Another smallest part function related to Andrews' spt function

by
Alexander E. Patkowski (Centerville, MA)

1. Introduction and main results. In [A2], we find the identity of Andrews

$$
\begin{align*}
& \sum_{n \geq 1} \frac{q^{n}}{\left(1-q^{n}\right)\left(q^{n}\right)_{\infty}} \tag{1.1}\\
& \quad=\sum_{n \geq 1} n p(n) q^{n}+\frac{1}{(q)_{\infty}} \sum_{n \geq 1} \frac{(-1)^{n} q^{n(3 n+1) / 2}\left(1+q^{n}\right)}{\left(1-q^{n}\right)^{2}}
\end{align*}
$$

Here $p(n)$ is the number of partitions of n, and the last series on the right generates $N_{2}(n)=\sum_{m \in \mathbb{Z}} m^{2} N(m, n), N(m, n)$ being the number of partitions of n with rank m (see A1]). The largest part minus the number of parts is defined to be the rank. The function $\operatorname{spt}(n)$ counts the number of smallest parts among integer partitions of n. For some other functions counting smallest parts among partitions see [P1]. Lastly, we have used the familiar notation $(a)_{n}=(a ; q)_{n}=(1-a)(1-a q) \cdots\left(1-a q^{n-1}\right)$ (see [GR]).

In this note we find a spt-type function that is related to the generating function in (1.1) and falls into the same class of spt-type functions as the one offered in [P2]. However, this note differs from [P2] in that we will find the "crank companion" to create a "full" sptfunction related to Andrews' spt function. Here we are also appealing to relations to $\operatorname{spt}(n) \operatorname{modulo} 2$, whereas in [P2] we concentrated on relations to $\operatorname{spt}(n)$ modulo 3. Lastly, the partitions involved in this study are different, and deserve a separate study.

Let $M_{2}(n)=\sum_{m \in \mathbb{Z}} m^{2} M(m, n)$, where $M(m, n)$ is the number of partitions of n with crank m (see [AG]).

[^0]Theorem 1.1. We have

$$
\begin{align*}
\sum_{n \geq 1} \frac{q^{n}\left(q^{2 n+1} ; q^{2}\right)_{\infty}}{\left(1-q^{n}\right)^{2}\left(q^{n+1}\right)_{\infty}} & =\frac{1}{\left(q^{2} ; q^{2}\right)_{\infty}} \sum_{n \geq 1} \frac{n q^{n}}{1-q^{n}}-\frac{1}{2} \sum_{n \geq 1} N_{2}(n) q^{2 n} \tag{1.2}\\
\sum_{n \geq 1} \frac{q^{n(n+1) / 2}\left(q^{2 n+1} ; q^{2}\right)_{\infty}}{\left(1-q^{n}\right)^{2}\left(q^{n+1}\right)_{\infty}} & =\frac{1}{\left(q^{2} ; q^{2}\right)_{\infty}} \sum_{n \geq 1} \frac{n q^{n}}{1-q^{n}}-\frac{1}{2} \sum_{n \geq 1} M_{2}(n) q^{2 n} \tag{1.3}
\end{align*}
$$

For our next theorem, which is a number-theoretic interpretation of Theorem 1.1, we will use the following definitions. We define a triangular partition to be of the form $\delta_{l}=(l-1, l-2, \ldots, 1), l \in \mathbb{N}$. Define the smallest part of a partition π to be $s(\pi)$, and the largest part to be $l(\pi)$. We will also consider the partition pair $\sigma=\left(\pi, \delta_{i}\right)$, where we set $i=s(\pi)$. The latter condition yields $s(\pi)-l\left(\delta_{i=s(\pi)}\right)=s(\pi)-(s(\pi)-1)=1$. If we include δ_{i} in a partition, we are increasing its size by $\binom{i}{2}$ and including the component $q^{1+\cdots+i-1}$ in its generating function. This has the property that all parts from 1 to $i-1$ appear exactly once and are less than i.

THEOREM 1.2. Let $\operatorname{spt}_{o}^{+}(n)$ count the number of smallest parts among the integer partitions π of n where odd parts greater than $2 s(\pi)$ do not occur. Let $\operatorname{spt}_{o}^{-}(n)$ count the number of smallest parts among the integer partitions $\sigma=\left(\pi, \delta_{s(\pi)}\right)$ of n such that π is a partition where odd parts greater than $2 s(\pi)$ do not occur. Define $\operatorname{spt}_{o}(n):=\operatorname{spt}_{o}^{+}(n)-\operatorname{spt}_{o}^{-}(n)$. Then $\operatorname{spt}_{o}(2 n)=\operatorname{spt}(n)$.

With the above definitions, we can write the generating function. We have

$$
\sum_{n \geq 1} \operatorname{spt}_{o}(n) q^{n}=\sum_{n \geq 1}\left(q^{n}+2 q^{2 n}+3 q^{3 n}+\cdots\right) \frac{\left(q^{2 n+1} ; q^{2}\right)_{\infty}}{\left(q^{n+1}\right)_{\infty}}\left(1-q^{1+2+\cdots n-1}\right)
$$

2. Proof of Theorems 1.1 and 1.2. The proofs require the methods used in $\left[\mathrm{B}, \mathrm{G}, \overline{\mathrm{P} 2]}\right.$ and a few more observations. A pair of sequences $\left(\alpha_{n}, \beta_{n}\right)$ is known to be a Bailey pair with respect to a if

$$
\begin{equation*}
\beta_{n}=\sum_{r=0}^{n} \frac{\alpha_{r}}{(a q ; q)_{n+r}(q ; q)_{n-r}} \tag{2.1}
\end{equation*}
$$

The next result is Bailey's lemma [B].
Bailey's lemma. If $\left(\alpha_{n}, \beta_{n}\right)$ form a Bailey pair with respect to a then

$$
\begin{align*}
\sum_{n=0}^{\infty}\left(\rho_{1}\right)_{n}\left(\rho_{2}\right)_{n} & \left(a q / \rho_{1} \rho_{2}\right)^{n} \beta_{n} \tag{2.2}\\
& =\frac{\left(a q / \rho_{1}\right)_{\infty}\left(a q / \rho_{2}\right)_{\infty}}{(a q)_{\infty}\left(a q / \rho_{1} \rho_{2}\right)_{\infty}} \sum_{n=0}^{\infty} \frac{\left(\rho_{1}\right)_{n}\left(\rho_{2}\right)_{n}\left(a q / \rho_{1} \rho_{2}\right)^{n} \alpha_{n}}{\left(a q / \rho_{1}\right)_{n}\left(a q / \rho_{2}\right)_{n}}
\end{align*}
$$

The following are known Bailey pairs $\left(\alpha_{n}, \beta_{n}\right)$ relative to $a=1$:

$$
\begin{align*}
\alpha_{2 n+1} & =0 \tag{2.3}\\
\alpha_{2 n} & =(-1)^{n} q^{n(3 n-1)}\left(1+q^{2 n}\right) \tag{2.4}\\
\beta_{n} & =\frac{1}{(q)_{n}\left(q ; q^{2}\right)_{n}} \tag{2.5}
\end{align*}
$$

(see [S, C(1)]), and

$$
\begin{align*}
\alpha_{2 n+1} & =0 \tag{2.6}\\
\alpha_{2 n} & =(-1)^{n} q^{n(n-1)}\left(1+q^{2 n}\right), \tag{2.7}\\
\beta_{n} & =\frac{q^{n(n-1) / 2}}{(q)_{n}\left(q ; q^{2}\right)_{n}} \tag{2.8}
\end{align*}
$$

(see $[\mathrm{S}, \mathrm{C}(5)]$). In both pairs $\alpha_{0}=1$. Differentiating Bailey's lemma (putting $a=1$) with respect to both variables ρ_{1} and ρ_{2} and setting each variable equal to 1 each time gives us (see [P2])

$$
\begin{equation*}
\sum_{n \geq 1}(q)_{n-1}^{2} \beta_{n} q^{n}=\alpha_{0} \sum_{n \geq 1} \frac{n q^{n}}{1-q^{n}}+\sum_{n \geq 1} \frac{\alpha_{n} q^{n}}{\left(1-q^{n}\right)^{2}} \tag{2.9}
\end{equation*}
$$

Identity (1.2) follows from inserting the Bailey pair (2.3)-(2.5) into (2.9) and then multiplying through by $\left(q^{2} ; q^{2}\right)_{\infty}^{-1}$. Identity (1.3) follows from inserting the Bailey pair (2.6)-(2.8) into (2.9) and then multiplying through by $\left(q^{2} ; q^{2}\right)_{\infty}^{-1}$. This proves Theorem 1.1.

To get Theorem 1.2, we subtract (1.3) from (1.2), and note that $\operatorname{spt}(n)=$ $\frac{1}{2}\left(M_{2}(n)-N_{2}(n)\right)$, after observing that (see [G])

$$
2 \sum_{n \geq 1} n p(n) q^{n}=\sum_{n \geq 1} M_{2}(n) q^{n}=\frac{2}{(q)_{\infty}} \sum_{n \geq 1} \frac{n q^{n}}{1-q^{n}}
$$

The result follows from equating the coefficients of $q^{2 n}$.
3. More notes and concluding remarks. Naturally, it is of interest to investigate equations (1.2) and (1.3) individually. As we noted previously, the left side of (1.2) generates $\operatorname{spt}_{o}^{+}(n)$, and the left side of (1.3) generates $\operatorname{spt}_{o}^{-}(n)$.

Theorem 3.1. We have $\operatorname{spt}_{o}^{+}(2 n) \equiv \operatorname{spt}(n)(\bmod 2)$.
Proof. After noting that $\sigma(2 n)=3 \sigma(n)-2 \sigma(n / 2), \sigma(2 n) \equiv \sigma(n)(\bmod 2)$, and

$$
\sum_{n \geq 1} \operatorname{spt}_{o}^{+}(n) q^{n}=\frac{1}{\left(q^{2} ; q^{2}\right)_{\infty}} \sum_{n \geq 1} \sigma(n) q^{n}-\frac{1}{2} \sum_{n \geq 1} N_{2}(n) q^{2 n}
$$

we can take coefficients of $q^{2 n}$ in (1.3) to get

$$
\operatorname{spt}_{o}^{+}(2 n)=\sum_{k} p(k) \sigma(2(n-k))-\frac{1}{2} N_{2}(n)
$$

Hence, combining these, we compute

$$
\begin{aligned}
\operatorname{spt}_{o}^{+}(2 n) & \equiv \sum_{k} p(k) \sigma(n-k)-\frac{1}{2} N_{2}(n)(\bmod 2) \\
& \equiv n p(n)-\frac{1}{2} N_{2}(n)(\bmod 2) \equiv \operatorname{spt}(n)(\bmod 2)
\end{aligned}
$$

THEOREM 3.2. We have $\operatorname{spt}_{o}^{-}(2 n) \equiv 0(\bmod 2)$.
Proof. The computations are similar to Theorem 3.1. Using equation (1.3) we compute

$$
\begin{aligned}
\operatorname{spt}_{o}^{-}(2 n) & \equiv \sum_{k} p(k) \sigma(n-k)-\frac{1}{2} M_{2}(n)(\bmod 2) \\
& \equiv n p(n)-\frac{1}{2} M_{2}(n)(\bmod 2) \equiv 0(\bmod 2)
\end{aligned}
$$

In the last line we have used $2 n p(n)=M_{2}(n)$.
For an example illustrating Theorem 3.1, consider partitions of 4: (4), $(3,1),(2,2),(1,1,1,1)$. In a partition where odd parts greater than twice the smallest do not occur, we omit $(3,1)$. Hence $\operatorname{spt}_{o}^{+}(4)=7$, and $\operatorname{spt}(2)=3$ (counting smallest of (2) and $(1,1)$). Hence 2 divides $7-3=4$.

To illustrate Theorem 3.2, consider the partition pair $\sigma=\left(\pi^{*}, \delta_{s\left(\pi^{*}\right)}\right)$ of 6 where $(3,2) \in \pi^{*},(1) \in \delta_{s\left(\pi^{*}\right)}$, and $(3) \in \pi^{*},(2,1) \in \delta_{s\left(\pi^{*}\right)}$. Hence $\operatorname{spt}_{o}^{-}(6)$ is equal to 2 plus the appearances of the smallest parts in π^{*} of those partition pairs $\sigma=\left(\pi^{*}, \delta_{s\left(\pi^{*}\right)}\right)$ which have the empty partition $\emptyset \in \delta_{i}$, that is, $(3,1,1,1) \in \pi^{*}, \emptyset \in \delta_{s\left(\pi^{*}\right)} ;(4,1,1) \in \pi^{*}, \emptyset \in \delta_{s\left(\pi^{*}\right)}$; $(2,1,1,1,1) \in \pi^{*}, \emptyset \in \delta_{s\left(\pi^{*}\right)} ;(1,1,1,1,1,1) \in \pi^{*}, \emptyset \in \delta_{s\left(\pi^{*}\right)}$; and finally $(3,2,1) \in \pi^{*}, \emptyset \in \delta_{s\left(\pi^{*}\right)}$. This gives us $\operatorname{spt}_{o}^{-}(6)=18=0(\bmod 2)$.

Equating the coefficients of $q^{2 n+1}$ in Theorem 1.1 gives us a nice corollary.
Theorem 3.3. We have $\operatorname{spt}_{o}^{-}(2 n+1)=\operatorname{spt}_{o}^{+}(2 n+1)$.
Let $t_{k}(n)$ be the number of representations of n as a sum of k triangular numbers. We may use a classical result of Legendre that $\sigma(2 n+1)=t_{4}(n)$ to see that $\operatorname{spt}_{o}^{-}(2 n+1)$ (and therefore also $\left.\operatorname{spt}_{o}^{+}(2 n+1)\right)$ is generated by the product expansion

$$
q \frac{\left(q^{4} ; q^{4}\right)_{\infty}^{3}}{\left(q^{2} ; q^{4}\right)_{\infty}^{5}}
$$

To see examples for Theorem 3.3, consider first $n=1$. Then $\operatorname{spt}_{o}^{-}(3)=$ $\operatorname{spt}_{o}^{+}(3)=5$. This is because $(2,1) \in \pi^{*}, \emptyset \in \delta_{s\left(\pi^{*}\right)} ;(1,1,1) \in \pi^{*}, \emptyset \in \delta_{s\left(\pi^{*}\right)}$; and $(2) \in \pi^{*},(1) \in \delta_{s\left(\pi^{*}\right)}$, for $\operatorname{spt}_{o}^{-}(3)$. The case of $\operatorname{spt}_{o}^{+}(3)$ is clearer.

Another example is $\operatorname{spt}_{o}^{-}(5)=\operatorname{spt}_{o}^{+}(5)=12$. We only compute $\operatorname{spt}_{o}^{-}(5)$ for the reader: $(2,2) \in \pi^{*},(1) \in \delta_{s\left(\pi^{*}\right)} ;(2,2,1) \in \pi^{*}, \emptyset \in \delta_{s\left(\pi^{*}\right)} ;(4,1) \in \pi^{*}$, $\emptyset \in \delta_{s\left(\pi^{*}\right)} ;(1,1,1,1,1) \in \pi^{*}, \emptyset \in \delta_{s\left(\pi^{*}\right)} ;$ and finally $(2,1,1,1) \in \pi^{*}, \emptyset \in \delta_{s\left(\pi^{*}\right)}$.

It is interesting to note that since $\operatorname{spt}(n)$ is even for almost all natural n (see [FO]), the value $\operatorname{spt}_{o}^{+}(2 n)$ is even for almost all natural n in terms of arithmetic density.

We can also easily obtain congruences for $\operatorname{spt}_{o}(n)$ using the Ramanujantype congruences in A2]:

$$
\begin{aligned}
\operatorname{spt}_{o}(2(5 n+4)) & \equiv 0(\bmod 5) \\
\operatorname{spt}_{o}(2(7 n+5)) & \equiv 0(\bmod 7) \\
\operatorname{spt}_{o}(2(13 n+6)) & \equiv 0(\bmod 13)
\end{aligned}
$$

It is important to make the observation that the two Bailey pairs (2.3)-(2.5) and (2.6)-(2.8) are key in obtaining the "rank component" (1.2) and the "crank component" (1.3), respectively.

References

[A1] G. E. Andrews, The Theory of Partitions, Encyclopedia Math. Appl. 2, AddisonWesley, Reading, MA, 1976.
[A2] G. E. Andrews, The number of smallest parts in the partitions of n, J. Reine Angew. Math. 624 (2008), 133-142.
[AG] G. E. Andrews and F. Garvan, Dyson's crank of a partition, Bull. Amer. Math. Soc. (N.S.) 18 (1988), 167-171.
[B] W. N. Bailey, Identities of the Rogers-Ramanujan type, Proc. London Math. Soc. (2) 50 (1949), 1-10.
[FO] A. Folsom and K. Ono, The spt-function of Andrews, Proc. Nat. Acad. Sci. USA 105 (2008), 20152-20156.
[G] F. Garvan, Higher order spt-functions, Adv. Math. 228 (2011), 241-265.
[GR] G. Gasper and M. Rahman, Basic Hypergeometric Series, Encyclopedia Math. Appl. 35, Cambridge Univ. Press, Cambridge, 1990.
[P1] A. E. Patkowski, Divisors, partitions and some new q-series identities, Colloq. Math. 117 (2009), 289-294.
[P2] A. E. Patkowski, A strange partition theorem related to the second Atkin-Garvan moment, preprint.
[S] L. J. Slater, A new proof of Rogers' transformations of infinite series, Proc. London Math. Soc. (2) 53 (1951), 460-475.

Alexander E. Patkowski
1390 Bumps River Rd.
Centerville, MA 02632, U.S.A.
E-mail: alexpatk@hotmail.com

[^0]: 2010 Mathematics Subject Classification: Primary 11P81; Secondary 11P83.
 Key words and phrases: partitions, q-series, smallest parts function.

