Remarks on the λ_{p}-invariants of cyclic fields of degree p

by
Masato Kurihara (Tokyo)

0. Introduction. We fix an odd prime number p throughout this paper. For a totally real field k, let k_{∞} / k denote the cyclotomic \mathbb{Z}_{p}-extension and $X_{k_{\infty}}$ denote the Galois group of the maximal unramified abelian pro-p extension of k_{∞} over k_{∞}. Greenberg's conjecture predicts that $X_{k_{\infty}}$ is finite. In a series of papers [4], [12], [16], [2], [3], T. Fukuda, K. Komatsu, M. Ozaki, H. Taya, and G. Yamamoto intensively studied the case that $p=3$ and k is a cyclic cubic field with prime conductor.

In this paper, we consider a cyclic field k of degree p with prime conductor ℓ. First of all, we will see that for such a field $k, X_{k_{\infty}}$ has a simple form (Theorem 1.3), and we will see what the finiteness of $X_{k_{\infty}}$ means (Remark 1.5). Next, we will develop the idea of Ozaki and Yamamoto [16], and obtain more general conditions which imply the finiteness of $X_{k_{\infty}}$ (see Propositions 1.7-1.10 in $\S 1$, cf. also Corollaries 1.4, 1.6). They are conditions on fields of degree p over \mathbb{Q}, so it is not difficult to check them for numerical examples. In fact, these conditions are satisfied by many examples. (For $p=3$, these conditions are satisfied for all $\ell<10000$ except $\ell=8677$ (cf. $\S 4.1$). For $p=5$, these conditions are satisfied for all $\ell<100000$ except three ℓ 's (cf. §4.4).) (We do not use p-adic L-functions. For the relation with Tsuji's criterion, see Remark 1.11.)

I would like to express my hearty thanks to Manabu Ozaki for valuable discussion with him on the topic of this paper. I also thank Toru Komatsu and Ryohei Takeuchi heartily for helping me to compute the numerical examples.

1. Results. Let p be an odd prime number. Assume that ℓ is a rational prime such that $\ell \equiv 1(\bmod p)$, and k denotes the cyclic field of degree p with conductor ℓ. For an integer $n \geq 0$, we denote by $k_{n}\left(\right.$ resp. $\left.\mathbb{Q}_{n}\right)$ the nth layer of the cyclotomic \mathbb{Z}_{p}-extension k_{∞} / k (resp. $\mathbb{Q}_{\infty} / \mathbb{Q}$), namely k_{n} (resp. $\left.\mathbb{Q}_{n}\right)$ is the intermediate field such that $\left[k_{n}: k\right]=p^{n}\left(\right.$ resp. $\left.\left[\mathbb{Q}_{n}: \mathbb{Q}\right]=p^{n}\right)$.
[^0]Let $A_{k_{n}}$ be the p-Sylow subgroup of the ideal class group of k_{n}, and

$$
X_{k_{\infty}}=\lim _{\leftrightarrows} A_{k_{n}}
$$

the projective limit of $A_{k_{n}}$ with respect to the norm maps. So $X_{k_{\infty}}$ is isomorphic to the Galois group of the maximal unramified abelian pro- p extension of k_{∞} over k_{∞}. Since only one prime ℓ is ramified in k / \mathbb{Q}, by genus theory we have $A_{k}=0$. But $X_{k_{\infty}}$ is nonzero, in general. By Ferrero-Washington's theorem [1], $X_{k_{\infty}}$ is a finitely generated \mathbb{Z}_{p}-module whose rank is denoted by λ (the Iwasawa λ-invariant). A famous conjecture by Greenberg asserts that $X_{k_{\infty}}$ is finite, namely $\lambda=0([6])$.

By genus theory and a theorem of Iwasawa (cf. [8]), we know $X_{k_{\infty}}=0$ if either $p(\bmod \ell) \notin\left(\mathbb{F}_{\ell}^{\times}\right)^{p}$ or $\ell \not \equiv 1\left(\bmod p^{2}\right)$ holds (Theorem A in [16]). So in the following, we assume that $p(\bmod \ell) \in\left(\mathbb{F}_{\ell}^{\times}\right)^{p}$ and $\ell \equiv 1\left(\bmod p^{2}\right)$. Namely, we assume that p splits in k / \mathbb{Q}, and that ℓ splits in $\mathbb{Q}_{1} / \mathbb{Q}$.

Let $O_{\mathbb{Q}_{n}}$ be the integer ring of \mathbb{Q}_{n} and $E_{\mathbb{Q}_{n}}^{\prime}=\left(O_{\mathbb{Q}_{n}}[1 / p]\right)^{\times}$be the group of p-units. For a prime v of \mathbb{Q}_{n} lying over ℓ, we denote by $\kappa(v)=O_{\mathbb{Q}_{n}} / v$ the residue field of v. Let $O_{\mathbb{Q}_{n},(v)}$ be the localization of $O_{\mathbb{Q}_{n}}$ at v, and ∂_{v} : $O_{\mathbb{Q}_{n},(v)} \rightarrow O_{\mathbb{Q}_{n},(v)} / v=\kappa(v)$ be the reduction map. Since v is prime to p, ∂_{v} induces a homomorphism

$$
\partial_{v}: E_{\mathbb{Q}_{n}}^{\prime} \rightarrow \kappa(v)^{\times}
$$

where $\kappa(v)^{\times}$is the multiplicative group of nonzero elements in $\kappa(v)$. Since p divides the order of $\kappa(v)^{\times}, \kappa(v)^{\times} /\left(\kappa(v)^{\times}\right)^{p}$ is cyclic of order p. We consider the map

$$
\Phi_{n}^{\prime}: E_{\mathbb{Q}_{n}}^{\prime} \rightarrow \bigoplus_{v \mid \ell} \kappa(v)^{\times} /\left(\kappa(v)^{\times}\right)^{p}
$$

which is induced by $x \mapsto\left(\partial_{v} x\right)$ where v ranges over all primes of \mathbb{Q}_{n} lying over ℓ.

Lemma 1.1. Suppose that Φ_{n}^{\prime} is not the zero map. Then, for any $m \geq n$, the dimension of the cokernel of Φ_{m}^{\prime} (as an \mathbb{F}_{p}-vector space) is equal to the dimension of the cokernel of Φ_{n}^{\prime} (as an \mathbb{F}_{p}-vector space).

We will give a proof of this lemma in $\S 2$.
Definition 1.2. Assume that there is $n \geq 0$ such that the image of Φ_{n}^{\prime} is not zero. We define

$$
\kappa=\operatorname{dim} \text { Cokernel }\left(\Phi_{n}^{\prime}: E_{\mathbb{Q}_{n}}^{\prime} \rightarrow \bigoplus_{v \mid \ell} \kappa(v)^{\times} /\left(\kappa(v)^{\times}\right)^{p}\right)
$$

where v ranges over all primes of \mathbb{Q}_{n} lying over ℓ. If the image of Φ_{n}^{\prime} is zero for all $n \geq 0$, we define $\kappa=\infty$.

By Lemma 1.1, this definition does not depend on the choice of n. Let q be the number of the primes of \mathbb{Q}_{∞} lying over ℓ. Then $\kappa<\infty$ implies $\kappa<q$
by definition. In general, numerical calculation of κ is easy (cf. the proof of Lemma 1.1 in $\S 2$, and the examples in $\S 4$). We will define a similar map Φ_{n} in $\S 2$, and give a relation between κ and Φ_{n}. We believe this number κ and the maps $\Phi_{n}, \Phi_{n}^{\prime}$ play an important role in Iwasawa theory of k.

If $\kappa=0$, the Φ_{n}^{\prime} 's are surjective for all $n \geq 0$, so from the surjectivity of Φ_{0}^{\prime} and the fact that $E_{\mathbb{Q}}^{\prime} /\left(E_{\mathbb{Q}}^{\prime}\right)^{p}$ is generated by the image of p, we have p $(\bmod \ell) \notin\left(\mathbb{F}_{\ell}^{\times}\right)^{p}$. So by our assumption, we always have $\kappa \geq 1$.

Let ζ_{p} be a primitive p th root of unity, and put

$$
R=\mathbb{Z}_{p}\left[\zeta_{p}\right] .
$$

We also define G and Γ by

$$
G=\operatorname{Gal}\left(k_{\infty} / \mathbb{Q}_{\infty}\right)=\operatorname{Gal}(k / \mathbb{Q}), \quad \Gamma=\operatorname{Gal}\left(k_{\infty} / k\right)=\operatorname{Gal}\left(\mathbb{Q}_{\infty} / \mathbb{Q}\right) .
$$

We take a generator σ of G and consider $N_{G}=1+\sigma+\cdots+\sigma^{p-1}$. Then, for $x \in X_{k_{\infty}}$, the map $N_{G}: X_{k_{\infty}} \rightarrow X_{k_{\infty}}\left(x \mapsto N_{G}(x)\right)$ factors through $X_{\mathbb{Q}_{\infty}}=\lim A_{\mathbb{Q}_{n}}=0$ (where $A_{\mathbb{Q}_{n}}$ is the p-Sylow subgroup of the ideal class group of \mathbb{Q}_{n}), so it is the zero map. Hence, by defining $\zeta_{p} x=\sigma x, X_{k_{\infty}}$ becomes an $R=\mathbb{Z}_{p}\left[\zeta_{p}\right]$-module. Since Γ acts on $X_{k_{\infty}}, X_{k_{\infty}}$ is also a Λ module where we put

$$
\Lambda=R[[\Gamma]]=\mathbb{Z}_{p}\left[\zeta_{p}\right][[\Gamma]] .
$$

Throughout this paper, we identify Λ with the formal power series ring $R[[T]]$ by identifying a generator γ of Γ with $1+T$.

Let χ be a faithful character of $\operatorname{Gal}(k / \mathbb{Q})$, namely χ is an injective homomorphism from $\operatorname{Gal}(k / \mathbb{Q})$ to $\overline{\mathbb{Q}}_{p}^{\times}$. We consider the p-adic L-function $L_{p}(s, \chi)$ of Kubota-Leopoldt, and the associated power series $G_{\chi}(T) \in R[[T]]$ such that $G_{\chi}\left(\kappa(\gamma)^{1-s}-1\right)=L_{p}(s, \chi)$, where $\kappa: \Gamma \rightarrow \mathbb{Z}_{p}^{\times}$is the cyclotomic character. By Ferrero-Washington's theorem [1], $\zeta_{p}-1$ does not divide $G_{\chi}(T)$. Let $f_{\chi}(T) \in R[T]$ be the distinguished polynomial of $G_{\chi}(T)$, so $G_{\chi}(T)=u(T) f_{\chi}(T)$ for some unit power series $u(T) \in R[[T]]^{\times}$(cf. [19, §7.1]). By Kida's formula ([11], [10]), the degree of $f_{\chi}(T)$ is $q-1$ (recall that q is the number of the primes of \mathbb{Q}_{∞} lying over ℓ).

Theorem 1.3. Let \mathfrak{p} be a prime of k lying over p, and \mathfrak{p}_{n} be the prime of k_{n} lying over \mathfrak{p}. We denote by $\mathbf{c}_{\mathfrak{p}}$ the class of $\left(\mathfrak{p}_{n}\right)$ in $X_{k_{\infty}}$. Then there exist a polynomial $k(T) \in R[T]$ and an isomorphism

$$
\Lambda /\left(f_{\chi}(T), T k(T)\right) \xrightarrow{\simeq} X_{k_{\infty}}
$$

of $\Lambda(=R[[\Gamma]]=R[[T]])$-modules such that $k(T)$ modulo $\left(f_{\chi}(T), T k(T)\right)$ corresponds to $\mathbf{c}_{\mathfrak{p}}$. If $\kappa<\infty$, we can take $k(T)$ to be a distinguished polynomial of degree $\kappa-1$. If $\kappa=\infty$, we can take $k(T)$ such that $\zeta_{p}-1$ divides $k(T)$.

We will prove this theorem in $\S 3$. Suppose $\kappa<\infty$. Since T is prime to $f_{\chi}(T)$, the greatest common divisor of $f_{\chi}(T)$ and $T k(T)$ divides $k(T)$, so its degree is smaller than or equal to $\kappa-1$. This implies that the R-rank of $X_{k_{\infty}}$ is $\leq \kappa-1$. Since λ is the \mathbb{Z}_{p}-rank of $X_{k_{\infty}}$, we have

Corollary 1.4. $\lambda \leq(p-1)(\kappa-1)$.
Ozaki and Yamamoto ([16, Theorem 1]) showed that if $\kappa=1$, then $\lambda=0$ in the case $p=3$. The above corollary is a generalization of their result. (They also quoted the case $\kappa=2$ of the above corollary as a theorem of the author in [16, Theorem 4].)

Remark 1.5. Theorem 1.3 tells us that $X_{k_{\infty}}$ is finite if and only if $f_{\chi}(T)$ is prime to $k(T)$. (Note that $k(T)$ is defined modulo $f_{\chi}(T)$.) By our experience of numerical computation (cf. §4), it seems to us that there is no relation between $k(T)$ and $f_{\chi}(T)$. If this is true, the probability that a root of $f_{\chi}(T)=0$ happens to be a root of $k(T)=0$ in an algebraic closure of \mathbb{Q}_{p} which is a set of cardinality of the continuum would be very small, and almost zero.

Next, we will give some conditions which imply the finiteness of $X_{k_{\infty}}$, namely $\lambda=0$. Ozaki and Yamamoto ([16, Theorem 2]) proved (in the case $p=3)$ that if $\kappa=2$ and $f_{\chi}(T)$ is irreducible, we have $\lambda=0$. When $\kappa<\infty$, the degree of $k(T)$ is $\kappa-1$. Hence, Theorem 1.3 implies

Corollary 1.6. Suppose that $\kappa<\infty$. If $f_{\chi}(T)$ does not have a factor of degree $\leq \kappa-1$, then $\lambda=0$.

As we mentioned before Theorem 1.3, the degree of $f_{\chi}(T)$ is $q-1$ where q is the number of the primes of \mathbb{Q}_{∞} lying over ℓ. On the other hand, by the definition of κ, we have $\kappa<q$, so $\kappa-1$ is smaller than the degree of $f_{\chi}(T)$. Hence, if $f_{\chi}(T)$ is irreducible, $f_{\chi}(T)$ satisfies the condition in this corollary.

In this paper, we mainly study the case $\kappa=2$. The following propositions will be proved in $\S 3$.

Proposition 1.7. Assume that $\kappa=2$. If there is a subfield F of k_{1} such that $F \neq \mathbb{Q}_{1}, F \neq k,[F: \mathbb{Q}]=p$, and such that the prime ideal of F lying over p is principal, then $\lambda=0$.

A similar result with the additional assumption $\ell \equiv 1\left(\bmod p^{3}\right)$ (in the case $p=3$) was proved in Ozaki and Yamamoto [16].

Let $R=\mathbb{Z}_{p}\left[\zeta_{p}\right]$ be as above, and v_{R} be the normalized additive valuation of R, namely $v_{R}\left(\zeta_{p}-1\right)=1$. Ozaki and Yamamoto gave a condition which implies $\lambda=0$, using a generalized Bernoulli number ([16, Corollary 3]). For the generalized Bernoulli number $B_{1, \chi \omega^{-1}}$, if $v_{R}\left(B_{1, \chi \omega^{-1}}\right)=0$, then we have $X_{k_{\infty}}=0$, and if $v_{R}\left(B_{1, \chi \omega^{-1}}\right)=1$, then $f_{\chi}(T)$ is irreducible, and we also have $\lambda=0$ ([16, Corollary 3]). We proceed to the case $v_{R}\left(B_{1, \chi \omega^{-1}}\right)=2$.

Proposition 1.8. Assume that $\kappa=2$ and $v_{R}\left(B_{1, \chi \omega^{-1}}\right)=2$. If moreover p^{4} does not divide the class numbers of all subfields of k_{1} with degree p over \mathbb{Q}, then we have $\lambda=0$.

In order to deal with the case $\kappa>2$, we also need the following propositions.

Proposition 1.9. Suppose that $\kappa \leq p$ and $\ell \equiv 1\left(\bmod p^{3}\right)$. We also assume there are subfields F and F^{\prime} of k_{1} such that
(i) $F \neq \mathbb{Q}_{1}, F \neq k, F^{\prime} \neq \mathbb{Q}_{1}, F^{\prime} \neq k$, and $[F: \mathbb{Q}]=\left[F^{\prime}: \mathbb{Q}\right]=p$,
(ii) the prime of F over ℓ is principal, and the prime of F^{\prime} over ℓ is not principal, and
(iii) p^{4} does not divide the class number of F.

Then $\lambda=0$.
Proposition 1.10. Suppose that $\kappa=\infty$. Furthermore, we assume that there is a subfield $F \subset k_{1}$ with $F \neq k$ and $[F: \mathbb{Q}]=p$ such that p^{4} does not divide the class number of F and the prime over p is not principal. Then $\lambda=0$.

Remark 1.11 (Remark on Tsuji's criterion). Kraft and Schoof [13] and independently Ichimura and Sumida [7] gave efficient criteria for Greenberg's conjecture when the degree $[k: \mathbb{Q}]$ of the ground field k is prime to p. After the work of Fukuda and Komatsu [3], recently T. Tsuji gave a good criterion [18] where she removed the assumption on $[k: \mathbb{Q}]$ in the criterion of Ichimura and Sumida. In the above notation, for each irreducible factor $P_{i}(T)$ of $f_{\chi}(T)$, her criterion presents a necessary and sufficient condition that $P_{i}(T)$ does not divide the characteristic power series $F_{k}(T)$ of $X_{k_{\infty}}$. Theorem 1.3 says that if $\kappa<\infty$ and $\operatorname{deg} P_{i}(T)>\kappa-1$, then $P_{i}(T)$ does not divide $F_{k}(T)$. So we only have to check the factors $P_{i}(T)$ with degree $\leq \kappa-1$. For example, if $\kappa=2$, we only have to check the factors of degree 1 . Further, it happens that some factors need not be checked (cf. Proposition $3.4)$. Numerical examples will be given in $\S 4$.

2. A homomorphism Φ_{n} and the invariant κ

Proof of Lemma 1.1. We define M_{n} by $M_{n}=\bigoplus_{v \mid \ell, v \in P_{\mathbb{Q}_{n}}} \kappa(v)^{\times} /\left(\kappa(v)^{\times}\right)^{p}$ where v ranges over all primes of \mathbb{Q}_{n} over ℓ, and define M_{m} similarly. Put $\Gamma=\operatorname{Gal}\left(\mathbb{Q}_{\infty} / \mathbb{Q}\right)$. Then both M_{n} and M_{m} are $\mathbb{F}_{p}[[\Gamma]]$-modules. We take a generator γ of Γ and identify $\mathbb{F}_{p}[[\Gamma]]$ with the formal power series ring $\mathbb{F}_{p}[[T]]$ by the correspondence $\gamma \leftrightarrow 1+T$. Since M_{m} is isomorphic to $\mathbb{F}_{p}\left[\operatorname{Gal}\left(\mathbb{Q}_{m} / \mathbb{Q}\right) / D\right]$ where D is the decomposition group of ℓ, it is generated by one element as an $\mathbb{F}_{p}[[T]]$-module. Taking a generator x_{m}, we write

$$
M_{m}=\mathbb{F}_{p}[[T]] x_{m} \simeq \mathbb{F}_{p}[[T]] /\left(T^{q_{m}}\right)
$$

where q_{m} is the number of the primes of \mathbb{Q}_{m} lying over ℓ. Note that for any $i \geq 0$, we have a canonical isomorphism $O_{\mathbb{Q}_{i}} / \ell O_{\mathbb{Q}_{i}} \simeq \bigoplus_{v \mid \ell, v \in P_{\mathbb{Q}_{i}}} \kappa(v)$. Hence, the norm map from \mathbb{Q}_{m} to \mathbb{Q}_{n} induces a map $N: M_{m} \rightarrow M_{n}$. Put $x_{n}=N\left(x_{m}\right)$. Since $N: M_{m} \rightarrow M_{n}$ is surjective, M_{n} is generated by x_{n} and we can write $M_{n}=\mathbb{F}_{p}[[T]] x_{n} \simeq \mathbb{F}_{p}[[T]] /\left(T^{q_{n}}\right)$ where q_{n} is the number of the primes of \mathbb{Q}_{n} lying over ℓ.

On the other hand, as an $\mathbb{F}_{p}[[T]]$-module, $E_{\mathbb{Q}_{n}}^{\prime} /\left(E_{\mathbb{Q}_{n}}^{\prime}\right)^{p}$ is generated by the class of $N_{\mathbb{Q}\left(\zeta_{p^{n+1}}\right) / \mathbb{Q}_{n}}\left(1-\zeta_{p^{n+1}}\right)$ where $\zeta_{p^{n+1}}$ is a primitive p^{n+1} st root of unity, and $N_{\mathbb{Q}\left(\zeta_{p^{n+1}}\right) / \mathbb{Q}_{n}}$ is the norm map from $\mathbb{Q}\left(\zeta_{p^{n+1}}\right)$ to \mathbb{Q}_{n}. So the $\operatorname{map} E_{\mathbb{Q}_{m}}^{\prime} /\left(E_{\mathbb{Q}_{m}}^{\prime}\right)^{p} \rightarrow E_{\mathbb{Q}_{n}}^{\prime} /\left(E_{\mathbb{Q}_{n}}^{\prime}\right)^{p}$ which is induced by the norm map is surjective. Hence, if the image of Φ_{m}^{\prime} is $T^{i} \mathbb{F}_{p}[[T]] x_{m}$, then the image of Φ_{n}^{\prime} is $T^{i} \mathbb{F}_{p}[[T]] x_{n}$. Note that $i<q_{n}$ by our assumption. We have
$\operatorname{dim} \operatorname{Cokernel}\left(\Phi_{n}^{\prime}: E_{\mathbb{Q}_{n}}^{\prime} \rightarrow M_{n}\right)=\operatorname{dim} \operatorname{Cokernel}\left(\Phi_{m}^{\prime}: E_{\mathbb{Q}_{m}}^{\prime} \rightarrow M_{m}\right)=i$.
This completes the proof of the lemma.
Next, we will define a homomorphism Φ_{n}. Let $E_{\mathbb{Q}_{n}}$ be the unit group of $O_{\mathbb{Q}_{n}}$. Then Φ_{n}^{\prime} induces a homomorphism

$$
E_{\mathbb{Q}_{n}} \rightarrow \bigoplus_{v \mid \ell} \kappa(v)^{\times} /\left(\kappa(v)^{\times}\right)^{p}
$$

The norm map from \mathbb{Q}_{n} to \mathbb{Q} induces a map $O_{\mathbb{Q}_{n}} / \ell O_{\mathbb{Q}_{n}}=\bigoplus_{v \mid \ell} \kappa(v) \rightarrow \mathbb{F}_{\ell}$. So we have a natural homomorphism

$$
\bigoplus_{v \mid \ell} \kappa(v)^{\times} /\left(\kappa(v)^{\times}\right)^{p} \rightarrow \mathbb{F}_{\ell}^{\times} /\left(\mathbb{F}_{\ell}^{\times}\right)^{p}
$$

whose kernel is denoted by $\left(\bigoplus_{v \mid \ell} \kappa(v)^{\times} /\left(\kappa(v)^{\times}\right)^{p}\right)^{0}$. Since the diagram

is commutative (where $E_{\mathbb{Q}}$ is the unit group of \mathbb{Z} and the vertical arrows are induced by the norm maps) and $E_{\mathbb{Q}} / E_{\mathbb{Q}}^{p}=0$, the image of the upper horizontal map is contained in $\left(\bigoplus_{v \mid \ell} \kappa(v)^{\times} /\left(\kappa(v)^{\times}\right)^{p}\right)^{0}$. We denote this map by

$$
\Phi_{n}: E_{\mathbb{Q}_{n}} \rightarrow\left(\bigoplus_{v \mid \ell} \kappa(v)^{\times} /\left(\kappa(v)^{\times}\right)^{p}\right)^{0}
$$

Lemma 2.1. Suppose that Φ_{n}^{\prime} is not the zero map. Then the dimension of the cokernel of Φ_{n} as an \mathbb{F}_{p}-vector space is equal to κ.

Proof. We use the same notation as in the proof of Lemma 1.1. The above map $\bigoplus_{v \mid \ell} \kappa(v)^{\times} /\left(\kappa(v)^{\times}\right)^{p} \rightarrow \mathbb{F}_{\ell}^{\times} /\left(\mathbb{F}_{\ell}^{\times}\right)^{p}$ is induced by the norm map $M_{n} \rightarrow M_{0}$. Using $M_{n}=\mathbb{F}_{p}[[T]] x_{n}\left(\simeq\left(\mathbb{F}_{p}[[T]] /\left(T^{q_{n}}\right)\right)\right.$) and $M_{0}=\mathbb{F}_{p} x_{0}$, where x_{0} is the image of x_{n} under the norm map, we see the above map is induced by $T \mapsto 0$. Hence, $\left(\bigoplus_{v \mid \ell} \kappa(v)^{\times} /\left(\kappa(v)^{\times}\right)^{p}\right)^{0}=T \mathbb{F}_{p}[[T]] x_{n}$. Suppose $\Phi_{n}^{\prime}\left(E_{\mathbb{Q}_{n}}^{\prime}\right)=T^{i} \mathbb{F}_{p}[[T]] x_{n}$. Since $E_{\mathbb{Q}_{n}} / E_{\mathbb{Q}_{n}}^{p}$ is generated by cyclotomic units, $T\left(E_{\mathbb{Q}_{n}}^{\prime} /\left(E_{\mathbb{Q}_{n}}^{\prime}\right)^{p}\right)=E_{\mathbb{Q}_{n}} / E_{\mathbb{Q}_{n}}^{p}$, and we have $\Phi_{n}\left(E_{\mathbb{Q}_{n}}\right)=T^{i+1} \mathbb{F}_{p}[[T]] x_{n}$. Note that $i+1 \leq q_{n}$ by our assumption. Hence,

$$
\operatorname{dim} \operatorname{Cokernel}\left(\Phi_{n}\right)=(i+1)-1=i=\operatorname{dim} \operatorname{Cokernel}\left(\Phi_{n}^{\prime}\right)=\kappa .
$$

This completes the proof of the lemma.
3. Proof of Theorem 1.3 and propositions in Section 1. We use the following lemma (cf. Lemma 2.1 in [14]).

Lemma 3.1. Let L / K be a cyclic extension of degree p of totally real number fields which is not unramified. Then we have an exact sequence

$$
\begin{aligned}
& \rightarrow \widehat{H}^{0}\left(L / K, A_{L}\right) \rightarrow \widehat{H}^{0}\left(L / K, E_{L}\right) \rightarrow\left(\bigoplus_{v \in P_{\mathrm{ram}}(K)} \widehat{H}^{0}\left(L_{w} / K_{v}, E_{L_{w}}\right)\right)^{0} \\
& \rightarrow H^{1}\left(L / K, A_{L}\right) \rightarrow H^{1}\left(L / K, E_{L}\right) \rightarrow \bigoplus_{v \in P_{\mathrm{ram}}(K)} H^{1}\left(L_{w} / K_{v}, E_{L_{w}}\right)
\end{aligned}
$$

$$
\rightarrow \ldots
$$

Here, the notation is as follows. $P_{\mathrm{ram}}(K)$ is the set of all ramified (finite) primes of K in L / K. For $v \in P_{\operatorname{ram}}(K)$, we denote by w the unique prime of L lying over K. For a prime w of L (resp. v of K), $L_{w}\left(\right.$ resp. $\left.K_{v}\right)$ is the completion of L at w (resp. K at v). We denote by E_{L} (resp. $E_{L_{w}}$) the unit group of the integer ring of L (resp. L_{w}). A_{L} is the p-Sylow subgroup of the ideal class group of L, and $\widehat{H}^{0}(*, *)$ is the Tate cohomology. We define an isomorphism $\widehat{H}^{0}\left(L_{w} / K_{v}, E_{L_{w}}\right) \simeq \mathbb{Z} / p \mathbb{Z}$ by

$$
\widehat{H}^{0}\left(L_{w} / K_{v}, E_{L_{w}}\right) \simeq \widehat{H}^{0}\left(L_{w} / K_{v}, L_{w}^{\times}\right) \simeq H^{2}\left(L_{w} / K_{v}, L_{w}^{\times}\right) \simeq \mathbb{Z} / p \mathbb{Z}
$$

where the last map is the invariant map of local class field theory. (The first two groups are isomorphic because L_{w} / K_{v} is totally ramified.) The group $\left(\oplus_{v \in P_{\mathrm{ram}}(K)} \widehat{H}^{0}\left(L_{w} / K_{v}, E_{L_{w}}\right)\right)^{0}$ denotes the kernel of

$$
\bigoplus_{\in \in P_{\mathrm{ram}}(K)} \widehat{H}^{0}\left(L_{w} / K_{v}, E_{L_{w}}\right) \simeq \bigoplus_{v \in P_{\mathrm{ram}}(K)} \mathbb{Z} / p \xrightarrow{\Sigma} \mathbb{Z} / p
$$

where Σ is the map defined by the sum.
Proof of Theorem 1.3. Let $\mathcal{M}_{\infty} / k_{\infty}$ be the maximal abelian pro- p extension of k_{∞} unramified outside p, and $\mathcal{X}_{k_{\infty}}=\operatorname{Gal}\left(\mathcal{M}_{\infty} / k_{\infty}\right)$ be its Galois
group. We denote by $\mathcal{U}_{k_{\infty}}$ the group of semi-local units, namely

$$
\mathcal{U}_{k_{\infty}}=\lim _{\rightleftarrows} \bigoplus_{\mathfrak{p} \mid p} U_{k_{n, \mathfrak{p}_{n}}}^{1}
$$

where \mathfrak{p} ranges over all primes of k over p, and \mathfrak{p}_{n} is the prime of k_{n} over \mathfrak{p}, and $U_{k_{n, \mathfrak{p}_{n}}}^{1}$ is the principal units of $k_{n, \mathfrak{p}_{n}}$. By class field theory, we have an exact sequence

$$
\mathcal{U}_{k_{\infty}} \rightarrow \mathcal{X}_{k_{\infty}} \rightarrow X_{k_{\infty}} \rightarrow 0
$$

Put $G=\operatorname{Gal}\left(k_{\infty} / \mathbb{Q}_{\infty}\right)=\langle\sigma\rangle$ and $N_{G}=1+\sigma+\cdots+\sigma^{p-1}$. If we denote by $\mathcal{X}_{\mathbb{Q}_{\infty}}$ the Galois group of the maximal abelian pro-p extension of \mathbb{Q}_{∞} unramified outside p over \mathbb{Q}_{∞}, we have $\mathcal{X}_{\mathbb{Q}_{\infty}}=0$. So multiplication by N_{G} is zero on $\mathcal{X}_{k_{\infty}}$, and we can regard $\mathcal{X}_{k_{\infty}}$ as a $\Lambda=\mathbb{Z}_{p}\left[\zeta_{p}\right][[\Gamma]]$-module. Hence, we have an exact sequence

$$
\mathcal{U}_{k_{\infty}} / N_{G} \mathcal{U}_{k_{\infty}} \rightarrow \mathcal{X}_{k_{\infty}} \rightarrow X_{k_{\infty}} \rightarrow 0
$$

of Λ-modules.
We will show that $\mathcal{X}_{k_{\infty}}$ is generated by one element as a Λ-module. To see this, it is enough to see that the Γ-coinvariant $\left(\mathcal{X}_{k_{\infty}}\right)_{\Gamma}$ is generated by one element as an $R=\mathbb{Z}_{p}\left[\zeta_{p}\right]$-module. Let $G_{k, p}\left(\right.$ resp. $\left.G_{k_{\infty}, p}\right)$ be the Galois group of the maximal extension of k (resp. k_{∞}) unramified outside p over k (resp. k_{∞}), and \mathcal{X}_{k} be the Galois group of the maximal abelian pro- p extension of k unramified outside p over k. From the inflation-restriction exact sequence

$$
0 \rightarrow H^{1}\left(\Gamma, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right) \rightarrow H^{1}\left(G_{k, p}, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right) \rightarrow H^{1}\left(G_{k_{\infty}, p}, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)^{\Gamma} \rightarrow 0
$$

taking the Pontryagin dual, we have $\left(\mathcal{X}_{k_{\infty}}\right)_{\Gamma}=\operatorname{Ker}\left(\mathcal{X}_{k} \rightarrow \Gamma\right)$. By class field theory (and $A_{k}=0$ as we mentioned in $\S 1$), \mathcal{X}_{k} is isomorphic to $\left(\bigoplus_{\mathfrak{p} \mid p} U_{k_{\mathfrak{p}}}^{1}\right) /\left(\right.$ the image of $\left.E_{k} \otimes \mathbb{Z}_{p}\right)$ and $\mathcal{X}_{\mathbb{Q}}$ is isomorphic to $\Gamma=U_{\mathbb{Q}_{p}}^{1} \simeq \mathbb{Z}_{p}$. Hence, $\operatorname{Ker}\left(\mathcal{X}_{k} \rightarrow \Gamma\right)$ is isomorphic to $\operatorname{Ker}\left(\operatorname{Norm}: \bigoplus_{\mathfrak{p} \mid p} U_{k_{\mathfrak{p}}}^{1} \rightarrow U_{\mathbb{Q}_{p}}^{1}\right) /($ the image of $\left.E_{k} \otimes \mathbb{Z}_{p}\right)$. Recall that p splits in k / \mathbb{Q} and $U_{k_{\mathrm{p}}}^{1}=U_{\mathbb{Q}_{p}}^{1} \simeq \mathbb{Z}_{p}$. Since $\operatorname{Ker}\left(\right.$ Norm : $\left.\bigoplus_{\mathfrak{p} \mid p} U_{k_{\mathfrak{p}}}^{1} \rightarrow U_{\mathbb{Q}_{p}}^{1}\right)$ is a free R-module of rank 1 , $\left(\mathcal{X}_{k_{\infty}}\right)_{\Gamma}=$ $\operatorname{Ker}\left(\mathcal{X}_{k} \rightarrow \Gamma\right)$ is generated by one element as an R-module. By Nakayama's lemma, $\mathcal{X}_{k_{\infty}}$ is generated by one element as a Λ-module.

We write $\mathcal{X}_{k_{\infty}} \simeq \Lambda / I$. Since $\mathcal{X}_{k_{\infty}}$ does not have a nontrivial finite Λ submodule ($[9$, Theorem 18]), I is principal. By the Iwasawa Main Conjecture proved by Mazur and Wiles [15], the characteristic ideal of $\mathcal{X}_{k_{\infty}}$ is generated by $f_{\chi}(T)$. Hence, we have an isomorphism

$$
\mathcal{X}_{k_{\infty}} \simeq \Lambda /\left(f_{\chi}(T)\right)
$$

Let $\mathbb{Q}_{p, \infty} / \mathbb{Q}_{p}$ be the cyclotomic \mathbb{Z}_{p}-extension of the p-adic field \mathbb{Q}_{p} and $\mathbb{Q}_{p, n}$ be the nth layer. For any $n \geq 1$, we denote by $\zeta_{p^{n}}$ a primitive p^{n} th root of unity such that $\zeta_{p^{n+1}}^{p}=\zeta_{p^{n}}$ for all n. Put $\pi_{n}=N_{\mathbb{Q}_{p}\left(\zeta_{p^{n+1}}\right) / \mathbb{Q}_{p, n}}\left(1-\zeta_{p^{n+1}}\right)$
where $N_{\mathbb{Q}_{p}\left(\zeta_{p^{n+1}}\right) / \mathbb{Q}_{p, n}}$ is the norm map from $\mathbb{Q}_{p}\left(\zeta_{p^{n+1}}\right)$ to $\mathbb{Q}_{p, n}$. Let $\pi=\left(\pi_{n}\right)$ be the projective system with respect to the norm maps. It is well known that the group of the local units $\mathcal{U}_{\mathbb{Q}_{p, \infty}}=\lim _{\rightleftarrows} U_{\mathbb{Q}_{p, n}}^{1}$ is a free $\mathbb{Z}_{p}[[T]]$-module of rank 1, and is generated by $T \pi$ (where $T=\gamma-1$ and γ is the fixed generator of Γ).

We take a prime \mathfrak{p} of k lying over p, and fix it. Since p splits in k / \mathbb{Q}, we have $k_{\mathfrak{p}}=\mathbb{Q}_{p}$, hence by the above remark, $\mathcal{U}_{k_{\infty}} / N_{G} \mathcal{U}_{k_{\infty}}$ is a free Λ-module of rank 1 , and is generated by the class of $(T \pi, 1, \ldots, 1)$ (where we suppose the first component corresponds to \mathfrak{p}). On the other hand, if we identify $\mathcal{X}_{k_{\infty}}$ with a quotient of the projective limit of the idele groups of k_{n}, by class field theory, the class of the idele $(\pi, 1,1, \ldots)$ (where we again suppose the first component corresponds to \mathfrak{p}) clearly maps to $\mathbf{c}_{\mathfrak{p}}$ by the natural map $\mathcal{X}_{k_{\infty}} \rightarrow X_{k_{\infty}}$. Hence, $X_{k_{\infty}}$ can be written as

$$
X_{k_{\infty}} \xrightarrow{\simeq} \Lambda /\left(f_{\chi}(T), T k(T)\right)
$$

where $k(T) \in \Lambda$ corresponds to $\mathbf{c}_{\mathfrak{p}}$.
Next, we will see that

$$
\begin{gather*}
\kappa<\infty \Longleftrightarrow \text { the class of } \mathfrak{p}_{n} \text { in }\left(A_{k_{n}}\right)_{G} \text { is nonzero } \tag{1}\\
\\
\text { for sufficiently large } n .
\end{gather*}
$$

Let M / \mathbb{Q}_{n} be the maximal abelian extension which is unramified outside ℓ and whose Galois group has exponent p. Then, by class field theory, $\operatorname{Gal}\left(M / \mathbb{Q}_{n}\right)$ is isomorphic to $\left(\bigoplus_{v \mid \ell} \kappa(v)^{\times} /\left(\kappa(v)^{\times}\right)^{p}\right) / \Phi_{n}^{\prime}\left(E_{\mathbb{Q}_{n}}\right)$, and the prime \mathfrak{p}_{n} of \mathbb{Q}_{n} above p splits in M if and only if $\Phi_{n}^{\prime}\left(\pi_{n}\right)=0$ in the above group, namely $\Phi_{n}^{\prime}\left(\pi_{n}\right) \in \Phi_{n}^{\prime}\left(E_{\mathbb{Q}_{n}}\right)$. As we showed in the proof of Lemma 2.1, we have $\Phi_{n}^{\prime}\left(E_{\mathbb{Q}_{n}}\right)=T \Phi_{n}^{\prime}\left(E_{\mathbb{Q}_{n}}^{\prime}\right)=\left\langle T \Phi_{n}^{\prime}\left(\pi_{n}\right)\right\rangle$, hence $\Phi_{n}^{\prime}\left(\pi_{n}\right) \in \Phi_{n}^{\prime}\left(E_{\mathbb{Q}_{n}}\right)$ is equivalent to $\Phi_{n}^{\prime}\left(\pi_{n}\right)=0$. So, \mathfrak{p}_{n} splits in M if and only if $\Phi_{n}^{\prime}\left(\pi_{n}\right)=0$.

On the other hand, M is the maximal subfield of the p-Hilbert class field of k_{n} such that M / \mathbb{Q}_{n} is abelian. (Note that the inertia group of a prime above ℓ in $\operatorname{Gal}\left(M / k_{n}\right)$ is cyclic, so M / k_{n} is unramified everywhere.) We have an isomorphism $\left(A_{k_{n}}\right)_{G} \simeq \operatorname{Gal}\left(M / k_{n}\right)$. Hence, \mathfrak{p}_{n} splits in M if and only if the class of \mathfrak{p}_{n} in $\left(A_{k_{n}}\right)_{G}$ is zero. We saw in the last paragraph that this is equivalent to $\Phi_{n}^{\prime}\left(\pi_{n}\right)=0$, hence we obtain the equivalence (1) (recall that the image of π_{n} in $E_{\mathbb{Q}_{n}}^{\prime} /\left(E_{\mathbb{Q}_{n}}^{\prime}\right)^{p}$ is a generator).

For a general number field K, let A_{K} denote the p-Sylow subgroup of the ideal class group of K, and A_{K}^{\prime} denote the quotient of A_{K} by the subgroup generated by the classes of the primes lying over p. Namely, $A_{K}^{\prime}=\operatorname{Pic}\left(O_{K}[1 / p]\right)$.

We assume $\kappa<\infty$. Then $\left(A_{k_{n}}^{\prime}\right)_{G} \simeq\left(\mathbb{F}_{p}\right)^{\kappa-1}$. In fact, by the above equivalence (1), for sufficiently large n, the class of \mathfrak{p}_{n} in $\left(A_{k_{n}}\right)_{G}$ is nonzero. Since $\operatorname{Gal}\left(k_{n} / k\right)$ acts trivially on \mathfrak{p}_{n}, the Λ-submodule $\left\langle c\left(\mathfrak{p}_{n}\right)\right\rangle$ of $\left(A_{k_{n}}\right)_{G}$ generated by $c\left(\mathfrak{p}_{n}\right)$ has order p (note again that $\left.p\left(\left(A_{k_{n}}\right)_{G}\right)=0\right)$. Therefore,
it follows from $\operatorname{Gal}\left(M / \mathbb{Q}_{n}\right) \simeq\left(\mathbb{F}_{p}\right)^{\kappa+1}$ that $\left(A_{k_{n}}\right)_{G} \simeq \operatorname{Gal}\left(M / k_{n}\right) \simeq\left(\mathbb{F}_{p}\right)^{\kappa}$, and $\left(A_{k_{n}}^{\prime}\right)_{G} \simeq\left(\mathbb{F}_{p}\right)^{\kappa-1}$.

We define

$$
X_{k_{\infty}}^{\prime}=\lim _{\leftrightarrows} A_{k_{n}}^{\prime}
$$

where the projective limit is taken with respect to the norm maps. Since $\mathbf{c}_{\mathfrak{p}}$ corresponds to $k(T)$, we have

$$
X_{k_{\infty}}^{\prime} \xrightarrow{\simeq} \Lambda /\left(f_{\chi}(T), k(T)\right)
$$

On the other hand, $\left(A_{k_{n}}^{\prime}\right)_{G} \simeq\left(\mathbb{F}_{p}\right)^{\kappa-1}$ for all sufficiently large n implies $\left(X_{k_{\infty}}^{\prime}\right)_{G}=X_{k_{\infty}}^{\prime} /\left(\zeta_{p}-1\right) X_{k_{\infty}}^{\prime} \simeq\left(\mathbb{F}_{p}\right)^{\kappa-1}$. Since $\kappa-1<q-1=\operatorname{deg}\left(f_{\chi}(T)\right)$, $k(T)$ can be written as $k(T) \equiv u T^{\kappa-1}\left(\bmod \left(\zeta_{p}-1, T^{\kappa}\right)\right)$ for some unit $u \in \mathbb{F}_{p}^{\times}$. So, by the Weierstrass preparation theorem, we can write $k(T)=$ $u(T) h(T)$ where $u(T)$ is a unit power series and $h(T)$ is a distinguished polynomial of degree $\kappa-1$. By changing the isomorphism $\Lambda /\left(f_{\chi}(T), T k(T)\right) \simeq$ $X_{k_{\infty}}$ suitably, we may assume $k(T)$ is a distinguished polynomial of degree $\kappa-1$.

Next, suppose that $\kappa=\infty$. By the equivalence (1), the classes of \mathfrak{p}_{n} in $\left(A_{k_{n}}\right)_{G}$ are zero for all n. Hence, the image of $\mathbf{c}_{\mathfrak{p}}$ is zero in $\left(X_{k_{\infty}}\right)_{G}=$ $X_{k_{\infty}} /\left(\zeta_{p}-1\right) X_{k_{\infty}}$. So, $k(T)$ can be taken such that $\zeta_{p}-1$ divides $k(T)$. This completes the proof of Theorem 1.3.

Before proceeding to the proofs of propositions, we will prepare some fundamental facts.

For a general number field K, we denote by $G_{K, p}$ the Galois group of the maximal extension of K which is unramified outside p over K, and consider the Galois cohomology group

$$
H_{K}^{2}=H^{2}\left(G_{K, p}, \mathbb{Z}_{p}(1)\right)
$$

where $\mathbb{Z}_{p}(1)=\lim _{\leftrightarrows} \mu_{p^{n}}$ ($\mu_{p^{n}}$ is the group of p^{n} th roots of unity). Since H_{K}^{2} is the same as the etale cohomology $H^{2}\left(\operatorname{Spec} O_{K}[1 / p]_{\mathrm{et}}, \mathbb{Z}_{p}(1)\right)$, by the Kummer sequence we obtain

Lemma 3.2. We have an exact sequence

$$
0 \rightarrow A_{K}^{\prime} \rightarrow H_{K}^{2} \rightarrow B\left(O_{K}[1 / p]\right) \rightarrow 0
$$

where $B\left(O_{K}[1 / p]\right)=\lim _{\leftrightarrows} \operatorname{Br}\left(O_{K}[1 / p]\right)\left[p^{n}\right]=\left(\bigoplus_{v \mid p} \mathbb{Z}_{p}\right)^{0}$ is the Tate module of the Brauer group of $O_{K}[1 / p]$.

Since p is decomposed in k / \mathbb{Q}, and every prime of k over p is totally ramified in $k_{n} / k, B\left(O_{k_{n}}[1 / p]\right)=\left(\bigoplus_{\mathfrak{p} \mid p} \mathbb{Z}_{p}\right)^{0}$ is a free R-module of rank 1 for all $n \geq 0$. So by Lemma 3.2 we have an exact sequence

$$
0 \rightarrow A_{k_{n}}^{\prime} \rightarrow H_{k_{n}}^{2} \rightarrow R \rightarrow 0
$$

for all $n \geq 0$ where $\left(\bigoplus_{\mathfrak{p} \mid p} \mathbb{Z}_{p}\right)^{0}$ was denoted by R. We define $\mathbf{H}_{k_{\infty}}^{2}$ to be the projective limit of $H_{k_{n}}^{2}$ with respect to the corestriction maps. Put $\Gamma_{n}=\operatorname{Gal}\left(k_{\infty} / k_{n}\right)$. Since the p-cohomological dimension of $G_{k_{n}, p}$ is 2 , the corestriction map induces an isomorphism $\left(\mathbf{H}_{k_{\infty}}^{2}\right)_{\Gamma_{n}} \simeq H_{k_{n}}^{2}$ ([17, Chap. I, Prop. 18]). Taking the projective limit of the above exact sequence, we have an exact sequence

$$
0 \rightarrow X_{k_{\infty}}^{\prime} \rightarrow \mathbf{H}_{k_{\infty}}^{2} \rightarrow R \rightarrow 0
$$

(note that the norm map is surjective on each term). From $\left(\mathbf{H}_{k_{\infty}}^{2}\right)_{\Gamma} \simeq H_{k}^{2}$ $\simeq R$ (note that $A_{k}^{\prime}=0$), we know that $\mathbf{H}_{k_{\infty}}^{2}$ is generated by one element as a Λ-module. We write $\mathbf{H}_{k_{\infty}}^{2} \simeq \Lambda / I$. If we use this isomorphism, $\mathbf{H}_{k_{\infty}}^{2} \rightarrow R$ is induced by $T \mapsto 0$. Further, by Theorem 1.3 we have $X_{k_{\infty}}^{\prime} \simeq \Lambda /\left(f_{\chi}(T), k(T)\right)$, hence the above exact sequence implies that $I=\left(T f_{\chi}(T), T k(T)\right)$. Namely,

$$
\mathbf{H}_{k_{\infty}}^{2} \simeq \Lambda /\left(T f_{\chi}(T), T k(T)\right)
$$

We consider the subfield k_{1} which is the first layer of k_{∞} / k. From the exact sequence

$$
0 \rightarrow A_{k_{1}}^{\prime} \rightarrow H_{k_{1}}^{2} \rightarrow R \rightarrow 0
$$

$A_{k_{1}}^{\prime}$ is isomorphic to the kernel of

$$
\left(\mathbf{H}_{k_{\infty}}^{2}\right)_{\Gamma_{1}}=\Lambda /\left(T f_{\chi}(T), T k(T),(1+T)^{p}-1\right) \rightarrow R
$$

Hence, if we put $\varphi(T)=\left((1+T)^{p}-1\right) / T$, we have an isomorphism

$$
\begin{equation*}
A_{k_{1}}^{\prime} \simeq \Lambda /\left(f_{\chi}(T), k(T), \varphi(T)\right) \tag{2}
\end{equation*}
$$

Suppose that F is a subfield of k_{1} such that $F \neq \mathbb{Q}_{1}, F \neq k$, and $[F: \mathbb{Q}]=p$. Then both p and ℓ ramify in F / \mathbb{Q}. Put $\mathcal{G}=\operatorname{Gal}\left(k_{\infty} / F\right)$. Taking \mathcal{G}-coinvariants, we have an exact sequence

$$
0 \rightarrow\left(X_{k_{\infty}}^{\prime}\right)_{\mathcal{G}} \rightarrow\left(\mathbf{H}_{k_{\infty}}^{2}\right)_{\mathcal{G}} \rightarrow R_{\mathcal{G}} \rightarrow 0
$$

(Recall that in the above exact sequence $R=\left(\bigoplus_{\mathfrak{p} \mid p} \mathbb{Z}_{p}\right)^{0}$, on which \mathcal{G} acts naturally. Since p is ramified in F, the \mathcal{G}-invariant part $R^{\mathcal{G}}$ is trivial.) Since $G_{F, p}$ is also of p-cohomological dimension 2 , the \mathcal{G}-coinvariant of $\mathbf{H}_{k_{\infty}}^{2}$ is isomorphic to H_{F}^{2}. Since $B\left(O_{F}[1 / p]\right)=0$, we have

$$
\left(\mathbf{H}_{k_{\infty}}^{2}\right)_{\mathcal{G}} \simeq H_{F}^{2} \simeq A_{F}^{\prime}
$$

It is easy to see that $R_{\mathcal{G}} \simeq R /\left(\zeta_{p}-1\right) \simeq \mathbb{Z} / p \mathbb{Z}$. Hence, the above exact sequence and the isomorphism $\left(\mathbf{H}_{k_{\infty}}^{2}\right)_{\mathcal{G}} \simeq A_{F}^{\prime}$ imply the exact sequence

$$
\begin{equation*}
0 \rightarrow\left(X_{k_{\infty}}^{\prime}\right)_{\mathcal{G}} \rightarrow A_{F}^{\prime} \rightarrow \mathbb{Z} / p \mathbb{Z} \rightarrow 0 \tag{3}
\end{equation*}
$$

For F, we also need the following. Let \mathfrak{p}_{F} (resp. \mathcal{L}_{F}) be the prime of F lying over $p($ resp. $\ell)$, and $\left[\mathfrak{p}_{F}\right]$ (resp. $\left.\left[\mathcal{L}_{F}\right]\right)$ the class of $\mathfrak{p}_{F}\left(\right.$ resp. $\left.\mathcal{L}_{F}\right)$ in A_{F}.

Lemma 3.3. At least either $\left[\mathfrak{p}_{F}\right] \neq 0$ or $\left[\mathcal{L}_{F}\right] \neq 0$.

Proof. We apply Lemma 3.1 to F / \mathbb{Q}. The primes ramified in F / \mathbb{Q} are p and ℓ. By Lemma 3.1 we have an exact sequence
$H^{1}\left(F_{\mathfrak{p}_{F}} / \mathbb{Q}_{p}, E_{F_{\mathfrak{p}_{F}}}\right) \oplus H^{1}\left(F_{\mathcal{L}_{F}} / \mathbb{Q}_{\ell}, E_{F_{\mathcal{L}_{F}}}\right) \rightarrow \widehat{H}^{0}\left(F / \mathbb{Q}, A_{F}\right) \rightarrow \widehat{H}^{0}\left(F / \mathbb{Q}, E_{F}\right)$.
The exact sequence $0 \rightarrow E_{F_{\mathfrak{p}_{F}}} \rightarrow F_{\mathfrak{p}_{F}}^{\times} \rightarrow \mathbb{Z} \rightarrow 0$ yields a natural isomorphism $H^{1}\left(F_{\mathfrak{p}_{F}} / \mathbb{Q}_{p}, E_{F_{\mathfrak{p}_{F}}}\right) \simeq \mathbb{Z} / p \mathbb{Z}$ by Hilbert Theorem 90 . By the definition of the homomorphisms in Lemma 3.1, $H^{1}\left(F_{\mathfrak{p}_{F}} / \mathbb{Q}_{p}, E_{F_{\mathfrak{p}_{F}}}\right) \rightarrow \widehat{H}^{0}\left(F / \mathbb{Q}, A_{F}\right)$ is induced by the reciprocity map $F_{\mathfrak{p}_{F}}^{\times} \rightarrow D_{\mathfrak{p}_{F}} \subset A_{F}$ ($D_{\mathfrak{p}_{F}}$ is the decomposition group where we identified A_{F} with the Galois group of the p-Hilbert class field of $F)$, so the image of $1 \in \mathbb{Z} / p \mathbb{Z} \simeq H^{1}\left(F_{\mathfrak{p}_{F}} / \mathbb{Q}_{p}, E_{F_{\mathfrak{p}_{F}}}\right)$ in $\widehat{H}^{0}\left(F / \mathbb{Q}, A_{F}\right)=A_{F}^{\operatorname{Gal}(F / \mathbb{Q})}$ is $\left[\mathfrak{p}_{F}\right]$. Similarly we deduce that the image of 1 in $H^{1}\left(F_{\mathcal{L}_{F}} / \mathbb{Q} \ell, E_{F_{F}}\right) \simeq \mathbb{Z} / p \mathbb{Z}$ is $\left[\mathcal{L}_{F}\right]$. Since $\widehat{H}^{0}\left(F / \mathbb{Q}, E_{F}\right)=E_{\mathbb{Q}} / N_{F / \mathbb{Q}} E_{F}=0$, the above exact sequence tells us that $A_{F}^{\mathrm{Gal}(F / \mathbb{Q})}$ is generated by $\left[\mathfrak{p}_{F}\right]$ and $\left[\mathcal{L}_{F}\right]$. As in the proof of Theorem 1.3, we have $\left(A_{F}\right)_{\mathrm{Gal}(F / \mathbb{Q})}=\mathbb{Z} / p \mathbb{Z}$, so $\left(A_{F}\right)^{\operatorname{Gal}(F / \mathbb{Q})}$ is also of order p. Hence, at least one of $\left[\mathfrak{p}_{F}\right]$ and $\left[\mathcal{L}_{F}\right]$ is nonzero in A_{F}.

Proof of Proposition 1.7. Suppose that $\kappa=2$. So we may assume $k(T)=$ $T-\alpha$, and $v_{R}(\alpha)>0$. Assume further that $X_{k_{\infty}}$ is infinite. Then we must have $f_{\chi}(\alpha)=0$, and by the isomorphism (2) we have

$$
A_{k_{1}}^{\prime} \simeq R / \varphi(\alpha) .
$$

Recall that $\operatorname{Gal}\left(k_{1} / k\right)$ is generated by γ and $\operatorname{Gal}\left(k_{1} / \mathbb{Q}_{1}\right)$ is generated by σ. We suppose that F corresponds to the subgroup $\left\langle\gamma \sigma^{i}\right\rangle$ of $\operatorname{Gal}\left(k_{1} / \mathbb{Q}\right)=$ $\operatorname{Gal}\left(k_{1} / k\right) \times \operatorname{Gal}\left(k_{1} / \mathbb{Q}_{1}\right)$ for some i such that $0<i<p$. We have

$$
\left(X_{k_{\infty}}^{\prime}\right)_{\mathcal{G}}=\Lambda /\left(T-\alpha,(1+T)-\zeta_{p}^{-i}\right)=R /\left(\zeta_{p}^{-i}-1-\alpha\right) .
$$

Hence, the exact sequence (3) yields an exact sequence

$$
0 \rightarrow R /\left(\zeta_{p}^{-i}-1-\alpha\right) \rightarrow A_{F}^{\prime} \rightarrow \mathbb{Z} / p \mathbb{Z} \rightarrow 0 .
$$

Put $c_{F}=v_{R}\left(\zeta_{p}^{-i}-1-\alpha\right)$. Since the norm map $X_{k_{\infty}}^{\prime} \rightarrow A_{k_{1}}^{\prime}$ is surjective, the image of the norm map $A_{k_{1}}^{\prime} \rightarrow A_{F}^{\prime}$ coincides with the image of $\left(X_{k_{\infty}}^{\prime}\right)_{\mathcal{G}}=$ $R /\left(\zeta_{p}^{-i}-1-\alpha\right) \rightarrow A_{F}^{\prime}$, hence it is of order $p^{c_{F}}$.

We take a prime \mathcal{L} of k_{1} lying over ℓ. Since \mathcal{L} is totally ramified in $k_{1} / \mathbb{Q}_{1}, \sigma$ acts on \mathcal{L} trivially. Writing $[\mathcal{L}]_{A_{k_{1}}^{\prime}}$ for the class of \mathcal{L} in $A_{k_{1}}^{\prime}$, we have $\left(\zeta_{p}-1\right)[\mathcal{L}]_{A_{k_{1}}^{\prime}}=0$. Hence, if we fix an isomorphism

$$
A_{k_{1}}^{\prime} \simeq R /(\varphi(\alpha))=R /\left(\left(\zeta_{p}-1\right)^{c}\right)
$$

where $c=v_{R}(\varphi(\alpha))$, then $[\mathcal{L}]_{A_{k_{1}}^{\prime}}$ corresponds to $a\left(\zeta_{p}-1\right)^{c-1}$ for some $a \in R$. Since $c=v_{R}(\varphi(\alpha))=v_{R}\left(\prod_{j=1}^{p-1}\left(1+\alpha-\zeta_{p}^{j}\right)\right)$, we have $c>c_{F}$. This shows
that the norm of $[\mathcal{L}]_{A_{k_{1}}^{\prime}}$ in A_{F}^{\prime} is trivial. Since \mathcal{L}_{F} is decomposed in k_{1} / F, $N_{k_{1} / F}(\mathcal{L})=\mathcal{L}_{F}$ and the class of \mathcal{L}_{F} in A_{F}^{\prime} is zero.

Note that by our assumption $\left[\mathfrak{p}_{F}\right]=0$ in A_{F}, we have $A_{F}=A_{F}^{\prime}$. So we get $\left[\mathcal{L}_{F}\right]=\left[\mathfrak{p}_{F}\right]=0$ in A_{F}, which contradicts Lemma 3.3. Hence, $X_{k_{\infty}}^{\prime}$ is finite, and we have $\lambda=0$. This completes the proof of Proposition 1.7.

For the proof of Proposition 1.8, we need the following.
Proposition 3.4. We assume $\kappa=2$. Suppose that $\alpha \in R$ is an element with $v_{R}(\alpha)=1$. If p^{4} does not divide the class numbers of all subfields of k_{1} with degree p over \mathbb{Q}, then $T-\alpha$ does not divide a generator of the characteristic ideal char ${ }_{\Lambda}\left(X_{k_{\infty}}\right)$.

Proof. Assume that $T-\alpha$ divides a generator of the characteristic ideal of $X_{k_{\infty}}$. Then $X_{k_{\infty}}$ is infinite, and $T-\alpha$ divides both $f_{\chi}(T)$ and $k(T)$. So $k(T)$, which we take to be distinguished, should be $k(T)=T-\alpha$ because $\kappa=2$.

Since $v_{R}(\alpha)=1$, there is an integer i such that $0<i<p$ and $\alpha /\left(\zeta_{p}-1\right) \equiv$ $-i\left(\bmod \zeta_{p}-1\right)$. Hence, we have $v_{R}\left(\alpha-\left(\zeta_{p}^{-i}-1\right)\right)>1$. Let F be the subfield of k_{1} corresponding to the subgroup $\left\langle\gamma \sigma^{i}\right\rangle$ as in the proof of Proposition 1.7. Then, the exact sequence (3) yields an exact sequence

$$
0 \rightarrow R /\left(\zeta_{p}^{-i}-1-\alpha\right) \rightarrow A_{F}^{\prime} \rightarrow \mathbb{Z} / p \mathbb{Z} \rightarrow 0
$$

By our assumption on i, we have $\# R /\left(\alpha-\left(\zeta_{p}^{-i}-1\right)\right) \geq p^{2}$, hence $\# A_{F}^{\prime} \geq p^{3}$.
On the other hand, since p^{4} does not divide $\# A_{F}$, we must have $\# A_{F}=$ $\# A_{F}^{\prime}=p^{3}$. This shows that the prime \mathfrak{p}_{F} of F lying over p is principal, and contradicts Proposition 1.7. The proof of Proposition 3.4 is complete.

Proof of Proposition 1.8. We may assume $k(T)=T-\alpha$. First, suppose $v_{R}(\alpha) \geq 2$, namely $v_{R}(k(0)) \geq 2$. Since $v_{R}\left(f_{\chi}(p)\right)=v_{R}\left(B_{1, \chi \omega^{-1}}\right)=2$, it follows from $\operatorname{deg} f_{\chi}(T)=q-1 \geq 2$ and $v_{R}(p)=p-1 \geq 2$ that $v_{R}\left(f_{\chi}(0)\right)=$ $v_{R}\left(f_{\chi}(p)\right)=2$. Hence, $v_{R}(k(0)) \geq v_{R}\left(f_{\chi}(0)\right)=2$. Since both $k(T)$ and $f_{\chi}(T)$ are distinguished polynomials and $\operatorname{deg} f_{\chi}(T)>\operatorname{deg} k(T), k(T)$ does not divide $f_{\chi}(T)$. Thus, we obtain $\lambda=0$.

If $v_{R}(\alpha)<2$, we have $v_{R}(\alpha)=1$. Then, by Proposition $3.4, k(T)$ does not divide a characteristic power series of $X_{k_{\infty}}$. Hence, we have $\lambda=0$. This completes the proof.

Proof of Proposition 1.9. Suppose that F corresponds to the subgroup $\left\langle\gamma \sigma^{i}\right\rangle$ as in the proof of Proposition 1.7. Let \mathcal{L}_{F} (resp. \mathfrak{p}_{F}) be the prime of F lying over ℓ (resp. p). By our assumption (ii) and Lemma 3.3, \mathfrak{p}_{F} is not principal. So by our assumption (iii), we have $\# A_{F}^{\prime} \leq p^{2}$. By the exact sequence (3), this implies that $\min \left(v_{R}\left(f_{\chi}\left(\zeta_{p}^{-i}-1\right)\right), v_{R}\left(k\left(\zeta_{p}^{-i}-1\right)\right)\right) \leq 1$. We may assume this value is 1 .

First, suppose $v_{R}\left(f_{\chi}\left(\zeta_{p}^{-i}-1\right)\right)=1$. Then $f_{\chi}\left(T-\left(\zeta_{p}^{-i}-1\right)\right)$ is an Eisenstein polynomial, so $f_{\chi}(T)$ is irreducible. Since $\operatorname{deg} k(T)=\kappa-1<\operatorname{deg} f_{\chi}(T)=$ $q-1$, we get the finiteness of $X_{k_{\infty}} \simeq \Lambda /\left(f_{\chi}(T), T k(T)\right)$.

Next, suppose $v_{R}\left(k\left(\zeta_{p}^{-i}-1\right)\right)=1$. Then, by the same method, $k(T)$ is irreducible. Assume that $X_{k_{\infty}}$ is infinite. Then $k(T)$ must divide $f_{\chi}(T)$, and we have $X_{k_{\infty}}^{\prime} \simeq \Lambda /(k(T))$. Put $\varphi(T)=\left((1+T)^{p}-1\right) / T$ and $\varphi_{2}(T)=$ $\left((1+T)^{p^{2}}-1\right) / T$. By the isomorphism (2), we have $A_{k_{1}}^{\prime}=\Lambda /(k(T), \varphi(T))$, and by the same method, we have $A_{k_{2}}^{\prime}=\Lambda /\left(k(T), \varphi_{2}(T)\right)$. The natural map $A_{k_{1}}^{\prime} \rightarrow A_{k_{2}}^{\prime}$ corresponds to the multiplication by $\varphi_{2}(T) / \varphi(T)$. So it is injective because $k(T)$ is irreducible and prime to $\varphi_{2}(T)$.

Let $\mathcal{L}_{k_{1}}$ (resp. $\mathfrak{p}_{k_{1}}$) be a prime of k_{1} lying over ℓ (resp. p). We denote by $\left[\mathcal{L}_{k_{1}}\right]_{A_{k_{1}}}\left(\right.$ resp. $\left.\left[\mathfrak{p}_{k_{1}}\right]_{A_{k_{1}}}\right)$ the class of $\mathcal{L}_{k_{1}}\left(\right.$ resp. $\left.\mathfrak{p}_{k_{1}}\right)$ in $A_{k_{1}}$, and by $\left[\mathcal{L}_{k_{1}}\right]_{A_{k_{1}}^{\prime}}$ the class of $\mathcal{L}_{k_{1}}$ in $A_{k_{1}}^{\prime}$. We will show that $\left[\mathcal{L}_{k_{1}}\right]_{A_{k_{1}}^{\prime}} \neq 0$.

We denote by $\mathfrak{p}_{F^{\prime}}\left(\right.$ resp. $\left.\mathcal{L}_{F^{\prime}}\right)$ the prime of F^{\prime} over p (resp. ℓ). Suppose first that $\left[\mathfrak{p}_{F^{\prime}}\right]_{A_{F^{\prime}}}=0$. Then, by Lemma 3.3, $\left[\mathcal{L}_{F^{\prime}}\right]_{A_{F^{\prime}}} \neq 0$ and $\left[\mathcal{L}_{F^{\prime}}\right]_{A_{F^{\prime}}^{\prime}} \neq 0$ because $A_{F^{\prime}}=A_{F^{\prime}}^{\prime}$. Since $\mathcal{L}_{F^{\prime}}$ splits in $k_{1}, N_{k_{1} / F^{\prime}}\left(\left[\mathcal{L}_{k_{1}}\right]_{A_{k_{1}}^{\prime}}\right)=\left[\mathcal{L}_{F^{\prime}}\right]_{A_{F^{\prime}}^{\prime}} \neq 0$ implies $\left[\mathcal{L}_{k_{1}}\right]_{A_{k_{1}}^{\prime}} \neq 0$. Next, suppose $\left[\mathfrak{p}_{F^{\prime}}\right]_{A_{F^{\prime}}} \neq 0$. As we saw before, $A_{F^{\prime}}$ is cyclic as an R-module. It follows from $\left[\mathfrak{p}_{F^{\prime}}\right]_{A_{F^{\prime}}} \neq 0,\left[\mathcal{L}_{F^{\prime}}\right]_{A_{F^{\prime}}} \neq 0$, and $\left(\zeta_{p}-1\right)\left[\mathfrak{p}_{F^{\prime}}\right]_{A_{F^{\prime}}}=\left(\zeta_{p}-1\right)\left[\mathcal{L}_{F^{\prime}}\right]_{A_{F^{\prime}}}=0$ that we can write $\left[\mathcal{L}_{F^{\prime}}\right]_{A_{F^{\prime}}}=u\left[\mathfrak{p}_{F^{\prime}}\right]_{A_{F^{\prime}}}$ for some unit $u \in R^{\times}$. Assume that we can write $\left[\mathcal{L}_{k_{1}}\right]_{A_{k_{1}}}=a\left[\mathfrak{p}_{k_{1}}\right]_{A_{k_{1}}}$ for some $a \in \Lambda$. Then the above implies that a is a unit (note that both $\mathfrak{p}_{F^{\prime}}$ and $\mathcal{L}_{F^{\prime}}$ split in $\left.k_{1} / F^{\prime}\right)$. Hence, the Λ-submodule $\left\langle\left[\mathfrak{p}_{k_{1}}\right]_{A_{k_{1}}}\right\rangle$ generated by $\left[\mathfrak{p}_{k_{1}}\right]_{A_{k_{1}}}$ is equal to the Λ-submodule $\left\langle\left[\mathcal{L}_{k_{1}}\right]_{A_{k_{1}}}\right\rangle$ generated by $\left[\mathcal{L}_{k_{1}}\right]_{A_{k_{1}}}$. This implies $\left\langle\left[\mathfrak{p}_{F}\right]_{A_{F}}\right\rangle=\left\langle\left[\mathcal{L}_{F}\right]_{A_{F}}\right\rangle$ in A_{F}. By our assumption (ii), this is zero, which contradicts Lemma 3.3. Hence, $\left[\mathcal{L}_{k_{1}}\right]_{A_{k_{1}}}$ cannot be written as $\left[\mathcal{L}_{k_{1}}\right]_{A_{k_{1}}}=a\left[\mathfrak{p}_{k_{1}}\right]_{A_{k_{1}}}$, namely $\left[\mathcal{L}_{k_{1}}\right]_{A_{k_{1}}}$ is not in $\left\langle\left[\mathfrak{p}_{k_{1}}\right]_{A_{k_{1}}}\right\rangle$ in $A_{k_{1}}$. This implies $\left[\mathcal{L}_{k_{1}}\right]_{A_{k_{1}}^{\prime}} \neq 0$ in $A_{k_{1}}^{\prime}$.

By Lemma 7 in Ozaki and Yamamoto [16] and $\kappa \leq p$, we know that the image of $\left[\mathcal{L}_{k_{1}}\right]_{A_{k_{1}}^{\prime}}$ in $A_{k_{2}}^{\prime}$ is zero. This contradicts the injectivity of $A_{k_{1}}^{\prime} \rightarrow$ $A_{k_{2}}^{\prime}$, and completes the proof of Proposition 1.9.

Proof of Proposition 1.10. Let F correspond to the subgroup $\left\langle\gamma \sigma^{i}\right\rangle$ as in the above proof. Since p^{4} does not divide $\# A_{F}$ and the prime of F lying over p is not principal, we have $\# A_{F}^{\prime} \leq p^{2}$, and we may assume $\min \left(v_{R}\left(f_{\chi}\left(\zeta_{p}^{-i}-1\right)\right), v_{R}\left(k\left(\zeta_{p}^{-i}-1\right)\right)\right)=1$ as in the proof of Proposition 1.9.

First, suppose $v_{R}\left(f_{\chi}\left(\zeta_{p}^{-i}-1\right)\right)=1$. Then $f_{\chi}(T)$ is irreducible. By our assumption $\left[\mathfrak{p}_{F}\right]_{A_{F}} \neq 0$, we have $\left[\mathfrak{p}_{k_{1}}\right]_{A_{k_{1}}} \neq 0$. This together with Theorem 1.3 implies that $k(T)$ is nonzero in $\Lambda /\left(f_{\chi}(T), T k(T)\right)$. In particular, $f_{\chi}(T)$ does not divide $k(T)$. This shows that $X_{k_{\infty}} \simeq \Lambda /\left(f_{\chi}(T), T k(T)\right)$ is finite.

Next, suppose that $v_{R}\left(k\left(\zeta_{p}^{-i}-1\right)\right)=1$. Since $\zeta_{p}-1$ divides $k(T)$ by Theorem $1.3, k(T)$ can be written as $k(T)=\left(\zeta_{p}-1\right) u(T)$ for some $u(T) \in \Lambda^{\times}$. By Ferrero-Washington's theorem [1], $\zeta_{p}-1$ does not divide $f_{\chi}(T)$, so again we obtain the finiteness of $X_{k_{\infty}} \simeq \Lambda /\left(f_{\chi}(T), T k(T)\right)=\Lambda /\left(f_{\chi}(T),\left(\zeta_{p}-1\right) T\right)$.

4. Numerical examples

4.1. We first consider the case $p=3$ for $\ell<10000$. By a result of Fukuda and Komatsu [3] together with a result of Ozaki and Yamamoto [16], we already know $\lambda=0$ in this case (Example 4.4 in [3]). In the method of Fukuda and Komatsu [3], the computation of the zeros of $f_{\chi}(T)$ which is associated to the p-adic L-function $L_{p}(s, \chi)$ plays an essential role. We will see that our conditions can be applied for $\ell<10000$ except for $\ell=8677$, namely we will see that we can verify $\lambda=0$ without computing $f_{\chi}(T)$ for these ℓ 's.

There are 611 's which satisfy $\ell \equiv 1(\bmod 3)$ and $\ell<10000$. Among them 589 primes satisfy either $\ell \not \equiv 1(\bmod 9)$, or $3 \notin\left(\mathbb{F}_{\ell}^{\times}\right)^{3}$, or $\kappa=1$. For these ℓ 's, we know $\lambda=0$ by Theorem A and Theorem 1 in Ozaki and Yamamoto [16]. For the remaining 22 primes, 10 primes satisfy $v_{R}\left(B_{1, \chi \omega^{-1}}\right)=1$ (note: $B_{2, \chi}$ is more easily computed because the conductor of χ is smaller than that of $\chi \omega^{-1}$; it is easy to see that $v_{R}\left(B_{1, \chi \omega^{-1}}\right)=1$ is equivalent to $v_{R}\left(f_{\chi}(0)\right)=1$, which in turn is equivalent to $v_{R}\left(B_{2, \chi}\right)=1$), and for them Corollary 3 in [16] can be applied. The remaining primes are

$$
2269,3907,4933,5527,6247,6481,7219,7687,8011,8677,9001,9901 .
$$

Ozaki and Yamamoto calculated $f_{\chi}(T)$ for these 12 primes, and found that $f_{\chi}(T)$ is irreducible at least for 8 primes, more precisely unless $\ell=$ $2269,6481,7219,8677$. They obtained $\lambda=0$ for these 8 primes by [16, Theorem 2] and some extra argument. For $\ell=2269,6481$, Ozaki and Yamamoto proved $\lambda=0$ by using an argument which is similar to Proposition 1.7, but with the additional condition $\ell \equiv 1(\bmod 27)$. In conclusion, Ozaki and Yamamoto proved $\lambda=0$ for all $\ell<10000$ except $\ell=7219,8677$. For many ℓ 's, Fukuda and Komatsu checked $\lambda=0$ by using the generalized Ichimura-Sumida criterion [3], and their theorem can be applied for the above remaining 2 primes.

We will study the above 12 primes without computing $f_{\chi}(T)$. First of all, we remark that $\kappa=1$ is equivalent to the condition

$$
\left(\frac{\left(z^{2}-1\right)\left(z^{-2}-1\right)}{(z-1)\left(z^{-1}-1\right)}\right)^{(\ell-1) / 3} \not \equiv 1(\bmod \ell)
$$

in Theorem 1 of Ozaki and Yamamoto [16] when we take a primitive root g
of ℓ, and put $z=g^{(\ell-1) / 9}$. Similarly, $\kappa=2$ is equivalent to the condition $\left(\frac{\left(z^{2}-1\right)\left(z^{-2}-1\right)}{(z-1)\left(z^{-1}-1\right)}\right)^{(\ell-1) / 3} \equiv 1(\bmod \ell), \quad\left((z-1)\left(z^{-1}-1\right)\right)^{(\ell-1) / 3} \not \equiv 1(\bmod \ell)$ in Theorem 2 of Ozaki and Yamamoto [16]. Since $p=3, k_{1}$ has two cubic subfields which are different from \mathbb{Q}_{1} and k. Their equations are obtained by the following method. Let (a, b) be a solution of $a^{2}+27 b^{2}=36 \ell$ such that $a, b \in \mathbb{Z}_{>0}$ and $b \not \equiv 0(\bmod 3)$. There are exactly 2 such solutions. For these 2 solutions (a, b), the equations

$$
X^{3}-27 \ell X-9 a \ell=0
$$

give two cubic subfields of k_{1} which are different from \mathbb{Q}_{1} and k (cf. [5]).
We checked the class numbers and the primes lying over 3, using PARIGP. The conditions of Proposition 1.8 are satisfied for 6 primes,

$$
\ell=2269,4933,6247,7687,9001,9901
$$

among the above 12 primes. (We note again that $B_{2, \chi}$ is more easily computed. From $v_{R}\left(B_{1, \chi \omega^{-1}}\right)=v_{R}\left(L_{p}(0, \chi)\right), v_{R}\left(B_{2, \chi}\right)=v_{R}\left(L_{p}(-1, \chi)\right)$, $\operatorname{deg} f_{\chi}(T)=q-1 \geq 2$ and $v_{R}(p)=2$, we know that $v_{R}\left(B_{1, \chi \omega^{-1}}\right)=2$ is equivalent to $v_{R}\left(f_{\chi}(0)\right)=2$, which in turn is equivalent to $v_{R}\left(B_{2, \chi}\right)=2$.) So we conclude $\lambda=0$ for them.

The conditions of Proposition 1.7 hold for the following 6 primes among the above 12 primes with the subfields F which correspond to the following values of a :

ℓ	2269	4933	5527	6481	7219	9001
a	246	375	435	246	24	462

For each ℓ above, we checked that the other subfield of degree p does not satisfy the conditions of Proposition 1.7. For example, for $\ell=7219$, the subfield corresponding to $a=24$ satisfies these conditions of Proposition 1.7, but the subfield corresponding to $a=429$ does not.

For $\ell=3907,8011$, we have $\kappa=\infty$. Since 27 does not divide $\ell-1$ for these ℓ, we have $q=3$, and $\kappa=\infty$ can be checked by the congruences
$\left(\frac{\left(z^{2}-1\right)\left(z^{-2}-1\right)}{(z-1)\left(z^{-1}-1\right)}\right)^{(\ell-1) / 3} \equiv 1(\bmod \ell), \quad\left((z-1)\left(z^{-1}-1\right)\right)^{(\ell-1) / 3} \equiv 1(\bmod \ell)$,
where z is the element in \mathbb{F}_{ℓ} as above. We obtain $\lambda=0$ by applying Proposition 1.10. For each ℓ, two cubic subfields which are different from \mathbb{Q}_{1} and k both satisfy the conditions of Proposition 1.10. For example, for $\ell=3907$, these are the two subfields corresponding to $a=192$ and $a=375$.

Consequently, our criteria could be applied for all primes $\ell<10000$ except $\ell=8677$. Namely, we could verify $\lambda=0$ without using the computation of $f_{\chi}(T)$ for all these $\ell \neq 8677$.
4.2. Suppose that $\ell \equiv 1\left(\bmod p^{c}\right)$ and c is very large. Then the degree of $f_{\chi}(T)$ is $\geq p^{c-1}-1$ by Kida's formula ([11], [10]), and it is very difficult to calculate the irreducible factors of $f_{\chi}(T)$.

Suppose $p=3$ and take ℓ which satisfies $\ell<100000$ and $\ell \equiv 1\left(\bmod p^{7}\right)$. Then either $3 \notin\left(\mathbb{F}_{\ell}^{\times}\right)^{3}$ or $\kappa=1$ is satisfied except for $\ell=17497$ and 52489. We study these 2 remaining primes by using our propositions. The conditions of Proposition 1.8 are satisfied for $\ell=52489$. Proposition 1.7 can be applied both for $\ell=17497$ and 52489 . The conditions are satisfied for the subfield F which corresponds to $a=645$ (resp. $a=1374$) for $\ell=17497$ (resp. $\ell=52489$). (For the value a, see 4.1.)
4.3. As we explained in 4.1 , in the case $p=3$ and $\ell<10000$, if ℓ satisfies both $\ell \equiv 1(\bmod 9)$ and $3 \in\left(\mathbb{F}_{\ell}\right)^{3}$, then we have $\kappa=1$, or $\kappa=2$, or $\kappa=\infty$. But theoretically, by Chebotarev's density theorem, κ can be any positive integer.

The smallest ℓ such that $\kappa=3$ is $\ell=11719$. (To see this, we have to calculate the map $\Phi_{2}^{\prime}: E_{\mathbb{Q}_{2}}^{\prime} \rightarrow \bigoplus_{v \mid \ell} \kappa(v)^{\times} /\left(\kappa(v)^{\times}\right)^{p}$. Since $E_{\mathbb{Q}_{2}}^{\prime} /\left(E_{\mathbb{Q}_{2}}^{\prime}\right)^{p}$ is generated by the cyclotomic p-unit as we explained in the proof of Lemma 1.1, the computation of dim Cokernel $\left(\Phi_{2}^{\prime}\right)$ is easy.)

For $\ell=11719$, if we take F to be the subfield corresponding to $a=3$ and F^{\prime} to be the subfield corresponding to $a=564$, the conditions of Proposition 1.9 are satisfied. Thus, we get $\lambda=0$ for $\ell=11719$.
4.4. Next, we consider the case $p=5$. The computation in this subsection was done by Masahiro Kato whom we thank very much. For $p=5$, in the range $\ell<100000$, there are 99ℓ 's which satisfy both $\ell \equiv 1(\bmod 25)$ and $5 \in\left(\mathbb{F}_{\ell}^{\times}\right)^{5}$. Among them, 76 primes satisfy $\kappa=1,21$ primes satisfy $\kappa=2$, $\ell=84551$ satisfies $\kappa=3$, and $\ell=59951$ satisfies $\kappa=4$. For the primes with $\kappa=1$, we have $\lambda=0$ by Corollary 1.4. Among the 23 primes with $\kappa \geq 2,16$ primes satisfy $v_{R}\left(B_{1, \chi \omega^{-1}}\right)=1$. We have $\lambda=0$ for these primes by Corollary 1.6. The remaining primes are

$$
7151,7901,21001,38851,41201,67651,84551 .
$$

We checked that the conditions of Proposition 1.8 are satisfied for $\ell=$ 7151, 7901, 21001, 67651. Consequently, for $p=5$ we verified $\lambda=0$ for all $\ell<100000$ except $\ell=38851,41201,84551$.

References

[1] B. Ferrero and L. Washington, The Iwasawa invariant μ_{p} vanishes for abelian number fields, Ann. of Math. 109 (1979), 377-395.
[2] T. Fukuda and K. Komatsu, On Iwasawa λ_{3}-invariants of cyclic cubic fields of prime conductor, Math. Comp. 70 (2001), 1707-1712.
[3] T. Fukuda and K. Komatsu, Ichimura-Sumida criterion for Iwasawa λ-invariants, Proc. Japan Acad. Ser. A Math. Sci. 76 (2000), no. 7, 111-115.
[4] T. Fukuda, K. Komatsu, M. Ozaki and H. Taya, On Iwasawa λ_{p}-invariants of relative real cyclic extensions of degree p, Tokyo J. Math. 20 (1997), 475-480.
[5] M. N. Gras, Méthodes et algorithmes pour le calcul numérique du nombre de classes et des unités des extensions cubiques cycliques de \mathbb{Q}, J. Reine Angew. Math. 277 (1975), 89-116.
[6] R. Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math. 98 (1976), 263-284.
[7] H. Ichimura and H. Sumida, On the Iwasawa invariants of certain real abelian fields II, Internat. J. Math. 7 (1996), 721-744.
[8] K. Iwasawa, A note on class numbers of algebraic number fields, Abh. Math. Sem. Univ. Hamburg 20 (1956), 257-258.
[9] -, On \mathbb{Z}_{ℓ}-extensions of algebraic number fields, Ann. of Math. 98 (1973), 246-326.
[10] -, Riemann-Hurwitz formula and p-adic Galois representations for number fields, Tôhoku Math. J. 33 (1981), 263-288.
[11] Y. Kida, ℓ-extensions of $C M$-fields and cyclotomic invariants, J. Number Theory 12 (1980), 519-528.
[12] K. Komatsu, On the \mathbb{Z}_{3}-extension of a certain cubic cyclic field, Proc. Japan Acad. Ser. A Math. Sci. 74 (1998), no. 10, 165-166.
[13] J. S. Kraft and R. Schoof, Computing Iwasawa modules of real quadratic number fields, Compositio Math. 97 (1995), 135-155.
[14] M. Kurihara, On the ideal class groups of the maximal real subfields of number fields with all roots of unity, J. Eur. Math. Soc. 1 (1999), 35-49.
[15] B. Mazur and A. Wiles, Class fields of abelian extensions of \mathbb{Q}, Invent. Math. 76 (1984), 179-330.
[16] M. Ozaki and G. Yamamoto, Iwasawa λ_{3}-invariants of certain cubic fields, Acta Arith. 97 (2001), 387-398.
[17] J.-P. Serre, Cohomologie galoisienne, Lecture Notes in Math. 5, Springer, 1964.
[18] T. Tsuji, On the Iwasawa λ-invariants of real abelian fields, Trans. Amer. Math. Soc. 355 (2003), 3699-3714.
[19] L. Washington, Introduction to Cyclotomic Fields, Grad. Texts in Math. 83, Springer, 1982.

Department of Mathematics
Tokyo Metropolitan University
Hachioji, Tokyo, 192-0397, Japan
E-mail: m-kuri@comp.metro-u.ac.jp

[^0]: 2000 Mathematics Subject Classification: Primary 11R23; Secondary 11R18.

