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On the multiplicative independence of binomial coefficients
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Jianguo Xia and Hourong Qin (Nanjing)

1. Introduction. Let F be a finite extension of the field Q of rational
numbers with the ring of integers OF . For a finite set S of primes of F
containing all infinite primes, we use US to denote the group of S-units of
F , i.e., a ∈ US if and only if ordp(a) = 0 for all primes p of F not belonging
to S. We call the elements in the set WS := US ∩ (1− US) good S-units. It
is known that WS is finite (see [2, Theorem 1]).

Let S = {∞, 2, 3, . . . , p} be the set of the first n prime numbers together
with ∞, i.e., p = pn. For 1 ≤ k ≤ p/2, put qk = k/(p− k). It is clear that
every qk is a good S-unit.

Two open problems were raised by Browkin in [1].

(a) Is it true that exactly n − 1 numbers among qk are multiplicatively
independent?

(b) Is the index (US ∧ US : λ(A(WS))) finite? Equivalently, are the free
ranks of both groups equal?

We remark that a positive answer to problem (a) in fact answers problem
(b) affirmatively. Browkin claimed that the answer to problem (a) is positive
when p ≤ 47 or p = 101.

Let G be the subgroup of Q∗ generated by the binomial coefficients(
p−1
i

)
, i=1, . . . , [p/2]. Because qk=

(
p−1
k−1

)
/
(
p−1
k

)
and

(
p−1
k

)
=(q1 · · · qk)−1,

G is equal to the subgroup of Q∗ generated by good S-units qk, k = 1, . . . ,
[p/2]. We see that exactly n − 1 numbers among qk are multiplicatively
independent if and only if the rank of G is n− 1.

In this paper, we prove the following theorem, which means that the
answers to the two problems mentioned above are positive.
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Theorem. Let p = pn be the nth prime and G the subgroup of Q∗
generated by the binomial coefficients

(
p−1
i

)
, i = 1, . . . , [p/2]. Then the rank

of G is n− 1.

2. Proof of Theorem. It is evident that the rank of G does not exceed
n− 1 since every binomial coefficient

(
p−1
i

)
has the form

(
p− 1
i

)
= pm1

1 · · · pmn−1
n−1

for some integers m1, . . . ,mn−1 ∈ Z.
In order to prove that the rank of G is exactly n − 1, we only need to

prove the following assertion:

There exist integers ek1, . . . , ekk with ekk 6= 0 such that 2ek13ek2 · · · pekkk ∈
G for 1 ≤ k ≤ n− 1.

The case n = 1, i.e., pn = 2, is trivial.
Now suppose that p = pn is an odd prime. First let us prove that the

assertion is true for k = 1, i.e., 2e11 ∈ G for some e11 ∈ Z with e11 6= 0.
Set b0 = 1, a1 = b0 · 2m1 , where m1 ∈ Z and 2m1 is the highest power

of 2 less than p. Then p/2 < a1 < p. Set b1 = p − a1. Then 0 < b1 < p/2.
Set a2 = b1 · 2m2 , where m2 ∈ Z and 2m2 is the highest power of 2 less than
p/b1. Then p/2 < a2 < p. In general, we define ai = bi−1 · 2mi , bi = p − ai
by induction on i, where mi ∈ Z and 2mi is the highest power of 2 less than
p/bi−1. Then p/2 < ai < p. Thus bi < p/2 and mi > 0 for any i.

Notice that each of ai is a positive integer less than p, so there exist i
and j with i < j such that ai = aj . Thus

ai
p− ai

· ai+1

p− ai+1
· · · aj−1

p− aj−1
=
ai
bi
· ai+1

bi+1
· · · aj−1

bj−1

=
ai+1

bi
· ai+2

bi+1
· · · aj

bj−1
= 2mi+1+···+mj .

Set e11 = mi+1 + · · ·+ mj . Then e11 > 0 and 2e11 ∈ G. So the assertion is
true for k = 1.

Next let us prove that the assertion is true for k = 2, i.e., 2e213e22 ∈ G
for some e21, e22 ∈ Z with e22 6= 0.

Set b0 = 1, a1 = b0 · 3m1 , where m1 ∈ Z and 3m1 is the highest power of
3 less than p. Then p/3 < a1 < p. Let p− a1 = 2n1b1 with b1 odd. Since a1

is odd, n1 ≥ 1. So b1 ≤ (p− a1)/2 < p/3. Set a2 = b1 · 3m2 , where m2 ∈ Z
and 3m2 is the highest power of 3 less than p/b1. Then p/3 < a2 < p. Since
b1 < p/3, m2 ≥ 1. Let p− a2 = 2n2b2 with b2 odd. Then n2 ≥ 1. In general,
we define ai and bi by induction on i: ai = bi−1 ·3mi , where mi ∈ Z and 3mi

is the highest power of 3 less than p/bi−1. Let p− ai = 2nibi with bi odd. It
is easy to prove by induction on i that bi < p/3. So mi is a positive integer.



Multiplicative independence of binomial coefficients 291

Notice that each of ai is a positive integer less than p, so there exist i
and j with i < j such that ai = aj . Thus

ai
bi
· ai+1

bi+1
· · · aj−1

bj−1
=
ai+1

bi
· ai+2

bi+1
· · · aj

bj−1
= 3mi+1+···+mj .

So
ai

p− ai
· ai+1

p− ai+1
· · · aj−1

p− aj−1
= 2−(ni+···+nj−1) · 3mi+1+···+mj .

Set e21 = −(ni + · · · + nj−1), e22 = mi+1 + · · · + mj . Then e22 > 0 and
2e213e22 ∈ G. So the assertion is true for k = 2.

Finally, let us prove that the assertion is true for 3 ≤ k ≤ n − 1, i.e.,
there exist integers ek1, . . . , ekk with ekk 6= 0 such that 2ek13ek2 · · · pekkk ∈ G
for 3 ≤ k ≤ n− 1.

Let q = pk. Set b0 = 1, a1 = b0q
m1(2l1 − 1), where m1 ∈ Z and qm1 is

the highest power of q less than p, l1 the largest integer with b0qm1(2l1− 1)
less than p. Then p/q < b0q

m1 < p and b0qm1(2l1− 1) < p < b0q
m1(2l1 + 1).

Let p − a1 = 2n1b1 with b1 odd. Then n1 ≥ 1. In general, we define ai
and bi by induction on i: ai = bi−1q

mi(2li − 1) with p/q < bi−1q
mi < p and

bi−1q
mi(2li − 1) < p < bi−1q

mi(2li + 1), p− ai = 2nibi with bi odd. Clearly
2li − 1 < q for i ≥ 1. Since q is odd, 2li + 1 ≤ q for i ≥ 1.

Since each of ai is a positive integer less than p, there exist i and j with
i < j such that ai = aj . Thus

ai
bi
· ai+1

bi+1
· · · aj−1

bj−1
=
ai+1

bi
· ai+2

bi+1
· · · aj

bj−1

= qmi+1+···+mj (2li+1 − 1) · · · (2lj − 1)

and
ai

p− ai
· ai+1

p− ai+1
· · · aj−1

p− aj−1

=
ai
bi
· ai+1

bi+1
· · · aj−1

bj−1
2−(ni+···+nj−1)

= qmi+1+···+mj (2li+1 − 1) · · · (2lj − 1) · 2−(ni+···+nj−1).

We claim that mi+1 + · · · + mj > 0. In fact, if mi+1 + · · · + mj

= 0, then mi+1 = · · · = mj = 0. Since ai = aj , we have bi = bj and
ai+1 = aj+1, which means that lj+1 = li+1. Since mi+1 = mi+2 = 0,
ai+1 = bi(2li+1 − 1), ai+2 = bi+1(2li+2 − 1). By definition of li+1 we have

2li+1 − 1
2li+1 + 1

p < ai+1 < p.

Notice that ni+1 ≥ 1, hence

0 < bi+1 =
p− ai+1

2ni+1
≤ p− ai+1

2
<

1
2li+1 + 1

p.
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So 2li+2−1 ≥ 2li+1+1, hence li+2 > li+1. Continuing this process, we finally
get lj+1 > lj > lj−1 > · · · > li+2 > li+1, which is a contradiction to lj+1 =
li+1. On the other hand, mi+1 + · · ·+mj ≥ 0, hence mi+1 + · · ·+mj > 0.

Since 2li+1 − 1 < q, . . . , 2lj − 1 < q, (2li+1 − 1) · · · (2lj − 1) has the form
3ek2 · · · pek,k−1

k−1 for some ek2, . . . , ek,k−1 ∈ Z. Let ek1 = −(ni + · · · + nj−1),
ekk = mi+1 + · · · + mj . Then 2ek13ek2 · · · pek,k−1

k−1 pekkk ∈ G and ekk > 0. So
the assertion is true for 3 ≤ k ≤ n− 1.

This completes the proof.
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