−M
∣∣∣ < ε

2

}
.

So to prove (77), it is enough to show that for all choices of (2t)-tuples
(x1, . . . , x2t) with Pi ≤ xi, xt+i ≤ 2Pi for 1 ≤ i ≤ t,

µ(R(x1, . . . , x2t))� PW−1,(78)

where µ denotes m-dimensional measure. We turn now to proving the bound
(78) in each case of Proposition 1.

Consider case (i) of Proposition 1. Recall that we have assumed that
condition (14) holds, namely that

2t∑

i=1

vi∑

j=1

|λij |+
m∑

n=3

wn∑

j=1

|µnj| ≤
µ1w1

2k+3 .

Recall as well from (29) that P vii ≤ P for 1 ≤ i ≤ t. It follows that given any
real vectors x ∈ R2t and y = (y2, . . . , ym) ∈ Rm−1 with Pi ≤ xi, xt+i ≤ 2Pi
for 1 ≤ i ≤ t and with 0 ≤ yn ≤ P 1/wn for 2 ≤ n ≤ m, for sufficiently large
P we have

∣∣∣
2t∑

i=1

fi(xi) +
m∑

n=3

gn(yn) +
w2−1∑

j=1

µ2jy
j
2

∣∣∣ ≤ µ1w1P

8
.(79)

Now fix any integer vector x ∈ Z2t and real vector (y3, . . . , ym) with

Pi ≤ xi, xt+i ≤ 2Pi for 1 ≤ i ≤ t, 0 ≤ yn ≤ P 1/wn for 3 ≤ n ≤ m.
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Then consider any real number y2 satisfying

(7/12)1/w2P 1/w2 ≤ y2 ≤ (2/3)1/w2P 1/w2.

Recall that we have assumed in case (i) of Proposition 1 that µ2w2 is negative.
Thus we have

− 7
12
µ2w2P ≤ −µ2w2y

w2
2 ≤ −

2
3
µ2w2P.

Recall also the condition 1 ≤ |µ1w1/µ2w2 | ≤ 2 from case (i) of the proposi-
tion. It follows that

7
24
µ1w1P ≤ −µ2w2y

w2
2 ≤

2
3
µ1w1P.

Also, recall from (15) that we have assumed |M | ≤ (µ1w1P )/8, whence from
(79) we have

1
24
µ1w1P ≤

(
M − g2(y2)−

2t∑

i=1

fi(xi)−
m∑

n=3

gn(yn)
)
≤ 11

12
µ1w1P.

It follows for large P that there is a real number y1 with

(1/25)1/w1P 1/w1 ≤ y1 ≤ (12/13)1/w1P 1/w1

which satisfies

g1(y1) = M − g2(y2)−
2t∑

i=1

fi(xi)−
m∑

n=3

gn(yn).

Now, for this choice of y1 and any real number L with |L| ≤ 1, and for
sufficiently large P , we have

|g1(y1 + L)− g1(y1)| � LP 1−1/w1.

Thus it follows that for each choice as above of (x1, . . . , x2t, y2, . . . , yn), there
is an interval I ⊆ [0, P 1/w1] of choices y1 of length �ε P

1/w1−1 for which

∣∣∣
2t∑

i=1

fi(xi) +
m∑

n=1

gn(yn)−M
∣∣∣ < ε

2
.

Thus for each fixed choice of (x1, . . . , x2t) as above, there is a set of m-
dimensional measure

�ε P
1/w1−1P 1/w2

m∏

n=3

P 1/wn �ε P
W−1

which is contained in R. This completes our proof in case (i).
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The proof of case (ii) of Proposition 1 is similar, and in fact slightly more
simple, so we omit it. In both cases of Proposition 1, it follows that the
contribution to the integral (37) from the major arc is � (P1 . . . Pt)2PW−1.
As noted above, this is enough to complete the proof of Proposition 1. As
also observed above, this completes the proof of Theorems 1 and 2.
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