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On the multiplicative independence of binomial coefficients
by

J1aNGUO X1A and HOURONG QIN (Nanjing)

1. Introduction. Let F' be a finite extension of the field Q of rational
numbers with the ring of integers Op. For a finite set S of primes of F
containing all infinite primes, we use Ug to denote the group of S-units of
F,ie., a € Ug if and only if ord,(a) = 0 for all primes p of F' not belonging
to S. We call the elements in the set Wg := Ug N (1 — Ug) good S-units. It
is known that Wy is finite (see [2, Theorem 1]).

Let S = {00,2,3,...,p} be the set of the first n prime numbers together
with oo, i.e., p = p,. For 1 < k < p/2, put qx = k/(p — k). It is clear that
every qi is a good S-unit.

Two open problems were raised by Browkin in [1].

(a) Is it true that exactly n — 1 numbers among ¢ are multiplicatively
independent?

(b) Is the index (Us A Ug : A(A(Wy))) finite? Equivalently, are the free
ranks of both groups equal?

We remark that a positive answer to problem (a) in fact answers problem
(b) affirmatively. Browkin claimed that the answer to problem (a) is positive
when p <47 or p = 101.

Let G be the subgroup of Q* generated by the binomial coefficients
(/7). i=1....[p/2]. Becanse qc=(7=)/("7") and (7)) =(ar---g0)".
G is equal to the subgroup of Q* generated by good S-units ¢, k =1,...,
[p/2]. We see that exactly n — 1 numbers among ¢ are multiplicatively
independent if and only if the rank of G is n — 1.

In this paper, we prove the following theorem, which means that the
answers to the two problems mentioned above are positive.
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THEOREM. Let p = p, be the nth prime and G the subgroup of Q*
generated by the binomial coefficients (pzl), i=1,...,[p/2]. Then the rank
of G isn —1.

2. Proof of Theorem. It is evident that the rank of GG does not exceed
n — 1 since every binomial coefficient (p ;1) has the form

p—1 .
< i )Zp?”“-pTll

for some integers mq,...,m,_1 € Z.
In order to prove that the rank of GG is exactly n — 1, we only need to
prove the following assertion:

There exist integers ey, . . . , ek With egr 7 0 such that 21 3¢+2 .. ~pzk’“ S
G for1<k<n-—1.

The case n =1, i.e., p, = 2, is trivial.

Now suppose that p = p, is an odd prime. First let us prove that the
assertion is true for k =1, i.e., 2°11 € G for some ey; € Z with e;; # 0.

Set bg = 1, a; = by - 2™, where m; € Z and 2™ is the highest power
of 2 less than p. Then p/2 < a1 < p. Set by = p —a;. Then 0 < by < p/2.
Set as = by - 2™2, where mo € Z and 22 is the highest power of 2 less than
p/b1. Then p/2 < as < p. In general, we define a; = b;—1 - 2™, b; = p —a;
by induction on ¢, where m; € Z and 2™ is the highest power of 2 less than
p/bi—1. Then p/2 < a; < p. Thus b; < p/2 and m; > 0 for any 1.

Notice that each of a; is a positive integer less than p, so there exist 4
and j with ¢ < j such that a; = a;. Thus

a; Qiy1 aj—1 G Qi aj—1
p—a; p—ai1  p—aj—1 b by bj—1
_ Qi1 . Git2 . a; 2mi+1+"'+mj

bi  bit1 bj—1

Set e11 = myy1 +---+m;. Then e;; > 0 and 2°1* € G. So the assertion is
true for k = 1.

Next let us prove that the assertion is true for k£ = 2, i.e., 2¢213°22 € (G
for some es1, €99 € Z with ese # 0.

Set bg = 1, a; = by - 3™, where m1 € Z and 3™ is the highest power of
3 less than p. Then p/3 < a; < p. Let p — a3 = 2"b; with b; odd. Since aq
isodd, ny > 1. So by < (p—a1)/2 < p/3. Set az = by - 32, where my € Z
and 3™2 is the highest power of 3 less than p/b;. Then p/3 < as < p. Since
by < p/3, ma > 1. Let p— ag = 2™2by with by odd. Then ny > 1. In general,
we define a; and b; by induction on ¢: a; = b;_1 -3¢, where m; € Z and 3™
is the highest power of 3 less than p/b;_1. Let p — a; = 2™b; with b; odd. It
is easy to prove by induction on i that b; < p/3. So m; is a positive integer.
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Notice that each of a; is a positive integer less than p, so there exist ¢
and j with ¢ < j such that a; = a;. Thus

i Girl Y1 Gl Gig2 4§ gmigateedmy
bi bit1  bj1 bi  biy1  bj_1
So
i Gl %l g (nitedngo) | gmipitetmg
P—a; pP—ai+1 p—aj-1
Set ey = —(ni + e 4 nj,l), €22 = Miy1 + -+ mj. Then egs > 0 and

2¢€213¢22 ¢ (5, So the assertion is true for k = 2.

Finally, let us prove that the assertion is true for 3 < k < n — 1, i.e.,
there exist integers ey, ..., ex, with eg, # 0 such that 2°¥13¢2 ... pr* € G
for3<k<n-—1.

Let ¢ = pi. Set by = 1, a1 = bpq"*(2l; — 1), where m; € Z and ¢"™ is
the highest power of ¢ less than p, 1 the largest integer with bog™* (213 — 1)
less than p. Then p/q < bpg"™* < p and bog™* (211 —1) < p < bpg™* (211 +1).
Let p — a; = 2™b; with by odd. Then n; > 1. In general, we define a;
and b; by induction on i: a; = b;_1¢"(2l; — 1) with p/q < b;—1¢™ < p and
b;_1q™ (2[1 — 1) <p<bj_1qg™ (211 + 1), p—a; = 2™b; with b; odd. Clearly
2l; —1 < q for ¢ > 1. Since ¢ is odd, 2I; + 1 < g for i > 1.

Since each of a; is a positive integer less than p, there exist ¢ and j with
© < j such that a; = a;. Thus

G G151 G Gisr 0
bi bir1 bj1 bi  biy1 bj
— qmi+1+"'+mj (2li+1 . 1) . (2lj _ 1)

_ a;  Giq1 aj—1 9—(nit-+mn;_1)
bi bit1 bj_1
= gMirittmg (21 — 1)+ (215 — 1) - 9—(Rit-tnj_1)

We claim that m;;q + --- +m; > 0. In fact, if mjpq + -+ + m;
= 0, then m;4; = --- = m; = 0. Since a; = a;, we have b; = b; and
@j+1 = @j41, which means that [;11 = l;41. Since m;11 = mipo = 0,
Ai+1 = bi(Zli+1 — 1), Aij42 = bi+1(2li+2 — 1) By definition of li+1 we have

241 —1
241 +1
Notice that n;11 > 1, hence
P—Git1 _ P~ diy1 1 ».
PACES 2 2041 +1

p<aiy1 <DP.

0< bi—i—l =
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So 2l;49—1 > 2l;11+1, hence l;1 2 > l;11. Continuing this process, we finally
get ljp1 >1; > 1j—1 > -+ > liyo > l;41, which is a contradiction to [ 11 =
li+1. On the other hand, m; 1 +---+m; > 0, hence m; 1 +---+m; > 0.

Since 20,41 —1<gq,...,2l; —1 <gq, (2l;41 —1)---(2]; — 1) has the form
3¢k2 .. pFETY for some ega, ..., ep k-1 € Z. Let eg1 = —(ni + -+ nj_1),
exk = Miy1 + -+ +mj. Then 2601 3¢k2 ... p = *=1ptkk € G and ey, > 0. So
the assertion is true for 3 < k <n — 1.

This completes the proof.
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