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1. Background. Additive number theory can be best described as the
study of sums of sets of integers. A simple example is, given two subsets A
and B of a set of integers, what facts can we determine about A+B where
A + B := {a + b | a ∈ A and b ∈ B}? We will state a result regarding this
example shortly. We note that a very familiar problem in number theory,
namely Lagrange’s Theorem that every nonnegative integer can be written
as the sum of four squares, can be expressed in terms of sumsets. In partic-
ular, if we let N0 be the set of nonnegative integers and if we let S be the
set of all integers that are perfect squares, then Lagrange’s Theorem has the
form

N0 = S + S + S + S.

As well the binary version of Goldbach’s Conjecture can be restated in terms
of sumsets. In particular, let E = {2x | x ∈ Z, x ≥ 2} and let P = {p ∈ Z |
p is prime}. Then

E ⊆ P + P.

A classical problem in additive number theory was the conjecture of Paul
Erdős and Hans Heilbronn [9] which stood as an open problem for over 30
years until proved in 1994. We seek to extend this result. This conjecture
has its roots in a theorem proved by Cauchy [4] in 1813 and independently
by Davenport [6] in 1935 (Davenport discovered in 1947 [7] that Cauchy had
previously proved the theorem). The theorem in its original form is

Theorem 1.1 (Original Cauchy–Davenport). If A and B are nonempty
subsets of Z/pZ with p prime, then |A+B| ≥ min{p, |A|+ |B| − 1}, where
A+B := {a+ b | a ∈ A and b ∈ B}.
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We note that in 1935 Inder Chowla [5] extended the result to composite
moduli m when 0 ∈ B and the other members of B are relatively prime
to m.

The structures over which the Cauchy–Davenport Theorem holds have
been extended beyond Z/pZ. Before stating the extended versions, the fol-
lowing definition is needed.

Definition 1.2 (Minimal torsion element). Let G be a group. We define
p(G) to be the smallest positive integer p for which there exists a nonzero
element g of G with pg = 0 (or, if multiplicative notation is used, gp = 1).
If no such p exists, we write p(G) = ∞.

Before we continue, an observation:

Remark 1.3. If G is finite, then p(G) is the smallest prime factor of |G|.
Equipped with this we can state that the Cauchy–Davenport Theorem

has been extended to abelian groups by Károlyi [14], [15] and then to all
finite groups by Károlyi [16] and Balister and Wheeler [3], namely:

Theorem 1.4 (Cauchy–Davenport Theorem for finite groups). If A and
B are nonempty subsets of a finite group G, then |A · B| ≥ min{p(G),
|A|+ |B| − 1}, where A ·B := {a · b | a ∈ A and b ∈ B}.

Naturally, induction further gives us

Theorem 1.5. Let h ≥ 2. Then for A1, . . . , Ah nonempty subsets of a
finite group G,

|A1 · · ·Ah| ≥ min
{
p(G),

h∑
i=1

|Ai| − h+ 1
}
.

Over 40 years ago, Paul Erdős and Hans Heilbronn conjectured that if
the addition in the Cauchy–Davenport Theorem is restricted to distinct el-
ements, the lower bound changes only slightly. Erdős stated this conjecture
in 1963 during a number theory conference at the University of Colorado [9].
Interestingly, Erdős and Heilbronn did not mention the conjecture in their
1964 paper on sums of sets of congruence classes [12] though Erdős men-
tioned it often in his lectures (see [19, page 106]). Eventually the conjecture
was formally stated in Erdős’ contribution to a 1971 text [10] as well as in
a book by Erdős and Graham in 1980 [11]. In particular,

Theorem 1.6 (Erdős–Heilbronn Problem). If A and B are nonempty
subsets of Z/pZ with p prime, then |A+̇B| ≥ min{p, |A| + |B| − 3}, where
A +̇B := {a+ b mod p | a ∈ A, b ∈ B and a 6= b }.

The conjecture was first proved for the case A = B by Dias da Silva and
Hamidounne in 1994 [8] with the more general case established by Alon,
Nathanson, and Ruzsa using the polynomial method in 1995 [1]. Károlyi
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extended this result to abelian groups for the case A = B in 2004 [15] and
to cyclic groups of prime power order in 2005 [17].

Our aim is to establish this result for all finite groups. We in fact prove
a more general result, for which it will be useful to introduce the following
notation.

Definition 1.7. For a group G let Aut(G) be the group of automor-
phisms of G. Suppose θ ∈ Aut(G) and A,B ⊆ G. Write

A
θ· B := {a · θ(b) | a ∈ A, b ∈ B, and a 6= b }.

Given this definition, we can clearly state our objective, namely to extend
the theorem to finite groups; in particular we seek to prove

Theorem 1.8 (Generalized Erdős–Heilbronn for finite groups). If A
and B are nonempty subsets of a finite group G, and θ ∈ Aut(G), then

|A θ· B| ≥ min{p(G)− δ, |A|+ |B| − 3},
where δ = 0 if θ has odd order in Aut(G) and δ = 1 otherwise.

As well we can state

Corollary 1.9. If A and B are nonempty subsets of a finite group G,
and θ ∈ Aut(G), then

|{ab | a 6= θ(b), a ∈ A, b ∈ B}| ≥ min{p(G)− δ, |A|+ |B| − 3},
where δ = 0 if θ has odd order in Aut(G) and δ = 1 otherwise.

Proof. We have

{ab | a 6= θ(b), a ∈ A, b ∈ B} = {aθ−1(u) | a 6= u, a ∈ A, u ∈ θ(B)}

= A
θ−1

· θ(B).

We then use Theorem 1.8 noting that θ−1 ∈ Aut(G) has the same order as
θ and that |θ(B)| = |B|.

We note that Lev [18] has shown that the results of Theorem 1.8 and
Corollary 1.9 are not true for an arbitrary bijection θ.

An additional outcome is

Theorem 1.10 (Erdős–Heilbronn Problem for finite groups). If A and
B are nonempty subsets of a finite group G, then

|{ab | a ∈ A, b ∈ B, a 6= b}| ≥ min{p(G), |A|+ |B| − 3}.
Proof. Follows from Theorem 1.8 by putting θ = 1.

2. A structure theorem for finite solvable groups. Our approach
to establishing the Erdős–Heilbronn Problem in the case of finite groups
will involve solvable groups. We begin by reminding the reader of some
basic definitions.
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Definition 2.1. Let G be a group. The commutator of x and y in G is
defined to be [x, y] = xyx−1y−1. The commutator of two subgroups H and
K of G is [H,K] = 〈[h, k] | h ∈ H, k ∈ K〉. We define inductively

G(0) = G, G(1) = [G,G], . . . , G(i+1) = [G(i), G(i)] for i ≥ 1.

And though several equivalent definitions exist, we choose the following
definition for solvable group: G is solvable if there exists an n ≥ 0 such that
G(n) = {1}.

Given these definitions we state some useful facts.

1. G(1) EG.
2. G/G(1) is abelian.
3. If G 6= {1} is solvable then G 6= G(1).
4. Subgroups of solvable groups are solvable.

We are now ready to establish the following important theorem.

Theorem 2.2 (The associated field structure theorem). Let G be a non-
trivial finite solvable group and let θ ∈ Aut(G). Then there exists a K EG,
K 6= G, such that

(1) θ(K) = K,
(2) G/K ∼= (Fpn ,+) for some prime p and n ≥ 1,
(3) θ(x) = γx where γ ∈ F×pn , x ∈ G/K, and θ is the map induced by θ

on G/K which we identify with Fpn by (2).

Proof. Easy matters first. Suppose θ ∈ Aut(G) and K E G with θ(K)
= K. The map θ is defined by θ(gK) = θ(g)K; this is well defined since
if g1K = g2K, then

θ(g2−1g1) ∈ θ(K) = K,

so θ(g1) ∈ θ(g2)K and thus θ(g1)K = θ(g2)K.
With well-definedness established, we continue by noting that there is

at least one proper normal subgroup with an abelian quotient, namely G(1).
Note that θ(xyx−1y−1) = θ(x)θ(y)θ(x)−1θ(y)−1 and thus G(1) is fixed by θ.
Thus if K = G(1) we have the following:

1. K is a proper normal subgroup of G.
2. θ(K) = K.
3. G/K is abelian.

Of all subgroups meeting these three conditions, choose a subgroup K which
is maximal in the sense that there is no K ′ meeting each of the three con-
ditions and K ( K ′. We claim that this is the desired subgroup; i.e., that
G/K can be given a field structure and θ(gK) = θ(g)K is multiplication by
a nonzero element from G/K.

Before proceeding with the proof, a helpful observation:
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Observation 2.3. G/K has no proper , nontrivial θ-invariant subgroup.

Proof of observation. Suppose that G/K has a proper, nontrivial θ-
invariant subgroup, in other words there exists a subgroup H with K ≤
H ≤ G such that {1} ¯ H/K ¯ G/K and θ(H/K) ⊆ H/K. But G/K
is abelian, so {1} C H/K C G/K, thus K C H C G and θ(H) ⊆ H. But
|θ(H)| = |H|, so θ(H) = H. Also G/H ∼= (G/K)/(K/H) is abelian. These
contradict the maximality of K. Hence G/K has no proper, nontrivial θ-
invariant subgroup.

Now we continue with the proof of Theorem 2.2.
Since G/K is abelian, G/K ∼= Z/d1Z× · · · × Z/drZ, a product of cyclic

groups. Let p be a prime factor of d1. Put P = {x | xp = 1}, the set of all
elements in G/K of order dividing p. Since G/K is abelian, P is a subgroup
of G/K. Also, since xp = 1 we have θ(x)p = 1, thus θ(P ) ⊆ P and so P is
θ-invariant. But P 6= {1}, so P = G/K. Hence di = p for 1 ≤ i ≤ r, i.e.,
G/K ∼= (Z/pZ)n ∼= (Fp)n. We must be careful in that this isomorphism is
an additive group isomorphism; there is work yet to do to establish a field
structure.

Given this, we now show that G/K meets the remaining conditions of
the lemma, namely that G/K can be given the structure of a finite field and
that θ(x) = γx for γ ∈ F×pn where x = gK, g ∈ G.

First, since G/K ∼= (Fp)n, G/K is a Fp-vector space. Moreover, since θ is
an additive group homomorphism, for any scalar k ∈ {0, 1, . . . , p− 1} = Fp,

θ(kx) = θ(x+ · · ·+ x︸ ︷︷ ︸
k terms

) = θ(x) + · · ·+ θ(x)︸ ︷︷ ︸
k terms

= kθ(x),

i.e., θ is an Fp-linear map. Now we pick a nonzero e1 ∈ G/K and define a
map χ : Fp[x] → G/K by

χ
(∑

aix
i
)

=
∑

aiθ
i(e1) (G/K written additively).

This map is Fp-linear. Also, if f(x) =
∑
aix

i then

χ(xf(x)) = χ
(∑

aix
i+1

)
=

∑
aiθ

i+1(e1)(1)

= θ
(∑

aiθ
i(e1)

)
(by linearity)

= θ(χ(f(x))).

The image V ⊆ G/K of χ is a linear subspace of G/K, and hence a subgroup
of G/K, and by (1), θ(V ) ⊆ V . But θ has no nontrivial proper invariant
subgroup. As 0 6= e1 ∈ V , we must have V = G/K, and so χ is surjective.
Thus, by the First Isomorphism Theorem (for groups),

(2) Fp[x]/ker(χ) ∼= G/K (as groups).
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Claim. ker(χ) is a maximal ideal of the ring Fp[x].

Proof of claim. Suppose f(x) ∈ ker(χ), so that χ(f(x)) = 0. Then
χ(xf(x)) = θ(χ(f(x))) = 0. Therefore an induction argument implies that
χ(g(x)f(x)) = 0 for any g(x) ∈ Fp[x]. Since ker(χ) is a subgroup under +,
we have shown that ker(χ) is an ideal.

Suppose that there exists an ideal I of Fp[x] such that

ker(χ) ( I ( Fp[x].

Considering the image of each of these under χ, we get

(0) ( χ(I) ( G/K.

The inclusions here are strict since we know that χ induces the isomor-
phism (2). But since I is an ideal of Fp[x], we have xI ⊆ I, and so by (1),
θ(χ(I)) = χ(xI) ⊆ χ(I), i.e., χ(I) is θ-invariant. This is a contradiction,
hence ker(χ) is maximal.

As a result, Fp[x]/ker(χ) is a field, in particular

Fp[x]/ker(χ) ∼= Fpn (as rings)

for some n ≥ 1.
Hence we have condition (2) of the theorem (namely, the field structure).

But again, we have more. We have shown in (1) that θ acting on G/K is
the same in Fp[x]/ker(χ) as multiplication by x, which is the same in Fpn as
multiplication by a nonzero element, i.e., we have met condition (3) of the
theorem.

3. The Erdős–Heilbronn problem for finite solvable groups. Let
G be a finite solvable group. By Theorem 2.2, for any θ ∈ Aut(G) there is
some K EG such that

1. θ(K) = K,
2. G/K ∼= (Fpn ,+),
3. θ(x) = γx where γ ∈ F×pn and θ is the map induced by θ on G/K.

For each h ∈ (Fpn ,+) ∼= G/K pick a representative h̃ ∈ G of h, in
particular choose 0̃ = 1. Define ψ : K× (Fpn ,+) → G by ψ(k, h) = kh̃. Then
ψ is a bijection and

ψ(k1, h1) · ψ(k2, h2) = k1h̃1 · k2h̃2 = k1φh1(k2)h̃1h̃2(3)

= (k1φh1(k2)ηh1,h2)(h̃1 + h2)
= ψ(k1φh1(k2)ηh1,h2 , h1 + h2)

where φh(k) = h̃kh̃−1 (so in particular φh ∈ Aut(K)) and ηhi,hj
= h̃i · h̃j ·

(h̃i + hj)−1 ∈ K with h̃ the coset representative of h in G. Hence ψ can be
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considered an isomorphism if we put the following nonstandard multiplica-
tion on K × (Fpn ,+):

(k1, h1) ? (k2, h2) = (k1φh1(k2)ηh1,h2 , h1 + h2).

In summary, for A ⊆ G, we can consider A ⊆ K×(Fpn ,+), in particular,
A={(k1, h1), . . . , (kt, ht)} for some k1, . . . , kt ∈ K and h1, . . . , ht ∈ (Fpn ,+).

Remark 3.1. Let (k1, h1) and (k2, h2) be elements in G, let θ ∈ Aut(G),
and let γ ∈ F×pn be as in condition (3) of Theorem 2.2. Then

θ(k2, h2) = θ((k2, 0) ? (1, h2)) = θ(k2, 0) ? θ(1, h2)(4)

= (θ(k2), 0) ? (ch2 , θ(h2)) = (θ(k2)ch2 , γh2)

where ch2 ∈ K depends only on h2. Thus

(k1, h1) ? θ(k2, h2) = (k1, h1) ? (θ(k2)ch2 , γh2)(5)
= (k1 · φh1 [θ(k2)ch2 ]ηh1,γh2 , h1 + γh2)
= (k1 · φh1 [θ(k2)] · φh1 [ch2 ] · ηh1,γh2 , h1 + γh2)
= (k1 · θ′(k2) · fh1,h2 , h1 + γh2)

where θ′ := φh1 ◦ θ ∈ Aut(K), and fh1,h2 depends only on h1, h2.

Definition 3.2. For any A ⊆ G, consider A as a subset of K × Fpn .
Define

A1 := {k ∈ K | there exists h ∈ Fpn such that (k, h) ∈ A},
A2 := {h ∈ Fpn | there exists k ∈ K such that (k, h) ∈ A}.

In other words, A1 is the collection of first coordinates of A and A2 is
the collection of second coordinates of A when A is written as a subset of
K × Fpn .

Definition 3.3. Put a = |A| and b = |B|. Let A2 = {h1, . . . , hα} and
B2 = {h′1, . . . , h′β}. Then define Ai = {(k, h) ∈ A | h = hi}, 1 ≤ i ≤ α, and
write ai = |Ai|. Order the hi’s so that a1 ≥ · · · ≥ aα. Construct B1, . . . , Bβ

in a similar manner so that Bj = {(k, h) ∈ B | h = h′j}, bj = |Bj |, and
b1 ≥ · · · ≥ bβ.

Note that A = A1 ∪ · · · ∪ Aα and B = B1 ∪ · · · ∪ Bβ, hence |A| = a =
a1 + · · ·+ aα and |B| = b = b1 + · · ·+ bβ.

The following lemmas and remarks will be the last pieces in equipping
us to establish the desired theorem.

Lemma 3.4. If hi 6= h′j , then

|Ai
θ· Bj | = |(Ai)1 · θ′((Bj)1)|.

If hi = h′j , then
|Ai

θ· Bj | = |(Ai)1
θ′· (Bj)1|,

where θ′ = φhi
◦ θ.
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Proof. Regarding the first equality, by Definition 1.7, Remark 3.1, and
noting that hi 6= h′j , we have

|Ai
θ· Bj | = |{ai · θ(bj) | ai ∈ Ai, bj ∈ Bj , ai 6= bj}|

= |{(ki, hi) ? θ(kj , h
′
j) | ki ∈ A1

i , kj ∈ B1
j }|

= |{ki · θ′(kj) · fhi,h′j
, hi + γh′j}|.

Since hi and h′j are fixed elements, fhi,hj
∈ K is fixed. But multiplication

by an element of K is a bijection on K. Likewise, since φhi
is conjugation

by hi, θ′ = φhi
◦ θ is a fixed automorphism of K. Hence

|Ai
θ· Bj | = |{ki · θ′(kj) | ki ∈ A1

i , kj ∈ B1
j }| = |(Ai)1 · θ′(B1

j )|.
As for the second equality, again by Definition 1.7, Remark 3.1, and our

observation regarding θ′ we have

|Ai
θ· Bj | = |{ai · θ(bj) | ai ∈ Ai, bj ∈ Bj , ai 6= bj}|

= |{(ki, hi) ? θ(kj , hi) | ki ∈ A1
i , kj ∈ B1

j , ki 6= kj}|
= |{(ki · θ′(kj) · fhi,hi

, hi + γhi) | ki 6= kj}|

= |{ki · θ′(kj) | ki 6= kj}| = |A1
i

θ′· B1
j |.

Since we have introduced θ′ = φh ◦ θ we address the following:

Lemma 3.5. For G a group of odd order , if θ has odd order in Aut(G)
then θ′ has odd order in Aut(K).

Proof. We first establish that θ′ ∈Aut(K). By Theorem 2.2, θ(K) =K
and θ is an isomorphism, therefore θ ∈ Aut(K). Moreover it is well known
that for K a normal subgroup of G, conjugation by any h ∈ G is an auto-
morphism of K, i.e., φh ∈ Aut(K). Thus θ′ = φh ◦ θ ∈ Aut(K). As well we
establish that since Inn(G) := {φh | h ∈ G} ∼= G/Z(G) and since |G| is odd,
|Inn(G)| must be odd.

Suppose θr =1 in Aut(G) where r is odd. Then θr = 1 in Aut(G)/Inn(G).
But θ and θ′ give rise to the same element of Aut(G)/Inn(G), so θ′r = 1 in
Aut(G)/Inn(G). Thus θ′r ∈ Inn(G) and so by Lagrange’s Theorem, θ′rs = 1
in Aut(G) where s = |Inn(G)|. But then θ′rs = 1 as an element of Aut(K)
and rs is odd, so θ′ has odd order in Aut(K).

We also require the following generalization of the polynomial method [2]
due to Hao Pan and Zhi-Wei Sun [20].

Lemma 3.6 (The polynomial method). Suppose A and B are nonempty
subsets of Fpn. Fix γ ∈ F×pn. Then |A

γ
+ B| ≥ min{p − δ, |A| + |B| − 3},

where A
γ
+ B := {a+ γb | a ∈ A, b ∈ B, a 6= b} and where δ = 1 if γ = −1

and δ = 0 otherwise.
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Remark 3.7. Assume p − δγ ≥ α + β − 3 where δγ = 1 if γ = −1 and
δγ = 0 otherwise.

Case 1: Suppose that there does not exist an j such that h′j = h1, i.e.,
the second coordinates of the Bj ’s will be distinct from A2

1.
The set {h1 + γh′j | 1 ≤ j ≤ β} will have β elements. But A2, B2 ⊆ Fpn ,

hence by Lemma 3.6 and Theorem 2.2, |A2
γ
+ B2| ≥ α+ β − 3. Thus there

are at least α− 3 elements of the form hi + γh′j , hi 6= h′j , that are not in the
set {h1 + γh′j | 1 ≤ j ≤ β}.

Case 2: Now suppose that there does exist an r such that h′r = h1, i.e.,
some second coordinate of the Bj ’s will be the same as A2

1.
Hence the set {h1 + γh′j | h1 6= h′j} will have β − 1 elements. But A2, B2

⊆ Fpn , hence by Lemma 3.6 and Theorem 2.2, |A2
γ
+ B2| ≥ α+β−3. Thus,

since α+ β − 3 = (β − 1) + (α− 2), there are at least α− 2 elements of the
form hi + γh′j , hi 6= h′j not in the set {h1 + γh′j | h1 6= h′j}.

Remark 3.8. Assume that p − δγ ≥ α + β − 1 where δγ = 1 if γ = −1
and δγ = 0 otherwise. The set {(A1 · θ(Bj))2 | 1 ≤ j ≤ β} = {h1 + γhj |
1 ≤ j ≤ β} will have β elements. But A2, B2 ⊆ Fpn , hence by Theorem 1.4
|A2 + γB2| ≥ α + β − 1. Thus, since α + β − 1 = β + (α − 1), there are at
least α− 1 elements hi + γh′j that are not in the set {h1 + γh′j | 1 ≤ j ≤ β}.

And lastly,

Remark 3.9. For G a finite solvable group with a normal subgroup K
we have p(K) ≥ p(G) and p ≥ p(G) where the p is the characteristic of the
field in Theorem 2.2.

Proof. By Remark 1.3, p(G) is the smallest prime factor of |G|. Since
K ≤ G, by Lagrange’s Theorem, |K| | |G|, thus p(K) ≥ p(G). Likewise, G/K
is of order pn, thus p ≥ p(G).

Before continuing, we define the following generalizations of the δγ from
the polynomial method.

Definition 3.10. For θ ∈ Aut(G), put

δθ =
{

1 if θ has even order in Aut(G),
0 if θ has odd order in Aut(G).

Likewise, put

δθ′ =
{

1 if θ′ has even order in Aut(K),
0 if θ′ has odd order in Aut(K),

where θ′ = φhi
◦ θ with φhi

representing conjugation by hi.

Hence by Lemma 3.5, δθ′ ≤ δθ, so we have
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Corollary 3.11.

p(G)− δθ ≤ p(K)− δθ′ .

Now we may state and prove the main result of this section.

Theorem 3.12 (Solvable Erdős–Heilbronn). Suppose A,B ⊆ G, G solv-
able of order n, with |A| = a, |B| = b, a, b > 0, and θ ∈ Aut(G). Then
|A θ· B| ≥ min{p(G) − δθ, a + b − 3} where δθ = 1 if θ is of even order in
Aut(G) and δθ = 0 otherwise.

Proof. We will proceed by induction on n, namely we will assume the
theorem holds for solvable groups of order less than n (note that the base
case is trivial in that if |G| = 1, then A = B = G and thus a + b − 3 < 0
whereas A θ· B is empty). We know that there exists a K E G such that
G/K ∼= Fpn . We may assume that p − δθ ≥ a + b − 3, otherwise we may
replace A and B by an A∗ ⊆ A and a B∗ ⊆ B such that this holds. We will
express A and B as in Definition 3.3 and since |A θ· B| = |B−1 θ−1

· A−1| and θ
and θ−1 give rise to the same K and δθ, without loss of generality we choose
A and B such that β ≥ α.

We further note that δγ = 1 implies that δθ = 1 (if θ is multiplication
by γ = −1, then θ has order 2, so θ has even order). Hence α + β − 3 ≤
|A| + |B| − 3 ≤ p(G) − δθ ≤ p − δγ where the last inequality follows from
Remark 3.9.

Case 1: There does not exist a j, 1 ≤ j ≤ β, such that A2
1 = B2

j , i.e.,
the second coordinates of the Bj ’s are distinct from the second coordinate
of A1.

Together with Remark 3.7 we get (since there are at least α−3 nonempty
disjoint sets Ai

θ· Bj , 1 < i ≤ α, 1 ≤ j ≤ β, disjoint from all A1
θ· Bj , i.e.,

there are α− 3 second coordinates that come from these sets)

|A θ· B| ≥ |A1
θ· B1|+ |A1

θ· B2|+ · · ·+ |A1
θ· Bβ|+ α− 3.

By Case 1 of Lemma 3.4, we have

|A θ· B| ≥ |A1
1 · θ′(B1

1)|+ |A1
1 · θ′(B1

2)|+ · · ·+ |A1
1 · θ′(B1

β)|+ α− 3.

Thus by Theorem 1.4,

|A θ· B| ≥ (a1 + b1 − 1) + (a1 + b2 − 1) + · · ·+ (a1 + bβ − 1) + α− 3
≥ βa1 + b1 + b2 + · · ·+ bβ − β + α− 3
= αa1 + b+ (β − α)(a1 − 1)− 3
≥ a+ b− 3,

since αa1 = a1 + · · ·+ a1 ≥ a1 + a2 + · · ·+ aα = a, β ≥ α, and a1 ≥ 1.
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Note that the above holds as long as each a1 + bi − 1 ≤ p(K) − δθ′ . If
this is not true for some i, then

|A θ· B| ≥ |A1
θ· Bi| ≥ p(K)− δθ′

≥ p(G)− δθ (by Corollary 3.11)
≥ a+ b− 3 (by assumption).

Case 2: There exists a j, 1 ≤ j ≤ β, such that A2
1 = B2

j , i.e., some Bj

has a second coordinate that agrees with the second coordinate of A1.
First we note that by Remark 3.8 there exists a set I of pairs (i,m) with

hi+γh′m distinct and not equal to any h1+γh′j . Note that if α+β−1 ≤ p−δγ
then |I| = α− 1. Hence

Subcase A: a1 > 1. Then

|A θ· B| ≥ |A1
θ· B1|+ · · ·+ |A1

θ· Bj |+ · · ·+ |A1
θ· Bβ|+

∑
(i,m)∈I

|Ai
θ· Bm|.

By Lemma 3.4, we have

|A θ· B| ≥ |A1
1 · θ′(B1

1)|+ · · ·+ |A1
1

θ′· B1
j |+ · · ·+ |A1

1 · θ′(B1
β)|

+ (|I| − |{Ai
θ· Bm = ∅ | (i,m) ∈ I}|).

But Ai
θ· Bm = ∅ if and only if Ai = Bm = {(k, h)}, i.e., each is a singleton.

In particular, for each i this can only occur with at most one value ofm. Thus
if r = |{|Ai| = 1}|, then |{Ai

θ· Bm = ∅}| ≤ r. Recall that if α+β−1 ≤ p−δγ
then |I| = α− 1. Hence by the induction hypothesis on K, which is solvable
and of order less than n, we get

|A θ· B| ≥ (a1 + b1 − 1) + · · ·+ (a1 + bj − 3) + · · ·+ (a1 + bβ − 1)
+ (α− 1− r)

≥ βa1 + b1 + · · ·+ bβ − β + α− 3− r

= αa1 + b+ (β − α)(a1 − 1)− 3− r.

Since β ≥ α, a1 ≥ 2, and αa1 − a =
∑α

i=1(a1 − ai) ≥ r, we have

|A θ· B| ≥ a+ r + b− 3− r = a+ b− 3.

Now by assumption a+ b− 3 ≤ p(G)− δθ ≤ p− δγ , so if α+ β− 1 > p− δγ ,
we must have a1 = 2 and ai = 1 for all i > 1, and also each bj = 1. In
particular, this means that

|A1
1

θ′· B1
j | ≥ 1 = a1 + bj − 2

and |I| = α− 2. Hence, following the same work as above we still have that

|A θ· B| ≥ a+ b− 3.
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Subcase B: a1 = · · · = aα = 1 and no Ai = Bm. Then

|A θ· B| ≥ |A1
θ· B1|+ · · ·+ |A1

θ· Bj |+ · · ·+ |A1
θ· Bβ|+

∑
(i,m)∈I

|Ai
θ· Bm|.

By Lemma 3.4, we have

|A θ· B| ≥ |A1
1 · θ′(B1

1)|+ · · ·+ |A1
1

θ′· B1
j |+ · · ·+ |A1

1 · θ′(B1
β)|(6)

+ |I| − |{Ai = Bm}| = (∗).
Since |A1| = 1,

(∗) ≥ b1 + · · ·+ (bj − 1) + · · ·+ bβ + |I| = b+ |I| − 1.(7)

We may have α+ β − 1 ≥ |A|+ |B| − 3. Unfortunately, this means that we
have three further subcases.

Subcase B.1: α+ β − 1 ≤ |A|+ |B| − 3. From our observation in Sub-
case A, we have |I| = α− 1. But a =

∑α
i=1 ai = α, so

|A θ· B| ≥ b+ |I| − 1 = a+ b− 2.

Subcase B.2: α+β−1 = |A|+ |B|−2. Here |I| ≥ α−2 = a−2. Hence

|A θ· B| ≥ b+ |I| − 1 ≥ a+ b− 3.

Subcase B.3: α + β − 1 = |A| + |B| − 1. In this situation bj = 1 for
every j. Also |I| ≥ α − 3 = a − 3. Moreover, |A1

1
θ′· B1

j | ≥ 1 = bj since
A1

i 6= B1
j . Hence continuing (6) we obtain

|A θ· B| ≥ b1 + · · ·+ bj + · · ·+ bβ + |I| ≥ a+ b− 3.

Subcase C: a1 = · · · = aα = 1 and there exist i and m such that Ai =
Bm. Without loss of generality, let A1 be one such Ai, namely A1 = Bs.
As well we note that by Remark 3.7, Case 2, we have a set J of pairs (i,m)
with hi + γh′m distinct, hi 6= h′m and hi + γh′m not equal to any h1 + γh′s
and |J | = α− 2. Hence

|A θ· B| ≥ |A1
θ· B1|+ · · ·+ |A1

θ· Bs−1|+ |A1
θ· Bs+1|

+ · · ·+ |A1
θ· Bβ|+

∑
(i,m)∈J

|Ai
θ· Bm|.

By Remark 3.7, Case 2,

|A θ· B| ≥ b1 + · · ·+ bs−1 + bs+1 + · · ·+ bβ + α− 2
= b− 1 + α− 2 = a+ b− 3.

4. The Erdős–Heilbronn conjecture for finite groups. We now
extend Theorem 3.12 to all finite groups. Before we continue, we recall
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Theorem 4.1 (Feit–Thompson [13]). Every group of odd order is solv-
able.

Theorem 4.2 (Generalized Erdős–Heilbronn for finite groups). Let G
be a finite group, θ ∈ Aut(G), and let A,B ⊆ G with |A| = a and |B| = b,
a, b > 0. Then |A θ· B| ≥ min{p(G)− δ, a+ b− 3} where δ = 1 if θ is of even
order in Aut(G) and δ = 0 otherwise.

Proof. We first consider the case when G is of even order, hence p(G)=2.
If a = 1 or 2, then |A θ· B| ≥ |B| − 1 > a + b − 3. For a ≥ 3, |A θ· B| ≥
|A| − 1 ≥ 2 = p(G). Lastly, if G is of odd order, then by Theorem 4.1, G is
solvable. The result then follows from Theorem 3.12.

5. Closing remarks. Of course, Alon, Nathanson, and Ruzsa’s work [1]
established the Erdős–Heilbronn problem for elementary abelian groups. As
noted earlier, Gyula Károlyi used different techniques to extend the Erdős–
Heilbronn problem to abelian groups for the case A = B in 2004 [15] and to
cyclic groups of prime power order in 2005 [17]. Our result completes these
results in establishing the general case of the Erdős–Heilbronn problem for
any finite abelian group. Moreover, we note the extent of the comprehen-
siveness of the result; in particular, establishing this theorem required using
the techniques of Károlyi together with the polynomial method of Alon,
Nathanson, and Ruzsa.
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