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to Andrews’ spt function
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1. Introduction and main results. In [A2], we find the identity of
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Here p(n) is the number of partitions of n, and the last series on the right
generates Nao(n) = >, ., m*N(m,n), N(m,n) being the number of par-
titions of n with rank m (see [Al]). The largest part minus the number
of parts is defined to be the rank. The function spt(n) counts the num-
ber of smallest parts among integer partitions of n. For some other func-
tions counting smallest parts among partitions see [P1]. Lastly, we have
used the familiar notation (a), = (a;¢), = (1 —a)(1 —aq)--- (1 — ag" 1)
(see |GR]).

In this note we find a spt-type function that is related to the generating
function in (1.1) and falls into the same class of spt-type functions as the
one offered in [P2]. However, this note differs from [P2] in that we will find
the “crank companion” to create a “full” sptfunction related to Andrews’
spt function. Here we are also appealing to relations to spt(n) modulo 2,
whereas in [P2] we concentrated on relations to spt(n) modulo 3. Lastly,
the partitions involved in this study are different, and deserve a separate
study.

Let Ma(n) =",z m*M(m,n), where M (m,n) is the number of parti-
tions of n with crank m (see [AG]).
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THEOREM 1.1. We have
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For our next theorem, which is a number-theoretic interpretation of The-
orem 1.1, we will use the following definitions. We define a triangular par-
tition to be of the form §; = (I — 1,1 —2,...,1), I € N. Define the smallest
part of a partition 7 to be s(7), and the largest part to be [(7). We will also
consider the partition pair o = (7, J;), where we set i = s(m). The latter
condition yields s(m) —I(0;—y(r)) = s(m) — (s(7) — 1) = 1. If we include §; in
a partition, we are increasing its size by (;) and including the component
¢!+ =1 in its generating function. This has the property that all parts
from 1 to ¢ — 1 appear exactly once and are less than 1.

THEOREM 1.2. Let spt}(n) count the number of smallest parts among
the integer partitions ™ of n where odd parts greater than 2s(m) do not
occur. Let spt; (n) count the number of smallest parts among the integer
partitions o = (ﬂ,és(,r)) of n such that 7™ is a partition where odd parts
greater than 2s(m) do not occur. Define spt,(n) := spt}(n) —spt; (n). Then
spt,(2n) = spt(n).

With the above definitions, we can write the generating function. We
have

D spto(n)gt =) (q" +2¢°" +3¢°" + - )%
n>1 n>1 (@™o
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2. Proof of Theorems 1.1 and 1.2. The proofs require the methods
used in [Bl |Gl [P2] and a few more observations. A pair of sequences (c,, )
is known to be a Bailey pair with respect to a if

n

(21) Bn = Z ( : -

“ (0 Qntr (@ D

The next result is Bailey’s lemma [B].

BAILEY’S LEMMA. If (ap,(n) form a Bailey pair with respect to a then

oo
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The following are known Bailey pairs (o, 5,,) relative to a = 1:

(2.3) Aop41 = 0,
(24) Qo = (_1)nqn(3n—1)(1 + q2n)’
1

(25) = Dnla

(see [S, C(1)]), and

(2.6) Aop41 = 0,

(2.7) az = (=1)"q"" V(1 + ™),
qn(n—l)/Q

(Dn(q;6*)n

(see [S, C(5)]). In both pairs oy = 1. Differentiating Bailey’s lemma (putting
a = 1) with respect to both variables p; and py and setting each variable
equal to 1 each time gives us (see [P2])

n nq" anq"
(2.9) D (@ 18" =0 ) —q > 1— g2

n>1 n>1 n>1

Identity (1.2) follows from inserting the Bailey pair (2.3)-(2.5) into (2.9)
and then multiplying through by (¢?;¢?)3!. Identity (1.3) follows from in-
serting the Bailey pair (2.6)—(2.8) into (2.9) and then multiplying through

by (¢%;¢%)%}. This proves Theorem 1.1.

o0

To get Theorem 1.2, we subtract (1.3) from (1.2), and note that spt(n) =
2(Ms(n) — Na(n)), after observing that (see [G])

S e = Y e = 2o Y

n>1 n>1 (@)oo n>1

The result follows from equating the coefficients of ¢*".

3. More notes and concluding remarks. Naturally, it is of interest
to investigate equations (1.2) and (1.3) individually. As we noted previously,
the left side of (1.2) generates spt] (n), and the left side of (1.3) generates

spt, (n).
THEOREM 3.1. We have spt] (2n) = spt(n) (mod 2).
Proof. After noting that o(2n) =30 (n)—20(n/2), c(2n) =o(n) (mod 2),
and
S SptE (" = g S o) — 5 3 Na(m)g,

2. 42
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we can take coefficients of ¢?" in (1.3) to get
spt}(2n) Zp —k)) — $Na(n).

Hence, combining these, we compute
spt1(2n) Zp — 2N3(n) (mod 2)

= np(n) — 2N(n) (mod 2) = spt(n) (mod 2). =
THEOREM 3.2. We have spt; (2n) =0 (mod 2).

Proof. The computations are similar to Theorem 3.1. Using equation
(1.3) we compute

spt, (2n) = Zp(k)o(n — k) — $M>(n) (mod 2)

= np(n) — $Ma(n) (mod 2) = 0 (mod 2).
In the last line we have used 2np(n) = Ma(n). =

For an example illustrating Theorem 3.1, consider partitions of 4: (4),
(3,1), (2,2), (1,1,1,1). In a partition where odd parts greater than twice
the smallest do not occur, we omit (3, 1). Hence spt} (4) = 7, and spt(2) = 3
(counting smallest of (2) and (1,1)). Hence 2 divides 7 — 3 = 4.

To illustrate Theorem 3.2, consider the partition pair o = (7%, 0(r+))
of 6 where (3,2) € 7", (1) € d4(r+), and (3) € 7%, (2,1) € J4(r+). Hence
spt, (6) is equal to 2 plus the appearances of the smallest parts in 7*
of those partition pairs o = (7*,J4r+)) wWhich have the empty partition
0 € &, that is, (3,1,1,1) € 7%, 0 € byrey; (4,1,1) € 7, 0 € dynn);
(2,1,1,1, 1) T, 0 € Og(rey; (1,1,1,1,1,1) € 7%, @) € dg(r+); and finally
(3,2,1) € 7, 0 € d4(z+). This gives us spt, (6) = 18 = 0 (mod 2).

2n+1 3

Equating the coefficients of ¢ in Theorem 1.1 gives us a nice corollary.

THEOREM 3.3. We have spt; (2n + 1) = spt} (2n + 1).

Let t;(n) be the number of representations of n as a sum of k triangular
numbers. We may use a classical result of Legendre that o(2n + 1) = t4(n)
to see that spt; (2n + 1) (and therefore also spt} (2n + 1)) is generated by
the product expansion

UL ES
(4% )%

To see examples for Theorem 3.3, consider first n = 1. Then spt; (3) =
spty (3) = 5. This is because (2,1) € 7, 0 € d5(r+); (1,1,1) € 7, B € d5(rv);
and (2) € 7, (1) € 04z, for spt, (3). The case of spt}(3) is clearer
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Another example is spt; (5) = spt!(5) = 12. We only compute spt; (5)
for the reader: (2,2) € 7%, (1) € d5(z-y; (2,2,1) € 7%, 0 € dy(rny; (4,1) € 7%,
D€ 0girey; (1,1,1,1,1) €%, 0 € Gg(r+y; and finally (2,1,1,1) € 7%, 0 € dg(7v)-

It is interesting to note that since spt(n) is even for almost all natural n
(see [FQ]), the value spt}(2n) is even for almost all natural n in terms of
arithmetic density.

We can also easily obtain congruences for spt,(n) using the Ramanujan-
type congruences in [A2]:

spt,(2(5n +4)) = 0 (mod 5),
spt,(2(7n +5)) = 0 (mod 7),
spt,(2(13n 4+ 6)) = 0 (mod 13).

It is important to make the observation that the two Bailey pairs (2.3)-(2.5)
and (2.6)—(2.8) are key in obtaining the “rank component” (1.2) and the
“crank component” (1.3), respectively.
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