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1. Introduction. Elliptic curve public-key cryptosystems over Fq have
become widely used in applications since N. Koblitz and V. Miller proposed
using elliptic curves over Fq to construct public-key cryptosystems. Roughly
speaking, the elliptic curve cryptosystems can be considered as pseudoran-
dom sequence generators. If these sequences have good pseudorandomness,
then they can be used for generating random numbers, which are very useful
in cryptography and communications.

Many scholars have studied elliptic curve sequences with strong crypto-
graphic properties. For example, B. S. Kaliski [12] first used elliptic curves
to construct pseudorandom sequences by using randomness criteria based
on the computational difficulty of the discrete logarithm over the elliptic
curves. S. Hallgren [8] discussed some heuristics of the linear congruentia
generator over elliptic curves. G. Gong, T. A. Berson and D. R. Stinson [4]
constructed a class of binary sequences by applying trace functions to ellip-
tic curves over F2m , and discussed the least periods, linear complexities and
0-1 distributions of these sequences. E. E. Mahassni and I. Shparlinski [16]
obtained a bound for the uniform distribution of the congruential genera-
tors over elliptic curves. Meanwhile, P. H. T. Beelen and J. M. Doumen [1]
proved an upper bound for some exponential sums on algebraic curves over
finite fields, and studied some sequences constructed from elliptic curves.
G. Gong and C. C. Y. Lam [5] introduced linear recursive sequences over
elliptic curves. Moreover, C. P. Xing et al. constructed some sequence fam-
ilies with both large linear complexity and low correlation in [22] and [23].
F. Hess and I. Shparlinski [9] studied the linear complexity and multidi-
mensional distribution of the congruential generators over elliptic curves.
Recently H. Hu, L. Hu and D. Feng [10] investigated a general method for
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constructing families of pseudorandom sequences with low correlation and
large linear complexity from elliptic curves.

It is of interest to further study the pseudorandom sequences from el-
liptic curves over finite fields. In this paper we shall give large families of
elliptic curve pseudorandom binary sequences, and study their pseudoran-
domness: well-distribution and correlation. In Section 2 we introduce the
construction methods, and present main results about the pseudorandom-
ness of the constructions. We shall show some results on exponential sums
for elliptic curves over finite fields in Section 3. Finally in Section 4 we prove
the pseudorandomness of our constructions.

2. Constructions and pseudorandom properties. Throughout this
paper, let Fq be a finite field with q = pm, and let E be an elliptic curve
over Fq. We denote the set of Fq-rational points of E by E(Fq). Then E(Fq)
forms an abelian group with the point O at infinity as the identity. Suppose
that

E(Fq) ∼= Z/NZ× Z/LZ

with |E(Fq)| = NL, L |N , and L | (q − 1). Let P,Q ∈ E(Fq) be two points
such that the order of P is N , and the order of Q is L. Let Fq(E) be the set of
functions on E defined over Fq. Now we give our large families of sequences.

Construction 2.1. Let f ∈ Fq(E) be such that

f(R) = ∞ if and only if R = O.

Let B be a subset in Fq with

|B| = q − 1
2

and
∑
r∈F∗q

∣∣∣∑
c∈B

ψ(rc)
∣∣∣ ¿ q log q

for any non-trivial additive character ψ on Fq. Write Pk = kP . Then define
E′N−1 = (e′1, . . . , e

′
N−1), where

e′k =
{

+1 if f(Pk) ∈ B,
−1 if f(Pk) 6∈ B.

Construction 2.2. Let g ∈ Fq(E) be such that

g(R) = 0 if and only if R = O.

Let B be a subset in Fq with

|B| = q − 1
2

and
∑
r∈F∗q

∣∣∣∑
c∈B

ψ(rc)
∣∣∣ ¿ q log q
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for any non-trivial additive character ψ on Fq. Write Pk = kP and ∞ = 0,
where x is the inverse of x. Then define E′′N−1 =

(
e′′1, . . . , e

′′
N−1

)
, where

e′′k =

{
+1 if g(Pk) ∈ B,
−1 if g(Pk) 6∈ B.

Example 2.1. A subset B in Fq as above does exist. For example, let p
be an odd prime, n ∈ N, q = pn, and let v1, . . . , vn be linearly independent
elements of Fq over Fp. Define B∗

1 , . . . , B
∗
n by

B∗
1 =

{ n∑
i=1

uivi : 0 ≤ u1 ≤
p− 3

2
, u2, . . . , un ∈ Fp

}
,

B∗
j =

{ n∑
i=1

uivi : u1 = · · ·= uj−1 =
p− 1

2
, 0 ≤ uj ≤

p− 3
2

, uj+1, . . . , un ∈ Fp

}
for j = 2, . . . , n, and write B∗ =

⋃n
j=1B

∗
j . Then B∗ is a subset in Fq. It is

easy to show that |B∗| = (q − 1)/2. On the other hand, from (3.21) of [21]
we know that ∑

r∈F∗q

∣∣∣ ∑
c∈B∗

ψ(rc)
∣∣∣ ¿ q log q.

In a series of papers C. Mauduit, J. Rivat and A. Sárközy (partly with
other coauthors) studied finite pseudorandom binary sequences

EN = (e1, . . . , eN ) ∈ {−1,+1}N .

In particular, in [18] C. Mauduit and A. Sárközy first introduced the follow-
ing measures of pseudorandomness: the well-distribution measure of EN is
defined by

W (EN ) = max
a,b,t

∣∣∣ t−1∑
j=0

ea+jb

∣∣∣,
where the maximum is taken over all a, b, t ∈ N with 1 ≤ a ≤ a+(t−1)b ≤ N .
The correlation measure of order k of EN is denoted as

Ck(EN ) = max
M,D

∣∣∣ M∑
n=1

en+d1en+d2 · · · en+dk

∣∣∣,
where the maximum is taken over all D = (d1, . . . , dk) and M with 0 ≤
d1 < · · · < dk ≤ N −M , and the combined (well-distribution-correlation)
PR-measure of order k,

Qk(EN ) = max
a,b,t,D

∣∣∣ t∑
j=0

ea+jb+d1ea+jb+d2 · · · ea+jb+dk

∣∣∣,
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is defined for all a, b, t, D = (d1, . . . , dk) with 1 ≤ a + jb + di ≤ N (i =
1, . . . , k).

The sequence is considered to be a “good” pseudorandom sequence if
both W (EN ) and Ck(EN ) (at least for small k) are “small” in terms of N .
J. Cassaigne, C. Mauduit and A. Sárközy [3] proved that this terminology is
justified since for almost all EN ∈ {−1,+1}N , both W (EN ) and Ck(EN ) are
less than N1/2(logN)c. Later a few pseudorandom binary sequences were
given and studied (see [2], [6], [7], [14], [15], [17], [19], [11], [20], [21]).

The purpose of this paper is to study the well-distribution measure and
correlation measure of sequences E′N−1 and E′′N−1. The main results are the
following.

Theorem 2.1. Let E′N−1 be defined as in Construction 2.1. Then

W (E′N−1) ¿ deg(f)q1/2 log q logN,

Ck(E′N−1) ¿ k deg(f)q1/2(2 log q)k logN,

Qk(E′N−1) ¿ k deg(f)q1/2(2 log q)k logN.

Theorem 2.2. Let E′′N−1 be defined as in Construction 2.2. Then

W (E′′N−1) ¿ deg(g)q1/2 log q logN,

Ck(E′′N−1) ¿ q1/2(2 deg(g) log q)k logN,

Qk(E′′N−1) ¿ q1/2(2 deg(g) log q)k logN.

Remarks. Let p be a prime, and let Q ∈ E(Fp) with order N . For
k = 1, . . . , N−1, writeQk = kQ, and considerQk = (x(Qk), y(Qk)) ∈ E(Fp).
Define

A1 = {n : p/2 < n ≤ p− 1}, A2 = {n : 1 ≤ n ≤ p− 1, 2 |n}.

For i = 1, . . . , 5, denote E(i)
N−1 = (e(i)1 , . . . , e

(i)
N−1) by

e
(1)
k =

{
+1 if y(Qk) ∈ A1,
−1 if y(Qk) 6∈ A1,

e
(2)
k =

{
+1 if x(Qk) ∈ A1,
−1 if x(Qk) 6∈ A1,

e
(3)
k =

{
+1 if y(Qk) ∈ A2,
−1 if y(Qk) 6∈ A2,

e
(4)
k =

{
+1 if x(Qk) ∈ A2,
−1 if x(Qk) 6∈ A2,

e
(5)
k =

{
+1 if x(Qk) < y(Qk),
−1 if x(Qk) ≥ y(Qk).

We point out that bothA1 andA2 are special cases ofB in our constructions,
and x(Qk), y(Qk) are both rational functions in Fp(E) satisfying x(R) = ∞
if and only if R = O, and y(R) = ∞ if and only if R = O. Then from
Theorem 2.1 we know that the above five binary sequences are good pseu-
dorandom binary sequences.
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3. Exponential sums for elliptic curves over finite fields. Since
E(Fq) ∼= Z/NZ × Z/LZ, the order of P is N , and the order of Q is L, it
follows that any point in E(Fq) can be written as nP + lQ with 0 ≤ n < N
and 0 ≤ l < L. Define e(y) = e2πiy. Then any character ω on E(Fq) is of the
form

ω(nP + lQ) = e
(
an

N

)
e
(
bl

L

)
for some 0 ≤ a < N and 0 ≤ b < L. Let h ∈ Fq(E) be a non-constant
function. We write the divisor of poles of h as (h)∞ =

∑t
i=1 niBi, where

deg(h) =
∑t

i=1 ni deg(Bi).

Lemma 3.1. Let ω be a character on E(Fq), let ψ be a non-trivial additive
character on Fq, and let h ∈ Fq(E) be a non-constant function. Then ψ ◦ h
determines a character of conductor

∑t
i=1miBi, where mi ≤ ni + 1 with

equality if and only if (ni, q) = 1. Moreover ,∣∣∣ ∑
R∈H

h(R)6=∞

ω(R)ψ(h(R))
∣∣∣ ≤ 2 deg(h)q1/2.

Proof. This is Corollary 1 of [13].

Now we can give the following estimates for some special exponential
sums.

Lemma 3.2. Let a, b, t be positive integers, and let d1, . . . , dl be non-
negative integers such that 1 ≤ a+ jb+ d1 < · · · < a+ jb+ dl ≤ N − 1. Let
r1, . . . , rl ∈ F∗q. For a non-trivial additive character ψ on Fq, define

T1 =
t∑

j=0

ψ(r1f(Pa+jb+d1) + · · ·+ rlf(Pa+jb+dl
)).

Then

T1 ¿ l deg(f)q1/2 logN.

Proof. It is not hard to show that

T1 =
1
N

N−1∑
n=0

n+d1,...,n+dl 6≡0 (mod N)

t∑
j=0

ψ(r1f(Pn+d1) + · · ·+ rlf(Pn+dl
))

×
N−1∑
λ=0

e(λ(n− (a+ jb))/N)
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≤ 1
N

N−1∑
λ=0

∣∣∣ t∑
j=0

e(λjb/N)
∣∣∣

×
∣∣∣ N−1∑

n=0
n+d1,...,n+dl 6≡0 (mod N)

e(λn/N)ψ(r1f(Pn+d1) + · · ·+ rlf(Pn+dl
))

∣∣∣.
Let φ be the character defined by φ(nP + lQ) = e(λn/N), and define

F (nP ) = r1f(Pn+d1) + · · ·+ rlf(Pn+dl
).

Then
N−1∑
n=0

n+d1,...,n+dl 6≡0 (mod N)

e(λn/N)ψ(r1f(Pn+d1) + · · ·+ rlf(Pn+dl
))

=
N−1∑
n=0

F (nP )6=∞

φ(nP )ψ(F (nP )).

Since f(R) = ∞ if and only if R = O, we know that F (nP ) has l distinct
poles at n = N − d1, . . . , N − dl. Thus F cannot be a constant function. So
from Lemma 3.1 we have∣∣∣ N−1∑

n=0
n+d1,...,n+dl 6≡0 (mod N)

e(λn/N)ψ(r1f(Pn+d1) + · · ·+ rlf(Pn+dl
))

∣∣∣
≤ 2l deg(f)q1/2.

On the other hand, we easily have
N−1∑
λ=0

∣∣∣ t∑
j=0

e(λjb/N)
∣∣∣ ¿ N logN,

therefore
T1 ¿ l deg(f)q1/2 logN.

Lemma 3.3. Let a, b, t be positive integers, and let d1, . . . , dl be non-
negative integers such that 1 ≤ a+ jb+ d1 < · · · < a+ jb+ dl ≤ N − 1. Let
r1, . . . , rl ∈ F∗q. For non-trivial additive character ψ on Fq, define

T2 =
t∑

j=0

ψ(r1g(Pa+jb+d1) + · · ·+ rlg(Pa+jb+dl
)).

Then
T2 ¿ (deg(g))lq1/2 logN.
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Proof. It is easy to show that

T1 =
1
N

N−1∑
n=0

n+d1,...,n+dl 6≡0 (mod N)

t∑
j=0

ψ(r1g(Pn+d1) + · · ·+ rlg(Pn+dl
))

×
N−1∑
λ=0

e(λ(n− (a+ jb))/N)

≤ 1
N

N−1∑
λ=0

∣∣∣ t∑
j=0

e(λjb/N)
∣∣∣

×
∣∣∣ N−1∑

n=0
n+d1,...,n+dl 6≡0 (mod N)

e(λn/N)ψ(r1g(Pn+d1) + · · ·+ rlg(Pn+dl
))

∣∣∣.
Let φ be the character defined by φ(nP + lQ) = e(λn/N), and define

G(nP ) =

∑l
i=1 ri

∏l
j=1, j 6=i g(Pn+dj

)∏l
j=1 g(Pn+dj

)
.

Since g(R) = 0 if and only if R = O, we know that G(nP ) has l distinct
poles at n = N − d1, . . . , N − dl. Thus G cannot be a constant function. So
from Lemma 3.1 we have∣∣∣ N−1∑

n=0
n+d1,...,n+dl 6≡0 (mod N)

e(λn/N)ψ(r1g(Pn+d1) + · · ·+ rlg(Pn+dl
))

∣∣∣
=

∣∣∣ N−1∑
n=0

G(nP )6=∞

φ(nP )ψ(G(nP ))
∣∣∣ ≤ 2(deg(g))lq1/2.

Therefore T2 ¿ (deg(g))lq1/2 logN.

4. Proof of the pseudorandom properties. First we prove Theorem
2.1. Let ψ1 be the canonical additive character of Fq. Noting that

2
(

1
q

∑
c∈B

∑
r∈Fq

ψ1(r(x− c))− 1
2

)
=

{
+1 if x ∈ B,
−1 if x 6∈ B,

we have
t∑

j=0

e′a+jb+d1
· · · e′a+jb+dk

= 2k
t∑

j=0

k∏
i=1

(
1
q

∑
c∈B

∑
r∈Fq

ψ1(r(f(Pa+jb+di
)− c))− 1

2

)
.
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Since |B| = (q − 1)/2, we get
1
q

∑
c∈B

1− 1
2

= − 1
2q
,

therefore
t∑

j=0

e′a+jb+d1
· · · e′a+jb+dk

=
2k

qk

t∑
j=0

k∏
i=1

(∑
c∈B

∑
r∈F∗q

ψ1

(
r(f(Pa+jb+di

)− c)
)
− 1

2

)

=
2k

qk

t∑
j=0

k∑
l=0

(
−1

2

)k−l ∑
(c1,...,cl)∈Bl

∑
(r1,...,rl)∈(F∗q)l∑

1≤i1<···<il≤k

ψ1

(
r1(f(Pa+jb+di1

)− c1) + · · ·+ rl(f(Pa+jb+dil
)− cl)

)
=

1
qk

k∑
l=0

(−1)k−l2l

×
∑

(r1,...,rl)∈(F∗q)l

∑
1≤i1<···<il≤k

t∑
j=0

ψ1

(
r1f(Pa+jb+di1

) + · · ·+ rlf(Pa+jb+dil
)
)

×
∑

(c1,...,cl)∈Bl

ψ1(−r1c1 − · · · − rlcl).

Noting that ∑
r∈F∗q

∣∣∣∑
c∈B

ψ1(rc)
∣∣∣ ¿ q log q,

from Lemma 3.2 we have
t∑

j=0

e′a+jb+d1
· · · e′a+jb+dk

¿ 1
qk

k∑
l=0

2l

(
k

l

)
l deg(f)q1/2 logN

(∑
r∈F∗q

∣∣∣∑
c∈B

ψ1(rc)
∣∣∣)l

¿ 1
qk
k deg(f)q1/2 logN

k∑
l=0

(
k

l

)
2l(q log q)l

=
1
qk
k deg(f)q1/2 logN(2q log q + 1)k

¿ k deg(f)q1/2(2 log q)k logN.
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Therefore

Qk(E′N−1) = max
a,b,t,D

∣∣∣ t∑
j=0

e′a+jb+d1
· · · e′a+jb+dk

∣∣∣(4.1)

¿ k deg(f)q1/2(2 log q)k logN.

Taking k = 1 and d1 = 0 in (4.1), we immediately get

W (E′N−1) = max
a,b,t

∣∣∣ t−1∑
j=0

e′a+jb

∣∣∣ ¿ deg(f)q1/2 log q logN.

Taking a = 0, b = 1, j = n− 1 and t = M − 1 in (4.1), we have

Ck(E′N−1) = max
M,D

∣∣∣ M∑
n=1

e′n+d1
· · · e′n+dk

∣∣∣ ¿ k deg(f)q1/2(2 log q)k logN.

This proves Theorem 2.1. Using the same methods and Lemma 3.3 we can
complete the proof of Theorem 2.2.
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