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1. Introduction. Let F (X,Y ) be an absolutely irreducible polynomial
with integer coefficients of degree ≥ 2 such that the curve C defined by the
equation F (X,Y ) = 0 is rational. Let Q be an algebraic closure of the field
Q of rational numbers and Q(C) the function field of C over Q. Consider
the valuation ring V∞ of Q(X) consisting of all elements f(X)/g(X) such
that deg f ≤ deg g. We denote by C∞ the set of discrete valuation rings of
Q(C) lying above V∞. We call an element V of C∞ defined over a subfield
k of Q if τ(V ) = V for every τ ∈ Gal(k/k). Furthermore, we say that two
elements V and W of C∞ are conjugate over a quadratic field k if V and W
are defined over k and there is σ ∈ Gal(Q/Q) which is not the identity on k
such that σ(V ) = W . Finally, we denote by C(Z) the set of integer solutions
to the equation F (X,Y ) = 0.

In the case where |C∞| ≥ 3, E. Maillet [8], [9] proved that C(Z) is finite
(see also [6, Theorem 6.1, p. 146] and [7, Chapter 8, Section 5]). The first
explicit upper bound for the elements of C(Z) was obtained in [13] by using
Baker’s method. For a more recent result see [17]. Furthermore, a practical
method for the explicit determination of all elements of C(Z) is obtained in
[18]. Let us consider the case where |C∞| ≤ 2. In [19], a practical method for
the explicit determination of all elements of C(Z) is given. Note that in this
case C(Z) may have infinitely many elements. A necessary and sufficient
condition for C to have infinitely many integer points is obtained in [19].
More precisely the following result has been proved:

Theorem A. The set C(Z) is infinite if and only if one of the following
two conditions is satisfied:

(a) C∞ consists of one element and C(Z) has at least one simple point.
(b) C∞ consists of two elements which are conjugate over a real quadratic

field and C(Z) has at least one simple point.
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Thus it is natural to ask for an estimate for the size of the smallest
simple integer point on a rational curve F (X,Y ) = 0 satisfying (a) or (b).
The purpose of this paper is to provide such an estimate. Moreover, in
the case where C∞ has only two elements which are defined over Q or are
conjugate over a complex quadratic field, we calculate a bound for the size
of all integer points on the rational curve F (X,Y ) = 0.

Let d be the g.c.d. of the coefficients of F (X,Y ). We define the height
H(F ) of F (X,Y ) to be the maximum of |f |/d over all the coefficients f of
F (X,Y ). Finally, we set N = max{degX F,degY F}. We prove the following
results:

Theorem 1.1. Suppose that |C∞| = 1 and C(Z) has at least one simple
point. Then there is a simple point (x, y) of C(Z) satisfying

max{|x|, |y|} < (5N6eNH(F )2)72N9
.

Theorem 1.2. Suppose that |C∞| = 2. We have the following three
cases:

(i) If the two elements of C∞ are defined over Q, then the points (x, y) ∈
C(Z) satisfy

max{|x|, |y|} < (5N6eNH(F )2)1360N11
.

(ii) If the two elements of C∞ are conjugate over a complex quadratic
field , then the points (x, y) ∈ C(Z) satisfy

max{|x|, |y|} < (5N6eNH(F )2)682N11
.

(iii) If the two elements of C∞ are conjugate over a real quadratic field
and C(Z) has at least one simple point , then there is a simple point (x, y)
of C(Z) satisfying

max{|x|, |y|} < exp{(5N 6eNH(F )2)24000N13}.
In case (i) of Theorem 1.2, when the homogeneous part of higher degree of

F (X,Y ) has the form a0(a1X+a2Y )µ(a3X+a4Y )ν , [2] and [24, Theorem 1]
imply a sharper estimate. Similarly, in case (ii), when the homogeneous part
of higher degree of F (X,Y ) has the form a0(a1X

2 + a2Y X + a3Y
2)ν with

a2
2 − 4a1a3 < 0, we obtain from [15, Theorem 3] a sharper bound. Let
Fh(X,Y,Z) be the homogenization of F (X,Y ). We recall that the points
(x : y : 0) of the projective plane with Fh(x, y, 0) = 0 are called points of C
at infinity. If the points of C at infinity, in cases (i) and (ii) of Theorem 1.2,
are simple then the homogeneous part of highest degree of F (X,Y ) has the
above form, respectively.

The aforementioned theorems generalise the results of [4] and [20] on
the smallest integer points of conics. Note that Theorem 2 of [4] shows that
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the existence of the exponential function in the bound of Theorem 1.2(iii)
is inavoitable.

The present paper is organised as follows. In Section 2, we obtain an
effective basis for the Riemann–Roch space of the divisor defined by the
sum of elements of C∞. In Section 3, we give some lemmas which will be
used for the proof of our results. Finally, Sections 4 and 5 are devoted to
the proofs of Theorems 1.1 and 1.2, respectively.

2. Construction of a Riemann–Roch basis. Let k be an algebraic
number field of degree d. We consider the set of standard absolute values
on Q containing the ordinary absolute value | · | and for every prime p the
p-adic absolute value | · |p. If x = pra/b, where a, b are integers not divisible
by p, then by definition |x|p = p−r. We denote by M(k) the set of symbols
v such that with every v ∈ M(k) there is associated precisely one absolute
value | · |v on k which extends one of the above absolute values of Q. For
every v ∈M(k) we denote by dv the local degree of the absolute value | · |v.
Thus for every a ∈ k \ {0} we have the product formula

∏

v∈M(k)

|a|dvv = 1.

Furthermore, we denote by M0(k) and M∞(k) the subsets of M(k) consist-
ing of the symbols v such that | · |v is a nonarchimedean and archimedean
absolute value, respectively.

If x = (x0 : . . . : xr) is a point of the projective space Pr(k) over k, then
we define the field height Hk(x) of x by

Hk(x) =
∏

v∈M(k)

max{|x0|v, . . . , |xr|v}dv

and the absolute height H(x) by H(x) = Hk(x)1/d. Further, for x ∈ k we
define Hk(x) = Hk((1 : x)) and H(x) = H((1 : x)). For G ∈ k[X1, . . . ,Xm],
we define the field height Hk(G) and the absolute height H(G) of G as the
field height and the absolute height of the point whose coordinates are the
coefficients of G (in any order). If | · |v is an absolute value of k, then we let
|G|v be the maximum of |g|v over all the coefficients g of G. For x ∈ Pr(Q),
there are relatively prime integers z0, . . . , zr such that x = (z0 : . . . : zr)
and it follows that H(x) = max{|z0|, . . . , |zr|}. Thus the definition of the
height of F (X,Y ) given in the Introduction is consistent with the above
definition. For an account of the properties of heights see [23, Chapter VIII]
or [7, Chapter 3].

A k-system is a system {Av}v∈M(k) of real numbers such that Av ≥ 1,
Av = 1 for all but finitely many v and Av lies in the value group of | · |v
when | · |v is nonarchimedean. The field norm of such a system is defined to
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be
Nk{Av} =

∏

v∈M(k)

Advv .

Lemma 2.1. Let F (X,Y ) be a polynomial in Z[X,Y ], without multiple
factors, of degree n ≥ 2 in Y and of degree m ≥ 1 in X. Let y(X) = c0 +
c1X+ . . . be a power series satisfying F (X, y(X)) = 0. Then the coefficients
c0, c1, . . . generate a number field K of degree δ ≤ n and there are K-systems
{Av}v∈M(K) and {Bv}v∈M(K) with

NK{Av} ≤ (3e6n2
nn((m+ 1)2(n+ 1)H(F )2)2n−1)δ

and
NK{Bv} ≤ (3H(F )2)δ

such that for every v ∈M(K),

|cj |v ≤ Aj+mv (j = 0, 1, . . .).

Proof. We may suppose, without loss of generality, that the coefficients
of F (X,Y ) are relatively prime. A well-known theorem of Eisenstein asserts
that there exist positive integers a0 and a such that a0a

jcj is an algebraic
integer for all j. By [1], we have

a < ((m+ 1)H(F ))2n−1e6n2

and a0 = λar, where λ is a positive integer with λ ≤ |αr|. Let K be the field
generated by the coefficients c0, c1, . . . Since for every element σ∈Gal(Q/Q)
we have a series yσ(X) = σ(c0)+σ(c1)X+. . . which is still a root of F (X,Y ),
it follows that the degree of K is at most n.

For every v ∈M0(K), we put Av = 1/|a|v and Bv = 1/|λ|v. Then

|cj|v ≤ BvAj+mv (j = 0, 1, . . .).

For all but finitely many v ∈ M0(K), we have Av = Bv = 1 and Av, Bv lie
in the value group of | · |v. Furthermore, the product formula gives

∏

v∈M0(K)

Advv =
∏

v∈M∞(K)

|a|dvv ≤ (((m+ 1)H(F ))2n−1e6n2
)δ

and ∏

v∈M0(K)

Bdv
v =

∏

v∈M∞(K)

|λ|dvv ≤ |ar|δ.

Following the method of [21] and using [10, Corollary 2], we obtain

|cj| < 2m+j3H(F )(1 + ((m+ 1)(n+ 1)
√
nH(F ))2n−1)m+j (j = 0, 1, . . .).

Thus, given v ∈M∞(K), we have

|cj|v ≤ BvAj+mv (j = 0, 1, . . .),
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where

Av = 2 + 2((m+ 1)(n+ 1)
√
nH(F ))2n−1 and Bv = 3H(F ).

Finally, we conclude that the norms of the K-systems {Av}v∈M(K) and
{Bv}v∈M(K) satisfy the inequalities

NK{Av} ≤ (3e6n2
nn((m+ 1)2(n+ 1)H(F )2)2n−1)δ

and
NK{Bv} ≤ (3H(F )2)δ.

Let F (X,Y ) be an absolutely irreducible polynomial with integer coeffi-
cients. We assume that F (X,Y ) is of degree m ≥ 1 in X and of degree n ≥ 2
in Y . We denote by C the curve defined by the equation F (X,Y ) = 0. Let
Σ(C) be the set of discrete valuation rings W of the function field Q(C) of
C such that Q ⊂W . A divisor D on C is a formal sum

D = a1W1 + . . .+ asWs,

where a1, . . . , as ∈ Z and W1, . . . ,Ws are pairwise distinct elements of Σ(C).
Given f ∈ Q(C) and W ∈ Σ(C), we denote by ordW (f) the order of
the function f at W . Let L(D) be the set of functions f ∈ Q(C) having
ordWi(f) ≥ −ai and ordW (f) ≥ 0 for every W ∈ Σ(C), with W 6= Wi

(i = 1, . . . , s). Then L(D) is a finite-dimensional vector space over Q (see
[5]).

Proposition 2.1. Suppose C has genus zero and C∞ = {V1, . . . , Vr}.
Put N = max{m,n} and E = V1 + . . . + Vr. Then there are polynomials
gi(X,Y ) (i = 1, . . . , r + 1) and q(X) with integer coefficients satisfying

deg q < N2, degX gi < 4N2, degY gi < N (i = 1, . . . , r + 1)

and

H(q) < (6N3H(F ))2N3
, H(gi) < H(F )67N6

(5N6eN )34N6
(i = 1, . . . , r+1)

such that the fractions g1(X,Y )/q(X), . . . , gr+1(X,Y )/q(X) represent a ba-
sis of the space L(E).

Proof. By the Riemann–Roch theorem, dimL(E) = r + 1. Theorem A2
of [22] implies that there are polynomials g1(X,Y ), . . . , gr+1(X,Y ) and q(X)
satisfying

deg q ≤ N(N − 1), degX gi < 4N2, degY gi < N (i = 1, . . . , r + 1)

such that the fractions g1(X,Y )/q(X), . . . , gr+1(X,Y )/q(X) represent a ba-
sis of the space L(E). Furthermore, since the divisor E is defined over Q,
Theorem B2 of [22] shows that we may take the polynomials g1(X,Y ), . . . ,
gr+1(X,Y ) and q(X) to have integer coefficients. Replacing Lemma 21 of
[22] by the above Lemma 2.1 and making all the necessary changes in the
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next lemmas, we deduce that the vectors δ1, . . . , δn of Lemma 26 of [22]
satisfy

H(δi) < (5N6eNH(F )2)33N6
(i = 1, . . . , n).

The equalities (A.5.6), (B.3.1) of [22] and the bound for H(δi) give the
bound for H(gi).

Let FY (X,Y ) be the partial derivative of F (X,Y ) with respect to Y .
We denote by R(X) the resultant of F (X,Y ) and FY (X,Y ) with respect to
Y . By [22, Lemma 4],

H(R) < (3N3H(F ))2N−1.

Let D(X) be the discriminant of F (X,Y ) considered as a polynomial with
coefficients in Z[X]. By [22, Theorem A2], the roots of q(X) are among the
roots of D(X). We may assume, without loss of generality, that

q(X) = (X − a1) . . . (X − as),
where s ≤ N(N − 1). Since D(X) divides R(X), we have R(ai) = 0 (i =
1, . . . , r). Thus [14, Lemma 4] and [23, Theorem 5.9, p. 211] give

H(q) ≤ 2N(N−1)H(a1) . . .H(as) < (4H(R))N(N−1).

Finally, using the bound for H(R), we obtain

H(q) < (6N3H(F ))2N3
.

3. Auxiliary results. In this section we give some results which will
be used in the proofs of Theorems 1.1 and 1.2.

Lemma 3.1 ([16, Lemma 3.2]). Let P (X,Y, V ), Q(X,Y,W ) be polyno-
mials in Z[X,Y, V,W ]\Z. Denote by R(X,V,W ) the resultant of P (X,Y, V )
and Q(X,Y,W ), considered as polynomials with coefficients in Z[X,V,W ].
Put degX P = m1, degY P = n1, degV P = r1 and degX Q = m2, degY Q =
n2, degW Q = r2. Assume that R(X,V,W ) 6= 0. Then

H(R) ≤ (n1 + n2)!((r1 + 1)(m1 + 1))n2((r2 + 1)(m2 + 1))n1H(P )n2H(Q)n1.

Lemma 3.2 ([7, Proposition 2.4, p. 57]). Let f and g be two polynomials
in n variables with integer coefficients and deg f + deg g < d. Then

4−d
n
H(fg) ≤ H(f)H(g) ≤ 4d

n
H(fg).

Lemma 3.3 ([20]). Let G(X,Y ) = aX2 + bXY + cY 2 + dX + eY + f be
a nondegenerate conic with integer coefficients. Set δ = b2 − 4ac. Suppose
that (x, y) is an integer solution to G(X,Y ) = 0. If δ < 0, then

max{|x|, |y|} < 9H(G)2

and if δ > 0 is a perfect square, then

max{|x|, |y|} < 20H(G)4.
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Lemma 3.4 ([15, Lemma 7]). Let F (X,Y ) be a polynomial in Z[X,Y ]
of degree m > 0 in X and n > 0 in Y . Let x, y ∈ Q with F (x, y) = 0 and
degF (x, Y ) = n. Then

H(y) < 2(m+ 1)H(F )H(x)m.

Lemma 3.5 ([16, Lemma 5.1]). Let G(X,Y,Z) be a projective conic with
integer coefficients. Suppose that the equation G(X,Y,Z) = 0 has a solution
over Q. Then there are x, y, z ∈ Q with G(x, y, z) = 0 such that

H(x : y : z) < 30H(G).

Lemma 3.6. Let G(X,Y ) be a conic with integer coefficients. Suppose
that the equation G(X,Y ) = 0 has a solution (x, y) ∈ Q2. Then there are
polynomials f1(T ), f2(T ), f3(T ) ∈ Z[T ] of degree ≤ 2 such that the conic
G(X,Y ) has the parametrization

X =
f1(T )
f3(T )

, Y =
f2(T )
f3(T )

and the polynomials f1(T )− Sf3(T ), f2(T )− Sf3(T ) ∈ Z[T, S] satisfy

H(fi(T )− Sf3(T )) ≤ 3H(x, y, 1)H(G) (i = 1, 2).

Proof. Write

G(X,Y ) = αX2 + βXY + γY 2 + δX + εY + ζ = 0.

Setting Y = y + T (X − x) in the equation G(X,Y ) = 0, we obtain

X =
f1(T )
f3(T )

and Y =
f2(T )
f3(T )

,

where
f1(T ) = αxT 2 − (2αy + ε)T − βx− γy,
f2(T ) = (−αy + ε+ γx)T 2 − 2βxT + βy,

f3(T ) = T 2 + γT + β.

For every v ∈M(Q) we have

|fi(T )− Sf3(T )|v ≤ |G|vmax{|x|v, |y|v, 1}3e(v),

where e(v) = 1 if | · |v is archimedean and e(v) = 0 otherwise. Thus the
result follows.

Lemma 3.7. Let R(X,Z,W ) = R0(Z,W )Xµ+ . . .+Rµ(Z,W ) be a poly-
nomial in Z[X,Z,W ], M = max0≤i≤µ{degRi} and Ri,h(Z,W,U) the ho-
mogenization of Ri(Z,W ). Suppose that f(T ), g(T ), h(T ) ∈ Z[T ] with de-
grees ≤ 2. Set R′i(T ) = Ri,h(f(T ), g(T ), h(T ))h(T )M−degRi and R′(X,T ) =
R′0(T )Xµ + . . .+R′µ(T ). Then

H(R′) < 43M2+5M3M2H(R)H(Θ)M ,



258 D. Poulakis

where Θ is a point in the projective space with coordinates the coefficients
of f(T ), g(T ) and h(T ).

Proof. Let | · |v be an absolute value of Q. Using Propositions 2.1 and
2.3 of [7, Chapter 3], we obtain

|fkglhM−k−l|v < |fk|v|gl|v|hM−k−l|v4(3M2+5M)e(v),

where e(v) = 1 if | · |v is archimedean and e(v) = 0 otherwise. Thus

|R′i(T )|v < |R|vmax{|f |v, |g|v, |h|v}M (43M2+5M3M2)e(v),

which yields the required result.

Lemma 3.8. Let δ be a positive integer which is not a perfect square
and A any nonzero integer. Suppose that the equation X2 − δY 2 = A has
an integer solution (x0, y0). Let (a, b) be the fundamental solution of the
equation X2 − δY 2 = 1. Then there exists a fundamental solution (α, β) of
the equation X2− δY 2 = A such that for every positive integer M , there are
integers m, n with 0 ≤ m < n ≤M2 and solutions (zi, wi) of X2− δY 2 = A
given by

zi + wi
√
δ = (a+ b

√
δ)m+in(α+ β

√
δ) (i = 0, 1, . . .),

which satisfy

zi ≡ x0 (modM) and wi ≡ y0 (modM).

Proof. Let the solutions (ai, bi) (i = 0,±1,±2, . . .) of X2 − δY 2 = 1 be
defined by ai + bi

√
δ = (a+ b

√
δ)i. Considering (a1, b1), . . . , (aM2+1, bM2+1),

we see that there are at least two indices 1 ≤ j < s ≤ M 2 + 1 such that
(aj , bj) ≡ (as, bs) (modM), and so (an, bn) ≡ (1, 0) (modM), where n =
s − j. It follows that for every integer i we have ain ≡ 1 (modM) and
bin ≡ 0 (modM).

Let (α, β) be a fundamental solution of the equation X2− δY 2 = A and
k a positive integer such that

x0 + y0
√
δ = ±(a+ b

√
δ)k(α+ β

√
δ).

Write k = nq +m with 0 ≤ m < n. It follows that

x0 + y0
√
δ = (c+ d

√
δ)(aqn + bqn

√
δ),

where
c+ d

√
δ = ±(am + bm

√
δ)(α+ β

√
δ).

Since aqn ≡ 1 (modM) and bqn ≡ 0 (modM), we find that x0 ≡ c (modM)
and y0 ≡ d (modM). On the other hand, we deduce that the solutions
(zi, wi) of X2 − δY 2 = A given by

zi + wi
√
δ = (c+ d

√
δ)(ain + bin

√
δ) (i = 0, 1, . . .),
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satisfy zi ≡ c (modM) and wi ≡ d (modM), and so we obtain the required
result.

Remark. For an account of the solutions of X2 − δY 2 = A see [11] or
[12].

Lemma 3.9 ([17, Lemma 3.1]). Let f(T ), g(T ) be two relatively prime
polynomials in Z[T ] with degrees n ≥ 1 and m ≥ 1 respectively. Let Ω be
a point in a projective space having as coordinates 1 and the coefficients of
f(T ) and g(T ) (in any order). Then there exist α ∈ Z\{0} and A(T ), B(T ) ∈
Z[T ] with degA(T ) < m, degB(T ) < n, and

H(α),H(A),H(B) ≤ (m+ n− 1)!H(Ω)m+n−1

satisfying
A(T )f(T ) +B(T )g(T ) = α.

Lemma 3.10 ([18, Lemma 2.1]). Let F (X,Y,Z) be a homogeneous, ab-
solutely irreducible polynomial in Q[X,Y,Z] of degree M ≥ 3 and C the
projective curve defined by F (X,Y,Z) = 0. Let u(S, T ), v(S, T ), w(S, T ) ∈
Z[S, T ] be homogeneous polynomials of the same degree, with no common
nonconstant factor , such that the correspondence

(S, T ) 7→ (u(S, T ), v(S, T ), w(S, T ))

defines a birational map φ over Q of P1 to C. Then φ is a birational mor-
phism of P1 onto C and deg u(S, T ) = deg v(S, T ) = degw(S, T ) = M .
Furthermore, if (x : y : 1) is a nonsingular point of C defined over Q, then
there exist s, t ∈ Z with s ≥ 0 and gcd(s, t) = 1 such that x = u(s, t)/w(s, t)
and y = v(s, t)/w(s, t).

Lemma 3.11. Let δ be a positive nonsquare integer and (a, b) the funda-
mental solution of the equation X2 − δY 2 = 1. Then

a+ b
√
δ < exp{

√
δ (2 + log 4δ)}.

Moreover , if (α, β) is a fundamental solution of equation X2 − δY 2 = A,
where A is a nonzero integer , then

max{|α|, |β|} < 1
2

√
|A| exp{

√
δ (2 + log 4δ)}.

Proof. The bound for a+ b
√
δ is obtained in [4, p. 86] as a consequence

of a result of Hua [3]. This bound and [11, Theorems 6.2.5 and 6.2.6] or [12,
Theorems 108 and 108a] imply the estimate for max{|α|, |β|}.

Lemma 3.12. Let f(X,Y ) be an irreducible polynomial in Z[X,Y ] such
that the equation f(X,Y ) = 0 has infinitely many integer solutions. Then
the highest terms in X and Y occur separately , as aXm, bY n.

Proof. This is a consequence of Runge’s theorem about Diophantine
equations (see [24]).
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4. Proof of Theorem 1.1. Suppose that Σ∞ = {V }. If degF = 2
then Lemma 3.3(i) implies the result. So, we may assume degF ≥ 3. By
Proposition 2.1, there are polynomials gi(X,Y ) (i = 1, 2) and q(X), with
integer coefficients, satisfying

deg q < N2, degX gi < 4N2, degY gi < N (i = 1, 2)

and

H(q) < (6N3H(F ))2N3
, H(gi) < H(F )67N6

(5N6eN )34N6
(i = 1, 2),

such that the functions f1 and f2 represented by the fractions g1(X,Y )/q(X)
and g2(X,Y )/q(X) form a basis of the space L(V ). Since 1 ∈ L(V ), we may
suppose, without loss of generality, that f1 = 1.

The function t = f2 lies in Q(C) and has only a pole at V of order 1.
Thus Q(C) = Q(t). Let x and y be the coordinate functions on C. Since
the only pole of x is at V , we see that x = A(t)/a, where a is a positive
integer and A(t) a polynomial in t with integer coefficients. In view of our
hypothesis, we may suppose that the homogeneous part of highest degree of
F (X,Y ) has the form a0(a1X + a2Y )n with a2 6= 0. It follows that y is an
integral element over the ring Q[x], whence y has only a pole at V . Thus,
y = B(t)/b, where b is a positive integer and B(t) a polynomial in t with
integer coefficients.

Put Φ(X,Y, T ) = q(X)T − g2(X,Y ). We denote by R1(X,T ) and
R2(Y, T ) the resultants of Φ(X,Y, T ) and F (X,Y ), respectively, with re-
spect to Y and X. Lemma 3.1 yields

H(Ri) < (5N6eN )35N7
H(F )68N7

(i = 1, 2).

Further, degX R1 < 4N3 + N2, degY R2 < 4N3 + N2 and degT Ri ≤ N
(i = 1, 2). Moreover, R1(x, t) = 0 and R2(y, t) = 0. It follows that aX−A(T )
and bY − B(T ) divide R1(X,T ) and R2(Y, T ), respectively. Using Lemma
3.2 we obtain

H(aX − A(T )),H(bY −B(T )) < (5N 6eN )36N7
H(F )68N7

.

Furthermore, degA ≤ N and degB ≤ N .
Let (x0, y0) be a nonsingular integer point of C. Thus, Lemma 3.10 shows

that there are integers s0, t0, with gcd(s0, t0) = 1, and t0 6= 0 such that
x0 = Ah(s0, t0)/atµ0 and y0 = Bh(s0, t0)/btν0, where Ah(S, T ), Bh(S, T ) are
the homogenizations of A(T ), B(T ), respectively, and degA = µ, degB = ν.
Hence atµ0 divides Ah(s0, t0) and btν0 divides Bh(s0, t0). If α and β are the
leading coefficients of A(T ) and B(T ), respectively, then t0 divides gcd(α, β).
Further, s0 is a solution of the congruences

a′tM−µ0 Ah(S, t0) ≡ 0 (modL|t0|M ), b′tM−ν0 Bh(S, t0) ≡ 0 (modL|t0|M ),

where L = lcm(a, b), a′ = L/a, b′ = L/b and M = max{µ, ν}. On the other
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hand, Bézout’s theorem implies that C has at most (N −1)2 singular points
at finite distance. Thus there exists an integer s1, with |s1| < N2L|t0|M/2,
satisfying the above congruences such that (x1, y1), with x1 = Ah(s1, t0)/atµ0
and y1 = Bh(s1, t0)/btν0, is a simple point on C. We have

|x1| ≤ |A|(N + 1)max{|s1|, |t0|}M ≤ N2N |A|LN |t0|N
2 ≤ N2N |A|1+N2

(ab)N .

Hence, we obtain

|x1| < N2N ((5N6eN )9H(F )17)4(N+1)2N7
.

Similarly, we deduce that the same bound is valid for |y1|.

5. Proof of Theorem 1.2. Suppose that Σ∞ = {V1, V2}. If degF = 2,
then Lemma 3.3 implies the required result. Thus, assume that degF ≥ 3.
By Proposition 2.1, there is a basis {f1, f2, f3} of the space L(V1 + V2) and
polynomials gi(X,Y ) (i = 1, 2, 3), q(X), with integer coefficients, satisfying

deg q < N2, degX gi < 4N2, degY gi < N (i = 1, 2, 3)

and

H(q) < (6N3H(F ))2N3
, H(gi) < (5N6eN )34N6

H(F )67N6
(i = 1, 2, 3),

such that the fraction gi(X,Y )/q(X) represents the function fi. Since 1 ∈
L(V1 + V2), we may suppose that f1 = 1. Further, we may suppose that
the coefficients of each of the polynomials gi(X,Y ) (i = 2, 3) and q(X)
are relatively prime. If for every i ∈ {2, 3} we have ordVj (fi) ≥ 0, where
j ∈ {1, 2}, then 1, f2, f3 ∈ L(Vk) with k ∈ {1, 2}−{j}. Since dimL(Vk) = 2,
it follows that the functions 1, f2, f3 are Q-linearly dependent, which is a
contradiction. Hence, for every j ∈ {1, 2} there is i ∈ {2, 3} such that
ordVj (fi) = −1. It follows that there are a, b, c, d ∈ {0,±1} such that the
functions f = af2 + bf3 and g = cf2 + df3 satisfy

ordVk(f) = ordVk(g) = −1 (k = 1, 2).

Suppose that f ∈ Q(g). Then f = G1(g)/G2(g), where Gi(T ) ∈ Q[T ]
(i = 1, 2) with gcd(G1(T ), G2(T )) = 1. Since f has poles only at V1 and V2,
we deduce that G2(g) is a constant. Thus f = AG1(g), where A ∈ Q. We
have

−1 = ordVj (f) = (degG1) ordVj (g) = −(degG1).

Thus f = a0 + a1g, with a0, a1 ∈ Q, which is a contradiction. Hence f does
not lie in Q(g). On the other hand, since the only poles of g are at V1 and
V2 with order 1, we have [Q(C) : Q(g)] = 2. Therefore Q(C) = Q(f, g).

The functions 1, f, g, fg, f 2, g2 lie in the space L(2V1 + 2V2). By the
Riemann–Roch theorem, the dimension of L(2V1 + 2V2) is equal to 5. It
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follows that there are bi ∈ Q (i = 1, . . . , 5) such that

f2 + b1g
2 + b2fg + b3f + b4g + b5 = 0.

Since f does not lie in Q(g), it follows that the polynomial

G(X,Y ) = Y 2 + b1X
2 + b2Y X + b3Y + b4X + b5

is irreducible over Q. For any σ ∈ Gal(Q/Q) we put

Gσ(X,Y ) = Y 2 + σ(b1)X2 + σ(b2)Y X + σ(b3)Y + σ(b4)X + σ(b5).

The polynomial Gσ(X,Y ) is irreducible over Q and, since f, g ∈ Q(C), we
have Gσ(f, g) = σ(G(f, g)) = 0. Hence Gσ(X,Y ) = G(X,Y ). It follows that
σ(bi) = bi (i = 1, . . . , 5) and so bi ∈ Q (i = 1, . . . , 5).

Put h1(X,Y ) = ag2(X,Y ) + bg3(X,Y ) and h2(X,Y ) = cg2(X,Y ) +
dg3(X,Y ). We consider the polynomials

Φ1(X,Y,Z) = h1(X,Y )− Zq(X), Φ2(X,Y, T ) = h2(X,Y )− Tq(X)

and denote by R1(X,Z),R2(X,T ) the resultants of Φ1(X,Y,Z), Φ2(X,Y, T ),
respectively, with F (X,Y ) considered as polynomials in Y . Since the func-
tions f and g are not zero, we have Ri 6= 0 (i = 1, 2). Using Lemma 3.1 and
the bounds for the degrees and heights of gi(X,Y ), we deduce that

H(Ri) < H(F )68N7
(5N6eN )35N7

(i = 1, 2).

Furthermore, degX Ri < 4N3 +N2 (i = 1, 2), degZ R1 ≤ N and degT R2 ≤
N . Let S(Z, T ) be the resultant of R1(X,Z) and R2(X,T ) with respect
to X. If S(Z, T ) is zero, then R1(X,Z), R2(X,T ) have a common factor
of the form A(X) ∈ Q[X] \ Q. Then R1(X,Z) = A(X)P (X,Z), where
P (X,Z) ∈ Q[X,Z]. It follows that for every x, z ∈ Q with A(x) = 0, there
is y ∈ Q such that Φ1(x, y, z) = 0 and F (x, y) = 0. Thus we have finitely
many values for x and y and finitely many for z, which is a contradiction.
Hence the polynomial S(Z, T ) is not zero. Furthermore, degS < 9N 4. By
Lemma 3.1, we obtain

S(Z, T ) < (5N6eN )316N10
H(F )612N10

.

Now, if we denote by x and y the coordinate functions on the curve C
we have F (x, y) = 0, Φ1(x, y, f) = 0 and Φ2(x, y, g) = 0. It follows that
R1(x, f) = 0 and R2(x, g) = 0 and so S(f, g) = 0. Thus we deduce that the
polynomial G(X,Y ) divides S(X,Y ). So Lemma 3.2 yields

H(G) ≤ 4(degS+1)2
H(S) < (5N6eN )320N10

H(F )612N10
.

Let Ii(X,Y ) = Bi,0(X)Y si + . . .+Bi,si(X) (i = 1, 2) be two irreducible
polynomials with relatively prime integer coefficients such that I1(x, f) = 0
and I2(x, g) = 0. Since the only poles of f and g are at V1 and V2, it follows
that Bi,0(X) = βi ∈ Z (i = 1, 2). The polynomial Ii(X,Y ) divides Ri(X,Y )
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and so, using Lemma 3.2, we obtain

|βi| ≤ H(Ii) ≤ 4(degRi+1)2
H(Ri) < (5N6eN )38N7

H(F )68N7
(i = 1, 2).

Put f ′ = β1f and g′ = β2g. The functions f ′ and g′ are integral elements over
the ring Z[x]. So, if (u, v) ∈ Z2 with F (u, v) = 0, then f ′(u, v), g′(u, v) ∈ Z.
On the other hand, the functions f ′ and g′ satisfy the equation

G′(X,Y ) = γ1Y
2 + γ2X

2 + γ3Y X + γ4Y + γ5X + γ6 = 0,

where

γ1 = β2
1 , γ2 = β2

2b1, γ3 = β1β2b2,

γ4 = β2
1β2b3, γ5 = β1β

2
2b4, γ6 = β2

1β
2
2b5.

Furthermore,
H(G′) < (5N6eN )339N10

H(F )646N10
.

We denote by K the conic defined by the equation G′(f ′, g′) = 0. Since K is
irreducible, it follows that K is smooth and so the discrete valuation rings
of Q(C) are the local rings OP at the points P of K.

We have the following three cases:

Case 1: V1 and V2 are defined over Q. Then V1 and V2 are the local
rings at the points P1 and P2 of K which are at infinity. Hence, P1 and P2
are defined over Q. It follows that γ2

2−4γ1γ3 is a nonzero perfect square. Let
(u, v) ∈ Z2 with F (u, v) = 0. Then f ′(u, v), g′(u, v) ∈ Z and hence Lemma
3.3 yields

max{|f ′(u, v)|, |g′(u, v)|} < 20H(G′)4.

On the other hand, f ′(u, v) = β1f(u, v) and R1(u, f(u, v)) = 0. By Lemma
3.4, we obtain

|u| < 2(N + 1)H(R1)H(f(u, v))N ≤ 2(N + 1)H(R1) max{|f ′(u, v)|, |β1|}N .
Using the bounds for the quantities H(R1), |β1|, |f ′(u, v)| and H(G′), we
obtain

|u| < (5N6eN )1360N11
H(F )2589N11

.

Similarly, we deduce the same bound for |v|.
Case 2: V1 and V2 are conjugate over an imaginary quadratic field k.

Then we deduce, as in Case 1, that the points P1 and P2 of K at infinity
are defined over k, whence γ2

2 − 4γ1γ3 < 0. Thus, working as in the previous
case, we obtain

max{|u|, |v|} < (5N6eN )682N11
H(F )1297N11

.

Case 3: V1 and V2 are conjugate over a real quadratic field k. Since the
equation F (X,Y ) = 0 has infinitely many integer solutions, Lemma 3.12
implies that the highest powers of X and Y occur as isolated terms cXm

and dY n. It follows that the function y is an integral element over the ring
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Q[x]. Further, the homogeneous part of highest degree of F (X,Y ) has the
form either a0(a1X + a2Y )ν or a0(a1X

2 + a2XY + a3Y
2)ν . In the second

case, if a1 = 0 or a3 = 0, then V1 and V2 are defined over Q, which is a
contradiction. Hence a1 6= 0 and a3 6= 0. So interchanging the roles of X
and Y if necessary, we may suppose that N = n. Thus n = degF ≥ 3.
We denote by ei the ramification index of 1/x in Vi. Since V1 and V2 are
conjugate, we have e1 = e2 = n/2. So n is even, whence N = n ≥ 4.

The poles of the function x are at V1 and V2 which are the local rings of
the points of K at infinity. Thus x ∈ OP for every P on K which is not at
infinity, whence x is regular on K. On the other hand, f, g ∈ Q(C). It follows
that the fixed field of Q(C) = Q(f, g) under the action of the Galois group
Gal(Q/Q) is Q(C) = Q(f, g). Hence, x is a regular function of Q(f, g). Thus
there are A(X,Y ) ∈ Z[X,Y ] and a ∈ Z such that x = A(f, g)/a. Further, y
is an integral element over Q[x], whence the only poles of y are at V1 and
V2. Thus, as previously, there are B(X,Y ) ∈ Z[X,Y ] and b ∈ Z such that
y = B(f, g)/b.

From our hypothesis that the curve C has a simple integer point, we
infer that C has infinitely many points defined over Q and therefore the
conic G(f, g) = 0 has a point defined over Q. By Lemma 3.5, there is a
point P on the projective closure of G(f, g) = 0 with coordinates over Q
satisfying

H(P ) < 30H(G).

Further, the fact that V1 and V2 are conjugate over a real quadratic field k
implies that the points at infinity of the projective closure of G(f, g) = 0
are not defined over Q. Hence, P is not at infinity. Thus Lemma 3.6 shows
that the conic G(f, g) = 0 has the parametrization

f =
f1(t)
f3(t)

, g =
f2(t)
f3(t)

,

where f1(T ), f2(T ), f3(T ) ∈ Z[T ] with degree ≤ 2, such that the polynomials
fi(T )− Zf3(T ) (i = 1, 2) satisfy

H(fi(T )− Zf3(T )) ≤ 90H(G)2.

Since the only poles of f and g are at V1 and V2 which are conjugate over
k, it follows that deg f3 = 2 and the two roots of f3(T ) are distinct and
conjugate over k.

Now, replacing f and g in x = A(f, g)/a and y = B(f, g)/b by f1(t)/f3(t)
and f2(t)/f3(t), respectively, we see that there are A1(T ), B1(T ) ∈ Z[T ] such
that

x =
A1(t)
af3(t)p

, y =
B1(t)
bf3(t)q

,
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where p and q are positive integers. We have

p = − ordVj (x) = ej = n/2 = N/2.

Furthermore, since ordV1(y) = ordV2(y), we obtain

q = − ordVj (y) = [Q(C) : Q(y)]/2 = m/2.

Since x and y have no other poles than V1 and V2, we deduce that degA1 ≤
N and degB1 ≤ m. Moreover, we may suppose, without loss of general-
ity, that the coefficients of each of the polynomials A1(T ) − aXf3(T )p and
B1(T )− bY f3(T )q are relatively prime.

We denote by R3(X,Z, T ) and R4(Y,Z, T ) the resultants of Φ1(X,Y,Z)
and Φ2(X,Y, T ), respectively, with respect to Y and X. Lemma 3.1 gives

H(R3) < (5N6eN )68N7
H(F )134N7

, H(R4) < (5N6eN )272N8
H(F )536N8

.

Further, degX R3 ≤ 8N2(N − 1), degZ R3 ≤ N − 1, degT R3 ≤ N − 1,
degY R4 ≤ 8N2(N − 1), degZ R4 < 4N2 and degT R4 < 4N2. Moreover,
R3(x, f, g) = 0 and R4(y, f, g) = 0. Let

R3(X,Z, T ) = R3,0(Z, T )Xµ + . . .+R3,µ(Z, T )

and M = max0≤i≤µ{degRi}. We set

R′3,i(T ) = R3,i,h(f1(T ), f2(T ), f3(T ))f3(T )M−degRi ,

where R3,i,h(Z, T, U) is the homogenization of R3,i(Z, T ). By Lemma 3.7,
the height of the polynomial R′3(X,T ) = R′3,0(T )Xµ+ . . .+R′3,µ(T ) satisfies

H(R′3) < 224N2
H(R3)H(Θ)2N−2,

where Θ is a point in the projective space with coordinates the coefficients
of f1(T ), f2(T ) and f3(T ). Since

H(Θ) ≤ H(f1(T )− Zf3(T ))H(f2(T )− Zf3(T )) ≤ 8100H(G)4,

we get
H(R′3) < 237N2

H(G)8(N−1)H(R3).

The degree of R′3(X,T ) is < 8N3. Furthermore, R′3(x, t) = 0, whence the
polynomial af3(T )N/2X − A1(T ) divides R′3(X,T ). Using Lemma 3.2, we
obtain

H(af3(T )N/2X − A1(T )) ≤ 464N6
H(R′3).

Combining the bounds for H(R′3), H(G) and H(R3), we deduce that

H(af3(T )N/2X − A1(T )) < ((5N6eN )80H(F )153)32N11
.

Suppose that f3(T ) = αT 2 + βT + γ. Setting u = 2αt+ β, we obtain

x =
L1(u)
aL3(u)

and y =
L2(u)
bL3(u)

,
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where Li(U) (i = 1, 2, 3) are polynomials with integer coefficients and

L3(U) = (4α(U2 − (β2 − 4αγ)))N/2.

The two roots of f3(T ) are distinct and conjugate over k. Hence the integer

δ = β2 − 4αγ

is positive. Since N ≥ 4, we have

δ ≤ 5max{|α|, |β|, |γ|}2 ≤ 5H(af3(T )N/2X − A1(T ))

< 5((5N6eN )80H(F )153)32N11
.

Furthermore,

H(aL3(U)X − L1(U)) < 4N
2
H(af3(T )N/2X − A1(T ))2N+1

< ((5N6eN )81H(F )153)72N12
.

It is easily seen that at least one of the Li(U) (i = 1, 2) is not a constant.
So, we may suppose that degL1 > 0. We put

Li(U, V ) = Li,h(U, V )V degL3−degLi ,

where Li,h(U, V ) is the homogenization of Li(U) (i = 1, 2) and we denote
by L3(U, V ) the homogenization of L3(U). By Lemma 3.9, there exists a
nonzero integer κ and polynomials Γ (U), ∆(U) with integer coefficients
satisfying

Γ (U)L1(U) +∆(U)aL3(U) = κ

such that degΓ < N , deg∆ < N and

|κ|,H(Γ ),H(∆) ≤ (2N − 1)!H(Ω)2N−1,

where Ω is a point in a projective space having as coordinates 1 and the
coefficients of L1(U) and aL3(U) (in any order). Since the coefficients of
aL3(U)X − L1(U) are relatively prime integers, we have

H(Ω) = H(aL3(U)X − L1(U)).

According to our assumptions, there is a simple integer point (x0, y0)
on C. By Lemma 3.10, there are u0, v0 ∈ Z with u0 ≥ 0 and gcd(u0, v0) = 1
such that

x0 =
L1(u0, v0)
aL3(u0, v0)

and y0 =
L2(u0, v0)
aL3(u0, v0)

.

Thus
Γ (u0, v0)L1(u0, v0) +∆(u0, v0)aL3(u0, v0) = κvζ0,

where ζ is a positive integer < 2N and Γ (U, V ), ∆(U, V ) are forms with in-
teger coefficients of degrees < N . It follows that L3(u0, v0) divides κvζ0.
Since gcd(u0, v0) = 1, we obtain gcd((u2

0 − δv2
0)N/2, vζ0) = 1 and hence
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(u2
0 − δv2

0)N/2 divides κ. Thus u2
0 − δv2

0 = λ, where λ is a nonzero inte-
ger with

|λ| ≤ N4H(Ω)4.

Let (c, d) be the fundamental solution of equation X2 − δY 2 = 1. By
Lemma 3.8, there exists a fundamental solution (η, θ) of equationX2−δY 2 =
λ such that there are integers r, s with 0 ≤ r < s ≤ a2(4α|λ|)N and solutions
(zi, wi) of X2 − δY 2 = λ given by

zi + wi
√
δ = (c+ d

√
δ)r+is(η + θ

√
δ) (i = 0, 1, . . .),

satisfying

zi ≡ u0 (moda(4α|λ|)N/2) and wi ≡ v0 (moda(4α|λ|)N/2).

Thus the points Pi = (xi, yi) (i = 0, 1, . . .) of C, with

xi =
L1(zi, wi)
aL3(zi, wi)

and yi =
L2(zi, wi)
aL3(zi, wi)

,

are integral.
Let FX(X,Y ) and FY (X,Y ) be the derivatives of F (X,Y ) with respect

to X and Y , respectively. As is well known, a singular point on C which
is not at infinity satisfies the equations FX(X,Y ) = FY (X,Y ) = 0. Since
the degree of F (X,Y ) is equal to N , Bézout’s theorem implies that C has
at most (N − 1)2 singular points which are not at infinity. Thus at least
one of the points Pi (i = 0, 1, . . . , (N − 1)2) is simple. Lemma 3.11 and the
estimates for δ, λ and H(Ω) imply that for i = 0, 1, . . . , (N − 1)2 we have

max{|zi|, |wi|} < exp{((5N6eN )81H(F )153)294N13}.
It follows that

|xi| < (N + 1)H(Ω)max{|zi|, |wi|}N (i = 0, 1, . . . , (N − 1)2).

Finally, Lemma 3.4 implies the result.
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