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Chen’s double sieve, Goldbach’s conjecture and
the twin prime problem, 2

by

J. Wu (Nancy)

1. Introduction. Let 2(n) be the number of all prime factors of the
integer n with the convention 2(1) = 0. For each even integer N > 4, we
define

D(N):=|{p < N:Q2(N —p) =1}};

here and in what follows, the letter p, with or without subscript, denotes
a prime number. The well known Goldbach conjecture can be stated as
D(N) > 1 for all even integers N > 4. A more precise version of this
conjecture was proposed by Hardy & Littlewood [10]:

(1.1) D(N) ~20(N) (N — o0),
where

L _OnN_ — ik y  CR
12 ON):= g On: AL = };[2<1 o 1)2>.

Certainly, the asymptotic formula (1.1) is extremely difficult. One way of
approaching the lower bound problem in (1.1) is to give a non-trivial lower
bound for the quantity

Dia(N) = [{p < N : Q(N —p) < 2}|.

In this direction, Chen [5] proved, by his system of weights and the switching
principle, the following famous theorem: Fvery sufficiently large even integer
can be written as sum of a prime and an integer having at most two prime
factors. More precisely, he established

(1.3) D12(N) > 0.67O(N)
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for N > Ny. As Halberstam & Richert indicated in [9], it would be in-
teresting to know whether a more elaborate weighting procedure could be
adapted to the purpose of (1.3). This might lead to numerical improvements
and could be important. Chen’s constant 0.67 has been improved by many
authors. The historical record is as follows:

0.689 by Halberstam & Richert [9],
0.754 by Chen [6],

0.81 by Chen [7],

0.828 by Cai & Lu [4],

0.836 by Wu [13],

0.867 by Cai [2].

The aim of this paper is to propose a better constant.
THEOREM. For sufficiently large N, we have
Dy 2(N) > 0.8990(N).

Our improvement comes from a delicate application of Chen’s double
sieve ([8], [12], [13]), which can be described as follows: With standard no-
tation in the theory of sieve methods, the linear sieve formulas (see [9], or
Lemma 2.2 of [13]) can be stated as

(14)  XV(2) f(llc(’)gg Cj

These inequalities are the best possible in the sense that for
A=B,:={n<z:2(n)=v (mod 2)} (vr=1,2),

the upper and lower bounds in (1.4) are respectively attained by v = 1 and
v =2 (see [9, p. 239]). Aiming at improving Bombieri-Davenport’s upper
bound [1]

log @
log 2z

> +error < S(A;P,z) < XV(z)F( ) + error.

D(N) < {8+ o(1)}O(N),

Chen [8] found an improvement for (1.4) for some special sequences A.
Roughly speaking, for the sequence

A={N—-p:p< N}

he narrowed down the gap in (1.4) by introducing two functions h(s) and
H(s) such that the functions sf(s)/(2¢") and sF(s)/(2¢") are replaced by
sf(s)/(2e7)+h(s) and sF(s)/(2e7)— H(s) respectively, where ~ is the Euler
constant. The key point is thus to prove h(s) > 0 and H(s) > 0. Chen’s
proof is very long and difficult to follow, but his innovative idea is clear
(see [11] for example). In [13], we gave a more comprehensive treatment of
this method and named it Chen’s double sieve. Indeed, our treatment is not
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only simpler but even more powerful than Chen’s. Our approach improved
Chen’s upper estimate D(N) < 7.834260(N) to D(N) < 7.8209O(N).
It is worth indicating that Chen’s record stood for 26 years before our
work [13].

To prove our Theorem, we first simplify and improve Chen’s weight sys-
tem (cf. (12) of [7] and Lemma 2.2 below), and then apply Chen’s double
sieve, as the classical linear sieve, to handle terms such as 15, 13, T4, 15 and
T in Propositions 4.1-4.4 below. The idea of using Chen’s double sieve to
treat sums of the type

(1.5) Y. S(AuP(N),N%)

N1 <p< NP2

(p,N)=1

first appeared in [12]. However, due to the first condition in (3.1) below, our
Chen’s double sieve can only handle the initial part of the sum over small
pin (1.5) (i.e. p < NY4). On the other hand, very recently Cai [2] used a
similar idea to control the sum over large p in (1.5). Actually his method
can be viewed as a simplified version of Chen’s double sieve (see Proposition
4.4 below and the comments before it). Here we shall combine both versions
and refine them to obtain our result. As is apparent from the proof, the
first version gives a saving of 0.0211 while the second saves 0.0078. Without
Chen’s double sieve technique, we still obtain 0.870 in place of 0.899, which
is slightly better than Cai’s 0.867.

Clearly our method can be used to refine the corresponding constants in
the conjugate problems ([2] and [3]). The proofs are very similar and even
easier and simpler. Hence we omit the relevant discussion. Maybe this is a
good exercise for senior graduate students in analytic number theory.

2. Chen’s system of weights. This section is devoted to discussing
the weighted sieve of Chen type. Let
A={N—-p:p< N} and P(N):={p:(p,N) =1}
The sieve function is defined as
S(AP(N),2) = [{a € A: (a, P(2)) = 1},
where P(2) := [[,<. ,ep(v) P-
LEMMA 2.1. Let 0 < k <o <1/3. Then

(2.1) 2D 2(N) > 25(A;P(N),N®) — Si(k,0) — 2S2(k, 0)
— S3(k,0) + Si(k,0) + O(N'F),
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where

Si(k,0) = Y S(AuP(N),N%),
Ne<p<N®
(»,N)=1

SQ(I’»',O') = Z Z S(Aplpg;P(Npl)7p2)v
N7 <p1<pza<(N/p1)}/?
(p1p2,N)=1

S3(R7O-) = Z Z S(APIPQ; P(Np1)7p2)7
N*<p1<N?<pp<(N/p1)'/?
(p1p2,N)=1

Sy(k,0) = Z Z Z S(Apipaps; P(Np1), p2).

N <p1<p2<ps<N?
(p1p2ps3,N)=1

The inequality (2.1) first appeared in [7, p. 479, (11)] with (k,0) =
(1—12, lew)’ (9%, ﬁ) without proof. Cai & [Lu] [4] gave a proof with an
extra assumption 30 + k > 1. In [13], we proved (2.1) under the hypothesis
0 < kK < 0 < 1/3. Clearly the proof there is also valid for o = 1/3. Very
recently Cai [2] gave another proof for Lemma 2.1.

As in [7], we shall apply (2.1) with two different pairs of parameters
(k,0) to take advantage of Sy(k, o). Our weighted sieve is simpler and more
powerful than those of Chen ([7, (12)]) and Cai ([2, Lemma 6]).

LEMMA 2.2. Let kg > k1 > 1/18 be such that
3k1+ kKo <1/2 and 3k1 — Ky < 1/6.
Then
(2.2) AD1o(N) >3+ - 13— 14+ 15+ 715
207 =Ty — Ty — Y10 — Y11 + O(N'™"1),

where

Ti:= S(A;P(N),N™)  (i=1,2),

Tom 3 S(AP(N), N,

NFE1 §p<N1/3
(p,N)=1

Ti= Y S(AP(N)N™),

NFt1 §p<N1/273K1
(p,N)=1

Y5 = Z Z S(Apips; P(N), N™),

N"1<p;<pa<N"2
(p1p27N):1
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T := Z Z S(Apipyi P(N), N™),
N1 <p) <N®2<py<N1/2=3r1
(p1p2,N)=1
T7 = Z Z S(Appo;P<Npl)7p2)7
N1/2=381 <py <po<(N/p1)*/?
(p1p2,N)=1
15 := > S(Apip2; P(Np1), p2),

N®1<py<NY3<py<(N/p1)/?
(p1p27N):1

Ty := Z Z S(Aplpz; P(Npl)v (N/plp2)1/2)a

N®2<py <NY/2-351 <py<(N/p1)}/?
(p1p2,N)=1

T = Z Z Z Z S(Apipapspa; P(N), p2),

NF1<p1<p2<p3<psa<N"2
(p1p2p3ps,N)=1

1y = Z Z Z Z S(AP1P2P3P4§P(N)vp2)'

N1 <p1<pa<pg<N"2<py<N1/2721 /pg
(p1p2p3ps,N)=1

371

Proof. By noticing that our hypothesis implies k2 < 1/2 — 3k; < 1/3,

we can apply (2.1) with (x,0) = (k2,1/2 — 3k1) to obtain

(2.3) 2D 5(N) > 201y — 8y (k2,1/2 — 3k
— 207 — S3(kg,1/2 — 3k1) + O(N1F2),

where the term Sy(k2,1/2 — 3k1) is dropped by non-negativity.
Buchstab’s identity, applied three times, gives the equality

Lr="1— > S(A;P(N),N")+T5

N*1<p<N*2
(p,N)=1

- Z Z Z S(Apypaps; P(N), p1).

N1 <p;<pa<ps<N"2
(p1p2p3,N)=1

Similarly, a double application of Buchstab’s identity yields
S1(k2,1/2 — 3k1) = > S(Ay; P(N), N®) — Ty

N*&2 §p<N1/273/{1
(p,N)=1

T Z Z Z S(‘Aplmm;P(N)vpl)-

N*1<p1 <pa<N*2<p3<N1/2-3r1
(p1p2p3,N)=1
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By Buchstab’s identity, we can prove
S3(k2,1/2 — 3k1)
=T+ 2.2 S (Apipapss P(NPL), p3).

N*2<py <N/27351 <po<p3<(N/p1p2)'/?
(p1p2p3,N)=1

Inserting them into (2.3), we find that
(24)  2D1o(N) >N+ 1o = Ta+ 5+ 15 — 217 — Vo — A + O(N'7"2),

where

Ay = Z Z Z S(Apipaps; P(N), p1)

N1 <p; <pa<pz<N"2
(p1p2p3,N)=1

t Z Z Z S(Apipaps; P(IN), p1)

N*1 <p1<pa<N®2<p3<N1/2-3%1
(p1p2p3,N)=1

t Z Z Z S(Apipapss P(NP1),p3)-

N2 <p <NV/27351 <po<p3<(N/p1p2)/?
(p1p2p3,N)=1

The inequality (2.1) with (k,0) = (k1,1/3) gives
(2.5) 2D12(N) > 211 — T3 — Ty + Sa(k1,1/3) + O(N'™H1),

where we have used the fact that Sa(x1,1/3) = 0.
Adding (2.4) to (2.5) yields

(26) 4D172(N) >N+ —-13-14+715+ 756
— 217 — T3 — Ty + Ay + O(NF1),

where

Ay = Z Z Z S(Apipaps; P(N), p2) — Ar.

N"1<p; <pa<ps<N/3
(p1p2ps,N)=1

Clearly all the summation ranges in the three triple sums of Ay are dis-
tinct and the first two are covered by the range of the triple sum in A,
(since our hypothesis on k1 and ko implies max{xa,1/2 — 3r1} < 1/3).
On the other hand, we easily see that the range of summation in the third
triple sum of A; is equivalent to N2 < p; < NV27351 < py < (N/pp)'/3
and py < p3 < (N/pip2)"/2. From this we deduce that (N/pip2)'/? <
N1/243k1—r2)/2 < N1/37 since 3k1 — k2 < 1/6. Thus this range is also
contained in the triple sum of Asy. Therefore we have
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mze YL Y 4

N1 <p; <pa<pz<N"2
(p1p2p3,N)=1

/
- 222 A,
N1 §p1<p2<NN2§p3<N1/27251/p2
(p1p2ps,N)=1

"
+ PIDIDD A
N2 <p <N/27381 <po<p3<(N/p1p2)/?
(p1p2p3,N)=1

> —Tip— 111 + O(N1"),

where

A,2 = S(Ampng;P(N)’pl) - S(Ap1pzp3§P(N),p2)a
/2, = S(Ap1p2p3§7D(N)ap2) - S(Ap1p2p3;77(N),p3).

Combining this with (2.6), we obtain the required result. m

REMARK 1. In the proof, we have chosen (k,0) = (k1,1/2 — 3K1),
(k2,1/3) when applying Lemma 2.1. It is possible to optimize the choice
of o. But this increases the number of terms of (2.2), and the numerical
improvement for the Theorem is quite small.

3. Chen’s double sieve. In this section, we recall Chen’s double sieve
described in [13] and give numerical lower bounds for H (s) and h(s) for later
use.

For any large even integer N, we write
A={N-p:p< N}, PWN):={p:(p,N)=1}
Let 6 > 0 be a sufficiently small number (}) and k € Z*. Put
Q:=NYV>3  g.=Q/d, L:=logN, Wy:=N""

Denote by 7y, the characteristic function of the set P(N) N [Y, Z). For
k € ZT and N > 2, let 4x(N) be the set of all arithmetical functions o
which can be written in the form

T =TMv/Av) * KTV /A V)

where A is a real number with 14+ £7% < A < 142£7%, i is an integer with
0<i¢<k,and Vi,...,V; are real numbers satisfying

(1) In numerical computation, we can formally take § = 0.
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We adopt the convention that o is the characteristic function of the set {1}
iti=0.
Let F and f be defined by
F(s)=2€e"/s, f(s)=0 (0<s<2),
(sF(s) = f(s=1), (sf(s))=F(s=1) (s>2),

where v is Euler’s constant. Moreover, we set

(3.2)

(33) A(s) :=sF(s)/(2¢7), al(s) :=sf(s)/(2¢7),
and introduce the notation
(3.4) O(N,0,s) =Y _o(d)S(Ag; P(dN),d"?),
d
o o(d)Cq
(3.5) O(N, o) := 41i(N) Zd: WlogNd’

where ¢(d) is the Euler function.

For k € Z*, Ny > 2 and s € [1,10], we define Hy, n,(s) and hg, n,(s) to
be the supremum of h > —oo such that for all N > Ny and o € U (N), the
inequalities

@(N,o,s) < {A(s) — h}O(N,0),

@(N,o,s) > {a(s) + h}O(N,0)

hold true respectively. Obviously Hj n,(s) and hi n,(s) are decreasing in
Ny, as well as decreasing in k by Lemma 3.1. Hence their limits at infinity
exist (in the extended real line), and we write

Hy(s) := N})iinoo Hy no(s),  H(s):= klggo Hy(s),
hi(s) := N%)iinoo hi, Ny (9), h(s) := kllrgo hi(s).
The next lemma collects the relevant properties of these functions (see
[13, Lemma 3.2, Propositions 1 & 2 and Corollary 1]).
LEMMA 3.1.
(i) For k € Z*,N > Ny, s € [1,10] and o € Ux(N), we have
(3.6) D(N,o,s) < {A(s) — Hy N, () }O(N, 0),
(3.7) D(N,o,5) > {a(s) + hin,(s)}O(N, 0).
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(ii) For k € Z" and s € [1,10], we have Hi(s) > 0 and hy(s) > 0.
(iii) For 2 < s < s <10, we have

s'—1

(3.8) h(s) > h(s) + | @dt,
s—1
s'—1

(3.9) H(s) > H(s') + | @dt.
s—1

(iv) The function H(s) is decreasing on [1,10]. The function h(s) is
increasing on [1,2] and decreasing on [2,10].
We cannot give explicit expressions for H(s) and h(s). But it is possible
to obtain numerical lower bounds for these two functions. Let
(3.10) si:=2+401i (i>0).

By [13, §7], we have numerical lower bounds of H(s;) for 2 < ¢ < 10. Next
we shall consider the case of 11 < ¢ < 29 and the lower bounds of h(s;) for
0 <4 < 29. These will be used in the proof of the Theorem.

Let 1[,4(t) be the characteristic function of the interval [a, b]. Define

b
c '\ dt o(3,t+2,t+1)
b,c):=\1 — t) =
U(aa 70) §Og(t_1) £ GO() 1_0_(3’5’4)
From (6.2) of [13] and the decreasing of H(s), we deduce that
(3.11) H(sj) > Y cijH(si)

2<i<10
for 11 < j < 29, where

52
T oolt) 4 L5, -2,3(t) t+1
C2,j 1= S{ " log<8j — 1) + — . log p— dt

1

T o) 4 i, —2,3(1) t+1
Cz,] = S { ; log(S] — 1) + 7 IOg Sj 1 dt

Si—1
for 3 <14 < 10. From (3.8) and the fact that h(s) > 0, we also derive

5

(3812)  hls;) > | @dQH(SQ)lOg(Smmiﬁm)
.
Sj—l J

+ > Hs) 10g< & )

. . Si—1
max{3,j—9}<i<29

and

for 0 <5 <29.
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Using the numerical lower bounds of H(s;) for 2 < i < 10 given in [13,
§7], (3.11) and (3.12), we get via a numerical computation the following
results.

Table 1. Numerical lower bounds for H(s;)

i S H(s;) > 7 Si H(s;) > 7 Si H(s;) >

10 3.0 0.0072943 20 4.0 0.0010835

11 3.1 0.0061642 21 4.1 0.0008451
2.2 0.0223939 12 3.2 0.0052233 22 4.2 0.0006482
2.3 0.0217196 13 3.3 0.0044073 23 4.3 0.0004882
2.4 0.0202876 14 3.4 0.0036995 24 4.4 0.0003602
2.5 0.0181433 15 3.5 0.0030860 25 4.5 0.0002592
2.6 0.0158644 16 3.6 0.0025551 26 4.6 0.0001803
2.7 0.0129923 17 3.7 0.0020972 27 4.7 0.0001187
2.8 0.0100686 18 3.8 0.0017038 28 4.8 0.0000702
2.9 0.0078162 19 3.9 0.0013680 29 4.9 0.0000313

© 00 O U x W N

Table 2. Numerical lower bounds for h(s;)

<.

S h(Sl) > 7 Si h(Sl) > 7 S h(s,) >

2.0 0.0232385 10 3.0 0.0077162 20 4.0 0.0010120
2.1 0.0211041 11 3.1 0.0066236 21 4.1 0.0008099
2.2 0.0191556 12 3.2 0.0055818 22 4.2 0.0006440
2.3 0.0173631 13 3.3 0.0046164 23 4.3 0.0005084
2.4 0.0157035 14 3.4 0.0037529 24 4.4 0.0003980
2.5 0.0141585 15 3.5 0.0030123 25 4.5 0.0003085
2.6 0.0127132 16 3.6 0.0023901 26 4.6 0.0002365
2.7 0.0113556 17 3.7 0.0018997 27 4.7 0.0001791
2.8 0.0100756 18 3.8 0.0015336 28 4.8 0.0001336
2.9 0.0088648 19 3.9 0.0012593 29 4.9 0.0000981

© 0~ Ut W~ O

REMARK 2. It is possible to get better numerical lower bounds for H (s;)
and h(s;) by applying (3.8) and (3.9) repeatedly. But the improvement will
be small.

4. Application of Chen’s double sieve. In this section, we apply
Chen’s double sieve to estimate the terms 13, 1y, 75 and 1 in (2.2). Propo-
sitions 4.1-4.4 below concern a general context. These estimates are better
than those obtained by the classical linear sieve, since H(s), h(s) > 0.

PROPOSITION 4.1. Let 0 < ¢1 < ¢p2 < 1/4 and k > 0 be such that

¢2+m§1/2.
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Then for N — oo, we have
(1/2=¢1)/x

3 S(AP;P(N),N“)S{S g %dtJro(l)}@(N).
W <o (1/2-62)

Proof. We keep the previous notation. Denote by S the sum in the propo-
sition. Let o := N® AV and J be the integer such that ay; < N?2 < Qjil-
We write

(4.1) S= > Moy 1) P)S(Ap P(pN),p"/™) + Ry,
1<j<J p
where 7, := (logp)/(klog N) and
(42) Ri= > SUZPIN),NY < Y Np<ON)L™?
ay<p<N¥2 ay<p<N®2
Introducing
7 = (log o)/ (rlog N,

we easily see that 7o, | q,)(p) #0 = 7; <7, < 7j_1. Thus we can deduce
from (4.1) and (4.2) that

(43)  S< DY Tayrap (P)S(A P(pN),p"/™) + O(O(N)L™?),
1<j<J »

where we have used the following estimates:

D 2 o1 (S (Ap P(pN), p ) = S(Ay P(pN), p'/7)}

1<j<J p
<Y Y Y N

1<5<J aj1<p<a; pl/™p Sp/<p1/7j

<NLTP Y > 1p<ON)ILTE

1<j<T aj1<p<a;

Next we treat the inner sum (over p) in (4.3). Clearly for each j €
{1,...,J}, our hypothesis on ¢1,¢2 and r ensures that 7, , q,) € Up(V)
for all k >0, No >2and N > Ny, and 7; > 1. Thus we can apply (3.6) of
Lemma 3.1 to estimate the sum over p (which is @(N, 7q,_; a,), 7j)):

S< Y {Am) — Hino(1)}O(N, o,y a) + O(O(N)LT)
1<j<J
A(Tp) — Hy N, (Tp)

. (p=2)(1 ~logp/log1)

Ay ON A(7p) = Hino (7p) -3
= A1) 2 -2 —logp/log) T CEED)

O(O(N)L™3)

T N?1<p<N©®2
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where we have used the fact that A(s) — Hj n,(s) is increasing in s. An
integration by parts with the prime number theorem shows that

1/2— K
Alny) = Hio () "0 A = B (8
2 (p—2)(1—logp/logl) S t(1 — 2xt) dt+ O3 (e)-
N®1<p<N92 - (1/2—¢2)/k
Hence (/2o
1/2—¢1)/k
A(t) — Hi,n (1)
< : dt N
8_8{ | T2 YT Oak(e) (O
(1/2—=¢2)/r
for N > Ny. From this, we infer that
(1/2—¢1)/k
. A(t) — Hi,n (t)
1 — < 0~ dt
msup Fy =8 0 —ont) O Osk(e);
(1/2—=¢2)/k
which implies, by taking N — oo, kK — oo and € — 0,
(1/2=¢1)/k
. A(t) — H(t)
limsup ——— < 8 S ——— 2 dt.
oo O(N t(1 — 2kt
N—oe OWN) T g Sy T 260)

Clearly this is equivalent to the required inequality. =
In a similar fashion we can prove the following results.
PROPOSITION 4.2. Let 0 < ¢1 < ¢p2 < 1/6 and k > 0 be such that
209 + Kk < 1/2.
Then for N — oo, we have
YD S(AppiP(N),NT)

N%1<p1<pa<N?2
(p1p2,N)=1

a(u) + h(u)

8 S S t(1 — 2t — 2ku)
¢1 (1/2—p2—t)/x

PROPOSITION 4.3. Let 0 < ¢1 < o < 3 < ¢4 < 1/4 and k > 0 be such
that

¢z (1/2-2t)/r
1

dt du + 0(1)}(9(N).

200+ ¢4 < 1/2 and ¢Pa+ ¢4+ Kk < 1/2.
Then for N — oo, we have

> ST S(Appe; P(N), N7

N#1<pi<N®2 N¥3<p;<N®4
(p1p2,N)=1

¢2 (1/2_(153_15)/“€ CL(’U,) + h(u)
AN
tu(l — 2t — 2ku)

dt du + 0(1)}8(1\7).
o1 (1/2—da—t)/x
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Finally, we estimate the sum (1.5) with ¢; > 1/4. In this case, we cannot
directly apply our delicate Chen’s double sieve because of the first condition
of (3.1). As remarked by Cai [2], it is possible to use a simplified version
of Chen’s double sieve. This approach will give a result better than using
the classical linear sieve but weaker than Proposition 4.1, since, without
iteration, ¥ (s) or Wa(s) are principal contributions of H(s). (See Lemmas
5.1 and 5.2 of [13] and compare Proposition 4.4 below and Proposition 4.1.)

PROPOSITION 4.4. Let k >0, ¢ > 0 and 2 < s <3 < s <5 be such
that

1/4<1/2 - sk < ¢.

Then for N — oo, we have

S S(ARP(N)N)

N1/2—SK§p<N¢

e CAW - ()
A(t) — Wl S
< P S S
< {8 | S o) dt+o(1)}@(N),
(1/2—=¢)/x
where
s'—1 1—1/8/
o log(t — 1) 1 log(s't — 1)
Ui(s) =~ | = ——dt+ g | i
2 1-1/s
e “S " ¢o—t—u—v)\ dtdudv
$>2 u tuZov

1/s'<t<u<v<1/s
and w(u) is Buchstab’s function. The same result holds if we replace Wy (s)
by Wa(s), where Wa(s) is defined as in Lemma 5.2 of [13].
Proof. For simplicity, we denote the sum by S. Since N® > Ql/ § for
p > NY275% we can write
S < > S(A;P(N),p'?)

Nl/2—smgp<N¢
(p,N)=1

< Z Z 7T[aj_l,aj)(p)S(-A;D; P(N%Ql/s),
1<j<J p
where a; := NY2-s5 Ad and J is the integer such that ay_1 < N? < a.
Similar to Lemma 4.1 of [13], we can prove that there is a constant n > 0
such that

10 S  Totla, ey @) B0)~ 5 20)+ 5 20 ) 007,

1<j<J p
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where )
21(p) == S(Ap; P(pN), p*'*),

D)= D> S(Ap; P(pN),p"*),
21/31§p1<21/s
(p1,N)=1
23(p) :== Z Z Z S(Appipops; P(pp1IN), p2).
Bl/sl <p1<p2<ps<p!/®

(p1p2p3,N)=1

Similar to (5.1), (5.2) and (5.9) of [13], we can prove, uniformly for N > 10
and for 1<i<3,1<j<J,

Z 7T[aj717aj)(p)9i(p) < {ﬁi(sv S/) + 0(1)}9(N7 ﬂ[aj,l,aj))v
P
where
f)l(s,s') = A(s),

1-1/s

A A a(s't)
92(578) T S t(l — t) )
1-1/s
~ —t—u—v)\ dtdudv
25(s,8") = 2rqr$1§§c “S w(qb " > P
T 1/ <t<u<v<1/s

Inserting these into (4.4) and noticing that
s'—1

Ay =1+ |

2

log(t — 1)

; dt, a(s't) =log(s't — 1),

we find that
S<{L=W(s) +o(1)} 3 (N, 1)+ ON')
1<5<J
¢
< < 8(1 —¥(s)) S __dt +0(1) pO(N)
- t(1—2t) ’
1/2—sk
which is equivalent to the required result for the case of ¥;(s), since
§ AW § dt ‘§’
t(1 — 2kt) t(1 — 2kt)
(1/2=9)/r (1/2=¢)/r 1/2-sk
The case of Ws(s) can be treated in the same way. The main difference
is the use of Lemma 4.2 of [13] in place of Lemma 4.1 there. We omit the
details. =

dt
t(1—2t)
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5. Proof of the Theorem. Set
(5.1) K1 =1/13.27 and ko =1/8.24,
which satisfy the hypothesis of Lemma 2.2. Next we estimate all the terms
T, in (2.2).

1° Lower bounds of 1 and Yy. Write N* = 1% with &’ := x/(1/2 — §).
By using (4.2) with o := 17y (the characteristic function of {1}), it follows
that
(5.2) Y =D(N,1p1y,1/k3) > {a(l/k}) + hing (1/60) }O(N, 11ay)

> {Fi+0(1)}0(N)
with
F;:=8a(1/(2k;)) + G; (i=1,2)
and
G; :=8h(1/(2k;)) (i=1,2).

2° Upper bounds of T3 and Ty. We divide the sum 73 (resp. 74) into
subsums according to

(a) N®t <p < NV4,

(b) N4 < p < NV/2=sok1

(C) N1/2=s5k1 <p< N1/2=sj-1k1 (9 > > 4)

(d) NV/2=ssm1 < < N1/3

(resp. N1 < p < N4 or NV4 < p < N1/2_3”1), where s; is defined
by (3.10). The contribution of (a) is estimated by Proposition 4.1 and we
evaluate (b) (resp. N4 < p < N'/2-351) by the classical linear sieve. The
remaining subsums are treated by Proposition 4.4. It is worth pointing out
that case (b) requires another treatment because ¥i(s1p) = 0 (see Table 3
below). Thus we obtain

(5.3) Ti <{F+o(1)}O(N) (i=34),
where
1/(2k1)—1
A(t)
Fy = A
=8 t(1 — 2rk1t) dt = Gs,
1/(6K1)
1/(2k1)—1
A(t)
Fy = A
=8| H1 = 2 O

3
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and
1/(2k1)—1 Ht)
G4:=8 S (1= 20) dt,
1/(4/61)
1/(2r1)—1 53
._ H(t) Uy (s3)
Gyi=8 | (1— 2r1t) dt+s | t(1 — 2xt) di
1/(4r1) 1/(6r1)
K J’l SZ
+SZ § dt+82 S I_QHt)dt.
4<i<b5 81 6<i<9s;-1

3° Lower bounds of 15 and Ty. Since k1 + 2k = 0.318... < 1/2, Propo-
sition 4.2 yields

(5.4) Y5 > {F5 +0(1)}O(N),
where
ko (1/2=2t)/kK1
F5:=8| |
k1 (1/2—ka—t)/K1
ko (1/2=2t)/K1
G5 =8 S S

K1 (1/2—kao—t)/kK1

a(u) dt du

G
ta(l — 2t —2mu) O

h(u) dt du
tu(l — 2t — 2k1u)’

We divide the double sum T into three subsums according to
(a) N*1 < py < N*2 < py < NV/27202,

(b) NFH1 <p < N3nl/2 and N1/2—2.‘€2 <py < ]\[1/2—3;417

(C) N3n1/2 Spl < N*2 and N1/272I€2 §P2 < N1/273I€1'

The first two subsums can be estimated by Proposition 4.3 and the last one
by the classical linear sieve. Thus we obtain

(5.5) Y6 > {Fs +0(1)}O(N),

where
2 (1/2=R2=t) /1 a(u) dt du
Fg :=
6:=8 S tu(l — 2t — 2K1u)
K1 (3/{17t)/1€1
kp (1/2—kK2—t)/K1
Gg =8 S S
K1 (2/{2—15)//{1
3k1/2 (2k2—t) /K1

+G65

h(w) dt du
tu(l — 2t — 2r1u)

h(w) dt du

8 S S tu(l — 2t — 2r1u)
K1 (3I€1—t)/r€1
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4° Upper bounds of 1; fori=17,8,9,10,11. Clearly the terms 17, 13, Xy,
Y10 and 771 here are the terms 17 (with o = 1/2—3k1), 1y (with o1 = 1/3),
Y10 (with o9 = 1/2—3k1), 113 and 114 of (9.4) in [13]. Thus (10.10), (10.11),
(10.12) of [13] give us the estimates

(5.6) T, <{F;+o(1)}O(N) (i=7,8,9,10,11),
where
2/(1—6r1)—1
log(t — 1
F;:=8 S 70g( )dt,
) t
1/10 1/3
36 log(2 — 3t) log(2 — 3t)
Feo=" | =22 g = gt
* 75 ) H1—p? 8 S t1—t)
1/10
1/2—3k
P23 06 1(1 4 6r1 — 20) /(1 — 6r1)}
Fy:=8 S dt,
H1—1)
K2
36 /" dty, P dty"Fdis " (11—t —te—ts —ts\ dis
Fo=% ) ey YV V5 b ; "
K1 1(_1)t12t23t3 2 4
Nodty P dty P dts " (11—t —te —tg —tg\ dt
+85t—15t—2‘25t—3W< — 4)15—4’
1/101t1 2ty 3153 2 4
. 36 1/510 dtq ”SQ dto ”SQ dts
11 -~— — T 1 N 9 -
5 tl(l—tl) b t% y t3
1/2-2m~ts (1 bty —ty— t4> dt,
% S w —=
to T4
R2
s ”“SZ dty ’T dts ”82 dts 1/2_28“1_t3w<1 =ty — 13 —t4> dty
gtz s A
110 b t2 t2 ts Ko t2 ta

and w(t) is the Buchstab function (see Lemma 2.10 of [13]).
Inserting (5.2)—(5.6) into (2.2), we get

D1 2(N) = {F(k1,k2) +0o(1)}O(N),
where

F (K1, k2)
= 2(BF + Fy — F3 — Fy + F5 + Fs — 2F; — Fy — Fy — Fip — F11).
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5° Numerical computation. From (3.2) and (3.3), we deduce easily that

(0 (0 < s<2),
log(s — 1) (2<s<4),
N o1 -1)
logs—l—k&%& log(u = 1) (4<s<6),
als) = E dtzlo (u—1)
log(s—1) + S + S g
3.2
s—1 - u—1 —
dt 7" du dv log -1)
S - | — | — g 2B dw (6<s<8),
4 3 2
and
1 (0 <s<3),
s—1
log(t —1
1+S%dt (3<s<5),
2
A(s) = *log(t — 1
=94 | Og(t ) at
2
s—1 t—1 u—1
[ Ay ey sl g 5 cs<)
t - v
\ 4 3 2
By using (3.8), we have
1/(2k2)—1
Hi(t
G228(h(822)+ | %dt) > 0.005283.
s22—1

In order to estimate G4, we use Table 1 and the decreasing of H(s) to
obtain

1/(2k1)—1
Gi=8 |
1/(41)

2K18

14 1514

7 = log

(1 - 2"431514> ’

; S‘(l — 2/1181‘_1)
Li=log| ———=2
9a <Si_1<1 — 2/%181')

H{(t)

7dt> H >
Mo 28 > giH(s;) > 0.008860

14<i<29
with

> (15 <14 < 29).
With a simpler calculation, we get

G3=Gi+8 > gila(si)+8 > ghi(s;) > 0.039890
3<i<5 6<i<9
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with

3. lo 4%183
93 := 08 1-— 2/@183 ’
¢ ‘= lo <M

si-1(1— 2/@151-)) (4<i<9).

Here we have used Table 1 of [13] on the lower bounds for ¥a(s;) (3 < i < 5)
and ¥ (s;) (6 <i<9):

Table 3. Lower bounds for ¥ (s;) and Wa(s;)

7 Si S; R1,i R2,i R3,i 41 (81) Q’Q(«%)
3 2.3 450 3.54 288 243 0.015247971
4 24 4.46 3.57 2.87 2.40 0.013898757
5 25 4.12 356 291 250 0.011776059
6 2.6 3.58 0.009405211
7 2.7 347 0.006558950
8 2.8 334 0.003536751
9 29 3.19 0.001056651
10 3.0 3.00 0

Similarly

ko (1/2—2t)/k1
G5 =8| |

K1 (1/2—ko—t)/K1

(1/2—/61—/62)//61

— 3 | h(u) log< 22 > o du

(L/2—9m2) /1 1—2k9 — 2K1u 1 —2Kqu)

(1/2—2kK1) /K1

+8 | h(u) log<

(1/2—k1—kK2) /K1

>8 > gih(si) >0.001359
15<i<27

h(w) dt du
tu(l — 2t — 2K1u)

1—2Kk] — 2/<clu> du

2K1 u(l — 2k1u)

with

Sis 2/4;2 du

15

95 = log< — = ) = ’
(1/2—2k2) /K1 1 — 2k — 2k1u ) u(l — 2K1u)

. S 2[{2 du .
L= 1 16 <i<2
95 S Og<1—2ﬁ2—2/§1u) uw(l — 2K1u) (16 < i < 20),

Si—1
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(1/2—r1—K2)/K1

21 . _ S lo 2R du
N s§1 10g(1/(2/‘€1) —1- u) d
u(l — 2k u) t

(1/2—k1—K2) /K1
. S log(1/(2k1) — 1 — )

- 22 <1<2
% s u(l — 2k1u) du  (22<i<26),
(1/2—2k1)/k
927 — S 1)/K1 log(1/(2k1) — 1 — u) du
0 u(l — 2k u) ’
526
and
re (1/2=re=t)/m h(uw) dt du

Ge =8 |
K1 (2k2—t)/kK1
3"11/2 (2/62—75)/&1

tu(l — 2t — 2K u)

h(w) dt du

s S S tu(l — 2t — 2r1u)
K1 (3/{1—t)/l-€1

(1/2*2/%)/%1
> 8 S 10g<ﬁ2(1 —2K1 — 251U)> h(u) du

- 5 k1(1 —2ke —2k1u) ) u(l —2Kk1u)
s (I/Q—mS—m)/m 10g((1 —2k1 —2Kk1u) (1 — 2K9 — 2/<;1u)> h(u) du
(1232} 4K1K2 u(l—2k1u)
>8 ) ggh(si) > 0.060469
1<i<21
with
s
; ! Eg(l — 2/<61 — 2/1111,) du .
L= 1 1<i<14
96 S Og<n1(1 — 2K9 — 2k1u) ) u(l — 2K1u) (I=sisl1d),

Si—1

(1/2—2k2) /K1

R R e e
uf

k1(1 = 2rg — 2k1u) ) u(l — 2K u)

514

515 log<(1 — 2K — 2/€1U)(1 — 2K9 — 2/{1u)> du

+ | 7
(1/2—2k2) /K1 Ak1hg u(l —2k1u)

? SSZ 1 (1 B 2’%1 - 21%1’11:)(1 - 2:‘4',2 — 2/§1u) du
: 0
¢ 4Kk1K2 u(l — 2K1u)

Si—1

(16 < i < 20),



21 . _
96 =
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(1/2—.'415—142)/“1 10g<(1 — 2K — 2/-€1u)(1 — 2Kg — 2"4’1u)) du
u(

$20 4/%1 K9 1— 2/€1u)

To simplify the computation of Fjg and Fji, we make use of the fact

that w(t) < 0.561522 for ¢ > 3.4.

Finally, a numerical computation yields

F(r1, k) > 1{3-14.900897 + (9.103015 + 0.005283)

— (23.652925 — 0.039890) — (19.643510 — 0.008860)

+ (1.654808 + 0.001359) + (3.819092 + 0.060469)

—2-0.585179 — 5.279581 — 5.372410 — 0.104305 — 0.543858}
> 0.899.

This completes the proof of the Theorem. =
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