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Another smallest part function related
to Andrews’ spt function

by

Alexander E. Patkowski (Centerville, MA)

1. Introduction and main results. In [A2], we find the identity of
Andrews

(1.1)
∑
n≥1

qn

(1− qn)(qn)∞

=
∑
n≥1

np(n)qn +
1

(q)∞

∑
n≥1

(−1)nqn(3n+1)/2(1 + qn)

(1− qn)2
.

Here p(n) is the number of partitions of n, and the last series on the right
generates N2(n) =

∑
m∈Zm

2N(m,n), N(m,n) being the number of par-
titions of n with rank m (see [A1]). The largest part minus the number
of parts is defined to be the rank . The function spt(n) counts the num-
ber of smallest parts among integer partitions of n. For some other func-
tions counting smallest parts among partitions see [P1]. Lastly, we have
used the familiar notation (a)n = (a; q)n = (1 − a)(1 − aq) · · · (1 − aqn−1)
(see [GR]).

In this note we find a spt-type function that is related to the generating
function in (1.1) and falls into the same class of spt-type functions as the
one offered in [P2]. However, this note differs from [P2] in that we will find
the “crank companion” to create a “full” sptfunction related to Andrews’
spt function. Here we are also appealing to relations to spt(n) modulo 2,
whereas in [P2] we concentrated on relations to spt(n) modulo 3. Lastly,
the partitions involved in this study are different, and deserve a separate
study.

Let M2(n) =
∑

m∈Zm
2M(m,n), where M(m,n) is the number of parti-

tions of n with crank m (see [AG]).
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Theorem 1.1. We have∑
n≥1

qn(q2n+1; q2)∞
(1− qn)2(qn+1)∞

=
1

(q2; q2)∞

∑
n≥1

nqn

1− qn
− 1

2

∑
n≥1

N2(n)q2n,(1.2)

∑
n≥1

qn(n+1)/2(q2n+1; q2)∞
(1− qn)2(qn+1)∞

=
1

(q2; q2)∞

∑
n≥1

nqn

1−qn
− 1

2

∑
n≥1

M2(n)q2n.(1.3)

For our next theorem, which is a number-theoretic interpretation of The-
orem 1.1, we will use the following definitions. We define a triangular par-
tition to be of the form δl = (l − 1, l − 2, . . . , 1), l ∈ N. Define the smallest
part of a partition π to be s(π), and the largest part to be l(π). We will also
consider the partition pair σ = (π, δi), where we set i = s(π). The latter
condition yields s(π)− l(δi=s(π)) = s(π)− (s(π)− 1) = 1. If we include δi in

a partition, we are increasing its size by
(
i
2

)
and including the component

q1+···+i−1 in its generating function. This has the property that all parts
from 1 to i− 1 appear exactly once and are less than i.

Theorem 1.2. Let spt+o (n) count the number of smallest parts among
the integer partitions π of n where odd parts greater than 2s(π) do not
occur. Let spt−o (n) count the number of smallest parts among the integer
partitions σ = (π, δs(π)) of n such that π is a partition where odd parts
greater than 2s(π) do not occur. Define spto(n) := spt+o (n)− spt−o (n). Then
spto(2n) = spt(n).

With the above definitions, we can write the generating function. We
have∑
n≥1

spto(n)qn =
∑
n≥1

(qn + 2q2n + 3q3n + · · · )(q2n+1; q2)∞
(qn+1)∞

(1− q1+2+···n−1).

2. Proof of Theorems 1.1 and 1.2. The proofs require the methods
used in [B, G, P2] and a few more observations. A pair of sequences (αn, βn)
is known to be a Bailey pair with respect to a if

(2.1) βn =

n∑
r=0

αr
(aq; q)n+r(q; q)n−r

.

The next result is Bailey’s lemma [B].

Bailey’s lemma. If (αn, βn) form a Bailey pair with respect to a then

(2.2)
∞∑
n=0

(ρ1)n(ρ2)n(aq/ρ1ρ2)
nβn

=
(aq/ρ1)∞(aq/ρ2)∞
(aq)∞(aq/ρ1ρ2)∞

∞∑
n=0

(ρ1)n(ρ2)n(aq/ρ1ρ2)
nαn

(aq/ρ1)n(aq/ρ2)n
.
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The following are known Bailey pairs (αn, βn) relative to a = 1:

α2n+1 = 0,(2.3)

α2n = (−1)nqn(3n−1)(1 + q2n),(2.4)

βn =
1

(q)n(q; q2)n
(2.5)

(see [S, C(1)]), and

α2n+1 = 0,(2.6)

α2n = (−1)nqn(n−1)(1 + q2n),(2.7)

βn =
qn(n−1)/2

(q)n(q; q2)n
(2.8)

(see [S, C(5)]). In both pairs α0 = 1. Differentiating Bailey’s lemma (putting
a = 1) with respect to both variables ρ1 and ρ2 and setting each variable
equal to 1 each time gives us (see [P2])

(2.9)
∑
n≥1

(q)2n−1βnq
n = α0

∑
n≥1

nqn

1− qn
+
∑
n≥1

αnq
n

(1− qn)2
.

Identity (1.2) follows from inserting the Bailey pair (2.3)–(2.5) into (2.9)
and then multiplying through by (q2; q2)−1∞ . Identity (1.3) follows from in-
serting the Bailey pair (2.6)–(2.8) into (2.9) and then multiplying through
by (q2; q2)−1∞ . This proves Theorem 1.1.

To get Theorem 1.2, we subtract (1.3) from (1.2), and note that spt(n) =
1
2(M2(n)−N2(n)), after observing that (see [G])

2
∑
n≥1

np(n)qn =
∑
n≥1

M2(n)qn =
2

(q)∞

∑
n≥1

nqn

1− qn
.

The result follows from equating the coefficients of q2n.

3. More notes and concluding remarks. Naturally, it is of interest
to investigate equations (1.2) and (1.3) individually. As we noted previously,
the left side of (1.2) generates spt+o (n), and the left side of (1.3) generates
spt−o (n).

Theorem 3.1. We have spt+o (2n) ≡ spt(n) (mod 2).

Proof. After noting that σ(2n) = 3σ(n)−2σ(n/2), σ(2n)≡ σ(n) (mod 2),
and ∑

n≥1
spt+o (n)qn =

1

(q2; q2)∞

∑
n≥1

σ(n)qn − 1

2

∑
n≥1

N2(n)q2n,
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we can take coefficients of q2n in (1.3) to get

spt+o (2n) =
∑
k

p(k)σ(2(n− k))− 1
2N2(n).

Hence, combining these, we compute

spt+o (2n) ≡
∑
k

p(k)σ(n− k)− 1
2N2(n) (mod 2)

≡ np(n)− 1
2N2(n) (mod 2) ≡ spt(n) (mod 2).

Theorem 3.2. We have spt−o (2n) ≡ 0 (mod 2).

Proof. The computations are similar to Theorem 3.1. Using equation
(1.3) we compute

spt−o (2n) ≡
∑
k

p(k)σ(n− k)− 1
2M2(n) (mod 2)

≡ np(n)− 1
2M2(n) (mod 2) ≡ 0 (mod 2).

In the last line we have used 2np(n) = M2(n).

For an example illustrating Theorem 3.1, consider partitions of 4: (4),
(3, 1), (2, 2), (1, 1, 1, 1). In a partition where odd parts greater than twice
the smallest do not occur, we omit (3, 1). Hence spt+o (4) = 7, and spt(2) = 3
(counting smallest of (2) and (1, 1)). Hence 2 divides 7− 3 = 4.

To illustrate Theorem 3.2, consider the partition pair σ = (π∗, δs(π∗))
of 6 where (3, 2) ∈ π∗, (1) ∈ δs(π∗), and (3) ∈ π∗, (2, 1) ∈ δs(π∗). Hence
spt−o (6) is equal to 2 plus the appearances of the smallest parts in π∗

of those partition pairs σ = (π∗, δs(π∗)) which have the empty partition
∅ ∈ δi, that is, (3, 1, 1, 1) ∈ π∗, ∅ ∈ δs(π∗); (4, 1, 1) ∈ π∗, ∅ ∈ δs(π∗);
(2, 1, 1, 1, 1) ∈ π∗, ∅ ∈ δs(π∗); (1, 1, 1, 1, 1, 1) ∈ π∗, ∅ ∈ δs(π∗); and finally
(3, 2, 1) ∈ π∗, ∅ ∈ δs(π∗). This gives us spt−o (6) = 18 = 0 (mod 2).

Equating the coefficients of q2n+1 in Theorem 1.1 gives us a nice corollary.

Theorem 3.3. We have spt−o (2n+ 1) = spt+o (2n+ 1).

Let tk(n) be the number of representations of n as a sum of k triangular
numbers. We may use a classical result of Legendre that σ(2n+ 1) = t4(n)
to see that spt−o (2n + 1) (and therefore also spt+o (2n + 1)) is generated by
the product expansion

q
(q4; q4)3∞
(q2; q4)5∞

.

To see examples for Theorem 3.3, consider first n = 1. Then spt−o (3) =
spt+o (3) = 5. This is because (2, 1) ∈ π∗, ∅ ∈ δs(π∗); (1, 1, 1) ∈ π∗, ∅ ∈ δs(π∗);

and (2) ∈ π∗, (1) ∈ δs(π∗), for spt−o (3). The case of spt+o (3) is clearer.
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Another example is spt−o (5) = spt+o (5) = 12. We only compute spt−o (5)
for the reader: (2, 2) ∈ π∗, (1) ∈ δs(π∗); (2, 2, 1) ∈ π∗, ∅ ∈ δs(π∗); (4, 1) ∈ π∗,
∅ ∈ δs(π∗); (1, 1, 1, 1, 1) ∈ π∗, ∅ ∈ δs(π∗); and finally (2, 1, 1, 1) ∈ π∗, ∅ ∈ δs(π∗).

It is interesting to note that since spt(n) is even for almost all natural n
(see [FO]), the value spt+o (2n) is even for almost all natural n in terms of
arithmetic density.

We can also easily obtain congruences for spto(n) using the Ramanujan-
type congruences in [A2]:

spto(2(5n+ 4)) ≡ 0 (mod 5),

spto(2(7n+ 5)) ≡ 0 (mod 7),

spto(2(13n+ 6)) ≡ 0 (mod 13).

It is important to make the observation that the two Bailey pairs (2.3)–(2.5)
and (2.6)–(2.8) are key in obtaining the “rank component” (1.2) and the
“crank component” (1.3), respectively.
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