The range of the sum-of-proper-divisors function

by
Florian Luca (Johannesburg)
and Carl Pomerance (Hanover, NH)

1. Introduction. For a positive integer n, let $s(n)=\sigma(n)-n$, the sum of the proper divisors of n. The function s has been studied since antiquity; it may be the first function ever defined by mathematicians. Beginning with Pythagoras, we have looked for cycles in the dynamical system formed when iterating s. There are still a number of unsolved problems connected with this dynamical system: Are there infinitely many cycles? Examples of cycles are $6 \rightarrow 6$ and $220 \rightarrow 284 \rightarrow 220$; about 12 million are known. Does the set of numbers involved in some cycle have asymptotic density 0? We know the upper density is bounded above by about 0.002. Is there an unbounded orbit? The least starting value in question is $n=276$. (For references on these questions, see [KPP].)

Perhaps a more basic question about the function s is to identify its image: What numbers are of the form $s(n)$? Note that if p, q are different primes then $s(p q)=p+q+1$. Not many even numbers are of this form, but a slightly stronger version of Goldbach's conjecture (every even number starting with 8 is the sum of two different primes) implies that every odd number starting with 9 is in the range of s. Since $s(2)=1, s(4)=3$, and $s(8)=7$, while $s(n)=5$ has no solutions, it then follows from this slightly stronger Goldbach conjecture that every odd number except 5 is in the range of s. Moreover, this slightly stronger form of Goldbach's conjecture is known to be usually true. There are many papers in this line; a recent survey is P .

So, almost all odd numbers (in the sense of asymptotic density) are of the form $s(n)$. In a short, beautiful paper, Erdős [E73] looked at the even values of s, showing that a positive proportion of even numbers are missed. He raised the issue of whether the asymptotic density of even values exists, saying that it is not even known if the lower density is positive. Similar questions are asked for the function $s_{\varphi}(n):=n-\varphi(n)$, where φ is Euler's

[^0]function. Again, almost all odd numbers are attained by s_{φ}, but even less is known about even values, compared with $s(n)$. In fact, the Erdős argument (that s misses a positive proportion of even values) fails for s_{φ}.

These thoughts were put in a more general context in [EGPS]. There the following conjecture is formulated.

Conjecture 1.1. If \mathcal{A} is a set of natural numbers of asymptotic density 0 , then $s^{-1}(\mathcal{A})$ also has asymptotic density 0 .

If this is true, one consequence would be that the set of even values of s does not have density 0 . Indeed, if \mathcal{A} is the set of even numbers in the range of s, then

$$
s^{-1}(\mathcal{A})=\{n \text { even }: n, n / 2 \text { not squares }\} \cup\left\{n^{2}: n \text { odd }\right\},
$$

so $s^{-1}(\mathcal{A})$ has asymptotic density $1 / 2$. Thus, if Conjecture 1.1 is true, then \mathcal{A} does not have asymptotic density 0 .

In this paper we prove the following theorem.
Theorem 1.2. The set of even numbers of the form $s(n)$ for some integer n has positive lower density.

With a few superficial changes the proof of Theorem 1.2 can be adapted to show the following more general result: For any two fixed positive integers a, b, a positive proportion of numbers in the residue class $a(\bmod b)$ are of the form $s(n)$. Since asymptotically all odd numbers are of the form $s(n)$, this result has new content only in the case that a, b are both even.

Essentially the same proof will show that numbers of the form $s_{\varphi}(n)$ contain a positive proportion of all even numbers (or any residue class).

It is hoped that the methods in this paper can be of help in proving Conjecture 1.1.

It seems likely that the asymptotic density of even numbers in the range of s exists. In some numerical work in $[\mathrm{PY}]$ it appears that the even numbers in the range have density about $1 / 3$ and the density of even numbers missing is about $1 / 6$. In [CZ] it is shown that the lower density of the set of even numbers missing from the range is more than 0.06. The proof of Theorem 1.2 that we present is effective, but we have made no effort towards finding some explicit lower bound for the lower density of even values of s.
2. Notation and lemmas. The letters p, q, r, π, with or without dashes or subscripts, will represent prime numbers. We let $\tau(n)$ denote the number of positive divisors of n. We say a positive integer n is deficient if $s(n)<n$. We let $P(n)$ denote the largest prime factor of n when $n>1$, and we set $P(1)=1$. We say a positive integer n is z-smooth if $P(n) \leq z$. For each prime p and natural number n, we let $v_{p}(n)$ denote the exponent of p in the
prime factorization of n. For each large number n, let

$$
y=y(n)=\log \log n / \log \log \log n
$$

Lemma 2.1. On a set of asymptotic density 1 we have:
(1) $p^{2 a} \mid \sigma(n)$ for every prime power $p^{a} \leq y$,
(2) $P(\operatorname{gcd}(n, \sigma(n))) \leq y$,
(3) $\sigma(n) / \operatorname{gcd}(n, \sigma(n))$ is divisible by every prime $p \leq y$,
(4) every prime factor of $s(n) / \operatorname{gcd}(n, \sigma(n))$ exceeds y.

Proof. (1) Let x be large, let $y=y(x)$, and let d be an integer with $1<d \leq y$. The integers $n \leq x$ with $d^{2} \mid \sigma(n)$ include all $n \leq x$ which are precisely divisible (i.e., divisible to just the first power) by two different primes p_{1}, p_{2} in the residue class $-1(\bmod d)$. The complementary set where $d^{2} \nmid \sigma(n)$ is contained in the union of the set of those $n \leq x$ divisible by the square of a prime $p>y$ and the set of those $n \leq x$ which are not divisible by two different primes $p \equiv-1(\bmod d)$ with $p \in(y, \sqrt{x})$. The number of $n \leq x$ divisible by the square of a prime $p>y$ is at most $x \sum_{p>y} 1 / p^{2} \ll x /(y \log y)$, so these numbers are negligible. Let $\mathcal{P}_{d}(y, \sqrt{x})$ denote the set of primes $p \equiv-1(\bmod d)$ with $p \in(y, \sqrt{x})$. Note that the prime number theorem for residue classes implies that

$$
\sum_{p \in \mathcal{P}_{d}(y, \sqrt{x})} \frac{1}{p}=\frac{\log (\log x / \log y)}{\varphi(d)}+O(1)
$$

uniformly for $d \leq y$. The number of $n \leq x$ which are not divisible by two different primes in $\mathcal{P}_{d}(y, \sqrt{x})$ is, by the sieve (see [HR, Theorem 2.2]),

$$
\begin{aligned}
& \ll x\left(1+\sum_{p \in \mathcal{P}_{d}(y, \sqrt{x})} \frac{1}{p}\right) \prod_{p \in \mathcal{P}_{d}(y, \sqrt{x})}\left(1-\frac{1}{p}\right) \\
& \ll \frac{x \log \log x}{\varphi(d)} \exp \left(-\frac{\log (\log x / \log y)}{\varphi(d)}\right) \\
& \leq \frac{x \log \log x}{\varphi(d)} \exp \left(-\frac{\log (\log x / \log y)}{d}\right) \\
& \ll \begin{cases}\frac{x}{\varphi(d)} & \text { if } \frac{1}{2} y<d \leq y \\
\frac{x}{\varphi(d) \log \log x} & \text { if } d \leq \frac{1}{2} y .\end{cases}
\end{aligned}
$$

Letting d run over primes and powers of primes, we see that the number of integers $n \leq x$ which do not have the property in (1) is $\ll x / \log y=o(x)$ as $x \rightarrow \infty$.
(2) In ELP, Theorem 8], it is shown that on a set of asymptotic density $1, \operatorname{gcd}(n, \varphi(n))$ is the largest divisor of n supported on the primes at most $\log \log n$. Virtually the same proof establishes the analogous result for
$\operatorname{gcd}(n, \sigma(n))$, so that for almost all $n, \operatorname{gcd}(n, \varphi(n))=\operatorname{gcd}(n, \sigma(n))$. (Also see [E56, EGPS, KS, Pol].) To see that assertion (2) usually holds, it suffices to note that the number of $n \leq x$ divisible by a prime in $(y, \log \log x]$ is $o(x)$ as $x \rightarrow \infty$.
(3) Let $y=y(x)$, where x is large. Assertion (3) will follow from (1) for $n \leq x$ if for each prime power p^{a} with $p^{a} \leq y<p^{a+1}$ we have $p^{2 a} \nmid n$. But the number of $n \leq x$ which fail to satisfy this condition is at most

$$
x \sum_{p \leq y} \frac{1}{y} \ll \frac{x}{\log y}
$$

(4) For this part, we have seen that we may assume that for each prime $p \leq y$, we have $v_{p}(\sigma(n))>v_{p}(n)$. Thus, $v_{p}(s(n))=v_{p}(n)=v_{p}(\operatorname{gcd}(n, \sigma(n)))$ for such primes p.

LEmma 2.2. The set of numbers n with $P(n)>n^{1 / 2}$ and $\pi^{2} \mid s(n)$ for some prime $\pi>y(n)$ has asymptotic density 0 .

Proof. Assume that $n \in(x, 2 x]$ and that $n=p m$ where $p=P(n)>x^{1 / 2}$. Let $y=y(x)$ and say $\pi^{2} \mid s(n)$ where $\pi>y$. We have

$$
s(n)=p s(m)+\sigma(m) \equiv 0\left(\bmod \pi^{2}\right)
$$

Thus, if $\pi \mid s(m)$, then $\pi \mid \sigma(m)$, so that $\pi \mid m$. By part (2) of Lemma 2.1 this occurs only for $o(x)$ choices for n, so assume that $\pi \nmid s(m)$. The above congruence thus places p in a residue class $R_{\pi, m}\left(\bmod \pi^{2}\right)$ determined by π and m. Since $s(n) \ll x \log \log x$, there is some constant c such that $\pi \leq c(x \log \log x)^{1 / 2}$. First assume that $\pi>\log x$, so that $\pi \in I:=$ $\left(\log x, c(x \log \log x)^{1 / 2}\right]$. Using only the fact that $p \leq 2 x / m$ is an integer in a residue class mod π^{2}, we find that the number of choices for n is at most

$$
\sum_{\pi \in I} \sum_{m<2 x^{1 / 2}}\left(1+\frac{2 x}{m \pi^{2}}\right) \ll \sum_{\pi \in I}\left(x^{1 / 2}+\frac{x \log x}{\pi^{2}}\right) \ll \frac{x}{\log \log x}
$$

So it remains to consider values of $\pi \in(y, \log x]$. For this we use the BrunTitchmarsh inequality to count the number of triples π, m, p, getting

$$
\begin{aligned}
\sum_{y<\pi \leq \log x} \sum_{m<2 x^{1 / 2}} \sum_{\substack{p \leq 2 x / m \\
p \equiv R_{\pi, m}\left(\bmod \pi^{2}\right)}} 1 & \ll \sum_{\pi} \sum_{m} \frac{x}{m \pi^{2} \log \left(x / m \pi^{2}\right)} \\
& \ll \sum_{\pi} \frac{x \log x}{\pi^{2} \log x} \ll \frac{x}{y \log y} .
\end{aligned}
$$

We remark that it would be nice to remove the condition $P(n)>n^{1 / 2}$ in Lemma 2.2, but we do not know how to do this. Note that Lemmas 2.1 and 2.2 imply that a positive proportion of squarefree integers n have $s(n)$ squarefree.

LEMMA 2.3. The set of deficient numbers n for which $s(n)$ is nondeficient has asymptotic density 0.

This result follows from EGPS, Theorem 5.1] and the continuity of the distribution function for $\sigma(n) / n$.

Lemma 2.4. As n tends to infinity through a set of asymptotic density 1 we have $\tau(s(n))=(\log n)^{\log 2+o(1)}$.

This result follows from the estimates in [T]. We remark that our proof does not depend on this lemma; we could have used the weaker inequality $\tau(s(n)) \leq n^{o(1)}$ which holds for all n as $n \rightarrow \infty$, but we thought it good to highlight some other recent research concerning the statistical study of $s(n)$.

Lemma 2.5. On a set of integers n of asymptotic density 1 we have

$$
\sum_{\substack{r \mid \sigma(n) \\(\log \log n)^{2}}} \frac{1}{r} \leq 1
$$

This follows by the method of proof of [DL, Lemma 5].
3. Proof of Theorem $\mathbf{1 . 2}$. We identify a set of integers \mathcal{A} such that every member of $s(\mathcal{A})$ is even and $s(\mathcal{A})$ has positive lower density. We shall pile on a number of conditions for \mathcal{A} to satisfy. For our initial choice for \mathcal{A}, we take the set of even deficient numbers. This set has a positive density (see [K]). Let x be large; we study $\mathcal{A}(x):=\mathcal{A} \cap[1, x]$. We assume that each member n of $\mathcal{A}(x)$ is of the form

$$
\begin{aligned}
& n=p m, \quad p \in\left(\frac{x}{2 m}, \frac{x}{m}\right], \quad m=q \ell=q r k \\
& k \leq x^{1 / 60}, \quad r \in\left(x^{1 / 15}, x^{1 / 12}\right], \quad q \in\left(x^{7 / 20}, x^{11 / 30}\right] .
\end{aligned}
$$

So $n=p m=p q \ell=p q r k$. Note that n, m, ℓ, k are all even deficient numbers, each running through a positive proportion of numbers to their respective bounds: $n \leq x, m \leq x^{7 / 15}, \ell \leq x^{1 / 10}$, and $k \leq x^{1 / 60}$. We assume that each of these four variables has the properties in the lemmas. We also assume that k has no prime factors in $(y(k), y(x)]$.

Let $y=y(x)$. Say $\delta>0$ is such that $\# \mathcal{A}(x) \geq \delta x$ for all large x. For each y-smooth integer d, let $\mathcal{A}_{d}(x)$ denote the subset of $\mathcal{A}(x)$ consisting of those members n with largest y-smooth divisor equal to d. By standard results on smooth numbers (see $[\mathrm{dB}]$), there is some constant c such that the reciprocal sum of those y-smooth numbers $d>y^{c}$ is less than $\frac{1}{3} \delta \log y$. Note that if $d \leq y^{c}$ is y-smooth, then the number of integers $n \leq x$ with
greatest y-smooth divisor equal to d is

$$
\begin{equation*}
(1+o(1)) \frac{x}{d} \prod_{p \leq y}\left(1-\frac{1}{p}\right)=(1+o(1)) \frac{x}{e^{\gamma} d \log y} \tag{3.1}
\end{equation*}
$$

uniformly as $x \rightarrow \infty$. Let \mathcal{D} denote the set of y-smooth numbers $d \leq y^{c}$ with

$$
\# \mathcal{A}_{d}(x) \geq \frac{\delta}{6} \frac{x}{d \log y}
$$

We deduce from (3.1) that for large x,

$$
\begin{equation*}
\sum_{d \in \mathcal{D}} \# \mathcal{A}_{d}(x) \leq \frac{x}{\log y} \sum_{d \in \mathcal{D}} \frac{1}{d}, \tag{3.2}
\end{equation*}
$$

and, by definition,

$$
\sum_{\substack{P(d) \leq y \\ d \leq y^{c} \\ d \notin \mathcal{D}}} \# \mathcal{A}_{d}(x)<\frac{\delta}{6} \frac{x}{\log y} \sum_{P(d) \leq y} \frac{1}{d}=(1+o(1)) \frac{\delta}{6} e^{\gamma} x .
$$

Using $\sum_{d \leq y^{c}, P(d) \leq y} \# \mathcal{A}_{d}(x)>\frac{2}{3} \delta x$, we thus have, for x large,

$$
\sum_{\substack{P(d) \leq y \\ d \leq y c \\ d \notin \mathcal{D}}} \# \mathcal{A}_{d}(x)<\frac{1}{3} \delta x, \quad \sum_{d \in \mathcal{D}} \# \mathcal{A}_{d}(x)>\frac{1}{3} \delta x
$$

which, with the upper bound (3.2) just seen for this last sum, gives

$$
\begin{equation*}
\sum_{d \in \mathcal{D}} \frac{1}{d}>\frac{1}{3} \delta \log y \tag{3.3}
\end{equation*}
$$

For $d \in \mathcal{D}$ and a positive integer u, let $R_{d}(u)$ denote the number of representations of u in the form $s(n)$ for $n \in \mathcal{A}_{d}(x)$. By the definition of \mathcal{D},

$$
\sum_{u} R_{d}(u)=\# \mathcal{A}_{d}(x) \gg \frac{x}{d \log y}
$$

uniformly for all $d \in \mathcal{D}$. Note too that if $d \neq d^{\prime}$, then we cannot have both $R_{d}(u), R_{d^{\prime}}(u)>0$. Indeed, by Lemma 2.1, if $R_{d}(u)>0$, then d is the largest y-smooth divisor of u.

We will show that

$$
\begin{equation*}
\sum_{u} R_{d}(u)^{2} \ll \frac{x}{d \log y} \tag{3.4}
\end{equation*}
$$

uniformly for each $d \in \mathcal{D}$, so that from Cauchy's inequality it will follow using (3.3) that

$$
\# s(\mathcal{A}(x)) \geq \sum_{d \in \mathcal{D}} \# s\left(\mathcal{A}_{d}(x)\right) \geq \sum_{d \in \mathcal{D}} \frac{\left(\sum_{u} R_{d}(u)\right)^{2}}{\sum_{u} R_{d}(u)^{2}} \gg \sum_{d \in \mathcal{D}} \frac{x}{d \log y} \gg x
$$

The sum $\sum_{u} R_{d}(u)^{2}$ counts solutions to $s(n)=s\left(n^{\prime}\right)$ for $n, n^{\prime} \in \mathcal{A}_{d}(x)$, with $n=p m, n^{\prime}=p^{\prime} m^{\prime}$. We have

$$
\begin{equation*}
p s(m)+\sigma(m)=p^{\prime} s\left(m^{\prime}\right)+\sigma\left(m^{\prime}\right) \tag{3.5}
\end{equation*}
$$

Suppose that $m=m^{\prime}$. Since $m>1$ (which implies that $s(m)>0$), we deduce that $p=p^{\prime}$. This situation contributes $\sum_{u} R_{d}(u)$ to $\sum_{u} R_{d}(u)^{2}$, which is easily seen to be $\ll x / d \log y$. Thus, we may assume that $m \neq m^{\prime}$.

By Lemma 2.1. we have $\operatorname{gcd}(m, \sigma(m))=\operatorname{gcd}\left(m^{\prime}, \sigma\left(m^{\prime}\right)\right)=d$, so that $d \mid\left(s(m), s\left(m^{\prime}\right)\right)$. Write $\operatorname{gcd}\left(s(m), s\left(m^{\prime}\right)\right)=d h$. By Lemma 2.1, every prime factor of h exceeds y. Moreover, since $P(m)=q>m^{7 / 9}$, it follows from Lemma 2.2 that we may assume that $s(m)$ is not divisible by the square of any prime $\pi>y$. Hence, h is squarefree.

From (3.5) we have

$$
\begin{equation*}
p \frac{s(m)}{d h}-p^{\prime} \frac{s\left(m^{\prime}\right)}{d h}=\frac{\sigma\left(m^{\prime}\right)-\sigma(m)}{d h} \tag{3.6}
\end{equation*}
$$

For fixed m, m^{\prime}, we count the number of pairs of primes p, p^{\prime} that satisfy this equation. Note that $\sigma(m) \neq \sigma\left(m^{\prime}\right)$, since if they were equal, we would deduce from (3.5) that $p s(m)=p^{\prime} s\left(m^{\prime}\right)$, and since

$$
\overline{\min }\left\{p, p^{\prime}\right\}>\max \left\{m, m^{\prime}\right\}>\max \left\{s(m), s\left(m^{\prime}\right)\right\}
$$

we would get $s(m)=s\left(m^{\prime}\right)$, so $m=m^{\prime}$, which is false. Let u, u^{\prime} be the integral solution of the linear equation (3.6) in p, p^{\prime} with $u>0$ and minimal. Then

$$
p=u+\frac{s\left(m^{\prime}\right)}{d h} t \quad \text { and } \quad p^{\prime}=u^{\prime}+\frac{s(m)}{d h} t
$$

are both primes and $0 \leq t \leq(x / m) /\left(s\left(m^{\prime}\right) / d h\right)=x d h /\left(m s\left(m^{\prime}\right)\right)$. Let

$$
A=\frac{s(m)}{d h} \cdot \frac{s\left(m^{\prime}\right)}{d h} \cdot \frac{\left|\sigma(m)-\sigma\left(m^{\prime}\right)\right|}{d h}=: A_{1} A_{2} A_{3}, \quad \text { say. }
$$

By the sieve [HR, Theorem 2.2], the number of such $p \leq x / m$ is

$$
\begin{equation*}
\ll \frac{x d h}{m s\left(m^{\prime}\right)\left(\log \left(x d h / m s\left(m^{\prime}\right)\right)\right)^{2}} \frac{A}{\varphi(A)} \ll \frac{x d h}{m m^{\prime}(\log x)^{2}} \frac{A_{1}}{\varphi\left(A_{1}\right)} \frac{A_{2}}{\varphi\left(A_{2}\right)} \frac{A_{3}}{\varphi\left(A_{3}\right)}, \tag{3.7}
\end{equation*}
$$

where the second inequality follows because $m s\left(m^{\prime}\right) \leq m m^{\prime} \leq x^{14 / 15}$ and $s\left(m^{\prime}\right) \gg m^{\prime}$.

Since $s(m) /(d h)$ and $s\left(m^{\prime}\right) /(d h)$ are deficient, it follows that

$$
\frac{A_{1}}{\varphi\left(A_{1}\right)} \ll 1, \quad \frac{A_{2}}{\varphi\left(A_{2}\right)} \ll 1
$$

However, $A_{3} / \varphi\left(A_{3}\right)$ is not small. In fact, by Lemma 2.1, we may assume that A_{3} is divisible by all primes $\leq y=y(x)$, so $\log y \ll A_{3} / \varphi\left(A_{3}\right) \ll$ $\log \log x$. Write $A_{3}=A_{3,1} A_{3,2} A_{3,3}$, where $A_{3,1}$ is the largest divisor with $P\left(A_{3,1}\right) \leq(\log \log x)^{2}$ and $A_{3,2}$ is the largest divisor of what remains with
$P\left(A_{3,2}\right) \leq \log x$. Since A_{3} has $O(\log x / \log \log x)$ distinct prime factors, it follows that $A_{3,3} / \varphi\left(A_{3,3}\right) \sim 1$ as $x \rightarrow \infty$ and so

$$
\begin{equation*}
\frac{A_{1} A_{2} A_{3}}{\varphi\left(A_{1}\right) \varphi\left(A_{2}\right) \varphi\left(A_{3}\right)} \ll \frac{A_{3}}{\varphi\left(A_{3}\right)} \ll \frac{A_{3,2}}{\varphi\left(A_{3,2}\right)} \log y . \tag{3.8}
\end{equation*}
$$

Let $A_{3,2}^{\prime}$ be the largest divisor of $A_{3,2}$ which is coprime to $\sigma(m)$. By Lemma 2.5, we may assume that $A_{3,2} / \varphi\left(A_{3,2}\right) \ll A_{3,2}^{\prime} / \varphi\left(A_{3,2}^{\prime}\right)$. From (3.7), we now have the problem of showing that for $d \in \mathcal{D}$,

$$
\begin{equation*}
\frac{x \log y}{(\log x)^{2}} \sum_{m, m^{\prime}} \frac{d h A_{3,2}^{\prime}}{m m^{\prime} \varphi\left(A_{3,2}^{\prime}\right)} \ll \frac{x}{d \log y}, \tag{3.9}
\end{equation*}
$$

where $d h=\operatorname{gcd}\left(s(m), s\left(m^{\prime}\right)\right)$.
3.1. The case $h>x^{1 / 3}$. We first sum over m, m^{\prime} with $h>x^{1 / 3}$, showing that the contribution to (3.9) is small. With $m=q \ell$ and $h \mid s(m)$, we have

$$
\begin{equation*}
s(m)=q s(\ell)+\sigma(\ell) \equiv 0(\bmod h) . \tag{3.10}
\end{equation*}
$$

In addition, h and $\sigma(\ell)$ are coprime. Indeed, if some prime π divides $\operatorname{gcd}(h, \sigma(\ell))$, then $\pi=q$ or $\pi \mid s(\ell)$. In the latter case, $\pi \mid \ell$, so $\pi \mid n$. But $\pi \mid \sigma(\ell)$ implies that $\pi \mid \sigma(n)$, so we have a contradiction to our assumption that the properties in Lemma 2.1 hold. If $\pi=q$, since $\pi \mid \sigma(\ell)$, we again get $\pi \mid \operatorname{gcd}(n, \sigma(n))$, a contradiction. So, given h, ℓ we find from (3.10) that q is in a fixed coprime residue class modulo h; say

$$
q \equiv a_{h, \ell}(\bmod h) .
$$

Similarly, we have $m^{\prime}=q^{\prime} \ell^{\prime}$ and $q^{\prime} \equiv a_{h, \ell^{\prime}}(\bmod h)$.
Since $h \mid \operatorname{gcd}\left(s(m), s\left(m^{\prime}\right)\right.$), formula (3.5) implies that $h \mid \sigma(m)-\sigma\left(m^{\prime}\right)$, so that $m \equiv m^{\prime}(\bmod h)$. With (3.10) we get

$$
\frac{\ell \sigma(\ell)}{s(\ell)} \equiv-q \ell=-m \equiv-m^{\prime}=-q^{\prime} \ell^{\prime} \equiv \frac{\ell^{\prime} \sigma\left(\ell^{\prime}\right)}{s\left(\ell^{\prime}\right)}(\bmod h),
$$

which implies

$$
\begin{equation*}
s\left(\ell^{\prime}\right) \ell \sigma(\ell)-s(\ell) \ell^{\prime} \sigma\left(\ell^{\prime}\right) \equiv 0(\bmod h) . \tag{3.11}
\end{equation*}
$$

The absolute value of the left-hand side is $<2 \max \left\{\ell^{3}, \ell^{\prime 3}\right\}<2 x^{3 / 10}$. Thus, for $h>x^{1 / 3}$, the integer on the left-hand side of the above congruence must be zero. We thus get

$$
\begin{equation*}
\frac{\ell \sigma(\ell)}{s(\ell)}=\frac{\ell^{\prime} \sigma\left(\ell^{\prime}\right)}{s\left(\ell^{\prime}\right)}, \quad \text { or equivalently } \quad \frac{\ell^{2}}{s(\ell)}+\ell=\frac{\ell^{\prime 2}}{s\left(\ell^{\prime}\right)}+\ell^{\prime} \tag{3.12}
\end{equation*}
$$

We have $\operatorname{gcd}(\ell, s(\ell))=\operatorname{gcd}\left(\ell^{\prime}, s\left(\ell^{\prime}\right)\right)=d$. Further, by property (3) in Lemma 2.1, $d \operatorname{rad}(d) \mid \operatorname{gcd}\left(\sigma(\ell), \sigma\left(\ell^{\prime}\right)\right)$, where $\operatorname{rad}(d)$ is the largest squarefree divisor of d. Hence, $\operatorname{gcd}\left(\ell^{2}, s(\ell)\right)=d$ and the same is true for $\operatorname{gcd}\left(\ell^{\prime 2}, s\left(\ell^{\prime}\right)\right)$. Putting
$\ell=d \lambda, \ell^{\prime}=d \lambda^{\prime}$, we get

$$
\frac{d \lambda^{2}}{s(\ell) / d}-\frac{d \lambda^{\prime 2}}{s\left(\ell^{\prime}\right) / d}=\ell-\ell^{\prime}
$$

and the two fractions appearing on the left-hand side above are reduced. So, their denominators must be equal, that is, $s(\ell) / d=s\left(\ell^{\prime}\right) / d$, therefore $s(\ell)=s\left(\ell^{\prime}\right)$. Now equation (3.12) gives

$$
\ell^{2}+\ell s(\ell)=\ell^{\prime 2}+\ell^{\prime} s(\ell)
$$

and since the function $t^{2}+t s(\ell)$ is increasing in t, this gives $\ell=\ell^{\prime}$. Thus, in the case $h>x^{1 / 3}$, we must have $\ell=\ell^{\prime}$ and the congruence classes $a_{h, \ell}, a_{h, \ell^{\prime}}$ of q and q^{\prime} modulo h are the same.

Summing the expression in (3.9) over m, m^{\prime} where $h \mid \operatorname{gcd}\left(s(m), s\left(m^{\prime}\right)\right)$, $h>x^{1 / 3}$, and using the maximal order of $A_{3,2}^{\prime} / \varphi\left(A_{3,2}^{\prime}\right)$, we have

$$
\frac{d x \log \log x}{(\log x)^{2}} \sum_{m, m^{\prime}, h} \frac{h}{m m^{\prime}}=\frac{d x \log \log x}{(\log x)^{2}} \sum_{q, q^{\prime}, \ell, h} \frac{h}{q q^{\prime} \ell^{2}} .
$$

Since $\ell=\ell^{\prime}$ and $m \neq m^{\prime}$, we deduce that $q \neq q^{\prime}$; assume that $q>q^{\prime}$. Since $q \equiv q^{\prime} \equiv a_{h, \ell}(\bmod h)$, the sum of $1 / q$ above is $O((\log x) / h)$, even forgetting that q is prime. Thus, the above sum reduces to

$$
\frac{d x \log \log x}{\log x} \sum_{q^{\prime}, \ell, h} \frac{1}{q^{\prime} \ell^{2}} \leq \frac{d x \log \log x}{\log x} \sum_{q^{\prime}, \ell} \frac{\tau\left(s\left(q^{\prime} \ell\right)\right)}{q^{\prime} \ell^{2}} \leq x(\log x)^{O(1)} \sum_{q^{\prime}, \ell} \frac{1}{q^{\prime} \ell^{2}},
$$

by Lemma 2.4. Now $\sum 1 / q^{\prime} \ll 1$ and $\sum 1 / \ell^{2} \ll x^{-1 / 15}$, so we have the estimate

$$
x^{14 / 15}(\log x)^{O(1)}=O\left(\frac{x}{d \log y}\right)
$$

which is consistent with (3.9).
3.2. The case $h \leq x^{1 / 3}$. We now consider values of h with $h \leq x^{1 / 3}$. Since $s\left(m^{\prime}\right)$ is deficient, we have $s\left(m^{\prime}\right) / \varphi\left(s\left(m^{\prime}\right)\right) \ll 1$, so that $A_{3,2}^{\prime} / \varphi\left(A_{3,2}^{\prime}\right)$ $\ll A_{3,2}^{\prime \prime} / \varphi\left(A_{3,2}^{\prime \prime}\right)$, where $A_{3,2}^{\prime \prime}$ is the largest divisor of $A_{3,2}^{\prime}$ coprime to $s\left(m^{\prime}\right)$. Fix m^{\prime}, h with $h \mid s\left(m^{\prime}\right)$ and consider numbers m that can arise. As noted before,

$$
m \equiv \sigma(m) \equiv \sigma\left(m^{\prime}\right) \equiv m^{\prime}(\bmod h) .
$$

Since $h \mid s(m)$ and $\operatorname{gcd}(m, \sigma(m))=d$, we have $\operatorname{gcd}(m, h)=\operatorname{gcd}(\sigma(m), h)=1$. Recall that $m=q r k$. Thus, the above congruences, rewritten as

$$
q r k \equiv(q+1)(r+1) \sigma(k) \equiv m^{\prime}(\bmod h),
$$

determine $u:=q r(\bmod h)$ and $v:=q+r(\bmod h)$, when k, m^{\prime} are given. As we have seen, Lemma 2.2 allows us to assume that h is squarefree. This implies that the number of solutions to the congruence $t^{2}-v t+u \equiv 0$ $(\bmod h)$ is at most $\tau(h)$. That is, there are at most $\tau(h)$ pairs $a, b(\bmod h)$
such that we have $q \equiv a(\bmod h)$ and $r \equiv b(\bmod h)$. Let $\mathcal{S}_{h, k}$ denote the set of pairs a, b that arise for m^{\prime}, h, k.

For m^{\prime}, h, k, and the pair a, b in $\mathcal{S}_{h, k}$ all given, define

$$
f_{m^{\prime}, h, k, a, b}(q r)=f(q r)=\sum_{\substack{\pi \mid \sigma(k q r)-\sigma\left(m^{\prime}\right) \\(\log \log x)^{2}<\pi \leq \log x \\ \pi \nmid h \sigma(k q r)}} \frac{1}{\pi}
$$

where π runs over primes. Note that if $f(q r) \leq 1$, then $A_{3,2}^{\prime \prime} / \varphi\left(A_{3,2}^{\prime \prime}\right) \ll 1$. Say k, r are given and $\pi \mid \sigma(k q r)-\sigma\left(m^{\prime}\right)$ and $\pi \nmid \sigma(k q r)$. Since

$$
q \sigma(k r)=-\sigma(k r)+\sigma(k q r) \equiv-\sigma(k r)+\sigma\left(m^{\prime}\right)(\bmod \pi)
$$

if $k r, \pi$ are fixed, then q is in a residue class modulo π, say $c_{\pi, k r}(\bmod \pi)$. To summarize, with $m^{\prime}, h, k r, a, b$ fixed, if $m=k q r$ satisfies $\pi \mid A_{3,2}^{\prime \prime}$, we have $q \equiv c_{\pi, k r}(\bmod \pi), q \equiv a(\bmod h), r \equiv b(\bmod h)$. Since $\pi \nmid h$, the two congruences for q may be combined to put q in a single residue class modulo πh. Thus, using $q>x^{7 / 20}, h \leq x^{1 / 3}, \pi \leq \log x$, and the Brun-Titchmarsh inequality, we obtain

$$
\begin{aligned}
\sum_{q r} \frac{f(q r)}{q r} & \ll \sum_{\pi} \frac{1}{\pi} \sum_{r} \frac{1}{r} \sum_{q} \frac{1}{q} \\
& \ll \sum_{\pi} \frac{1}{\pi \varphi(\pi h)} \sum_{r} \frac{1}{r} \ll \sum_{\pi} \frac{1}{\pi^{2} h} \sum_{r} \frac{1}{r}
\end{aligned}
$$

To estimate $\sum_{r} 1 / r$ we consider two ranges for h. Since $r \equiv b(\bmod h)$, we have

$$
\sum_{r} \frac{1}{r} \ll \begin{cases}\frac{\log x}{x^{1 / 20}} & \text { if } h>x^{1 / 20} \\ \frac{1}{h} & \text { if } h \leq x^{1 / 20}\end{cases}
$$

Here, we are using that $r \in\left(x^{1 / 15}, x^{1 / 12}\right]$, a trivial estimate when $h>x^{1 / 20}$, and the Brun-Titchmarsh inequality with partial summation (as well as $\varphi(h) \gg h)$ in the second case. Thus,

$$
\sum_{q r} \frac{f(q r)}{q r} \ll \begin{cases}\frac{\log x}{h x^{1 / 20}} & \text { if } h>x^{1 / 20} \tag{3.13}\\ \frac{1}{h^{2}(\log \log x)^{2}} & \text { if } h \leq x^{1 / 20}\end{cases}
$$

The expression in 3.9 for $h \leq x^{1 / 3}$ can be dealt with as follows. Fix m^{\prime}, h. Since $A_{3,2}^{\prime} / \varphi\left(A_{3,2}^{\prime}\right) \ll 1$ or $\log \log x / \log y$ depending on whether
$f(q r) \leq 1$ or $f(q r)>1$, we have

$$
\begin{align*}
\frac{x \log y}{(\log x)^{2}} & \sum_{m} \frac{d h A_{3,2}^{\prime}}{m m^{\prime} \varphi\left(A_{3,2}^{\prime}\right)} \tag{3.14}\\
& \ll \frac{x \log y}{(\log x)^{2}} \frac{d h}{m^{\prime}} \sum_{k} \frac{1}{k} \sum_{\mathcal{S}_{h, k}}\left(\sum_{f(q r) \leq 1} \frac{1}{q r}+\sum_{f(q r)>1} \frac{\log \log x}{q r \log y}\right) \\
& \leq \frac{x \log y}{(\log x)^{2}} \frac{d h}{m^{\prime}} \sum_{k} \frac{1}{k} \sum_{\mathcal{S}_{h, k}} \sum_{q r}\left(\frac{1}{q r}+\frac{f(q r) \log \log x}{q r \log y}\right) .
\end{align*}
$$

First assume that $x^{1 / 20}<h \leq x^{1 / 3}$. By (3.13) we have

$$
\sum_{q r}\left(\frac{1}{q r}+\frac{f(q r) \log \log x}{q r \log y}\right) \ll \frac{\log x \log \log x}{h x^{1 / 20} \log y}
$$

Thus, (3.14) and $\sum_{k} 1 / k \ll(\log x) / d \log y$ imply that

$$
\begin{aligned}
\frac{x \log y}{(\log x)^{2}} \sum_{m} \frac{d h A_{3,2}^{\prime}}{m m^{\prime} \varphi\left(A_{3,2}^{\prime}\right)} & \ll \frac{x \log y}{(\log x)^{2}} \frac{d h}{m^{\prime}} \sum_{k} \frac{1}{k} \frac{\tau(h) \log x \log \log x}{h x^{1 / 20} \log y} \\
& \ll \frac{x \log y}{(\log x)^{2}} \frac{d h}{m^{\prime}} \frac{\log x}{d \log y} \frac{\tau(h) \log x \log \log x}{h x^{1 / 20} \log y} \\
& =\frac{x^{19 / 20} \log \log x}{\log y} \frac{\tau(h)}{m^{\prime}} .
\end{aligned}
$$

Now we sum over choices for m^{\prime}, h. We have

$$
\sum_{h \mid s\left(m^{\prime}\right)} \tau(h) \leq \tau\left(s\left(m^{\prime}\right)\right)^{2} \ll(\log x)^{1.4}
$$

using Lemma 2.4. Further, $\sum_{m^{\prime}} 1 / m^{\prime} \ll(\log x) / d \log y$. Thus, the sum in (3.9) is at most $\left(x^{19 / 20} / d\right)(\log x)^{O(1)}$ when $x^{1 / 20}<h \leq x^{1 / 3}$, which is certainly consistent with the inequality in (3.9).

It remains to consider the case $h \leq x^{1 / 20}$. By (3.13), we have

$$
\sum_{q r}\left(\frac{1}{q r}+\frac{f(q r) \log \log x}{q r \log y}\right) \ll \frac{1}{h^{2}}+\frac{\log \log x}{h^{2} \log y(\log \log x)^{2}} \ll \frac{1}{h^{2}}
$$

Thus, from (3.14) and $\sum_{k} 1 / k \ll(\log x) / d \log y$, we deduce

$$
\frac{x \log y}{(\log x)^{2}} \sum_{m} \frac{d h A_{3,2}^{\prime}}{m m^{\prime} \varphi\left(A_{3,2}^{\prime}\right)} \ll \frac{x \log y}{(\log x)^{2}} \frac{d h}{m^{\prime}} \sum_{k} \frac{1}{k} \frac{\tau(h)}{h^{2}} \ll \frac{x}{\log x} \frac{\tau(h)}{h m^{\prime}} .
$$

Now $h \mid s\left(m^{\prime}\right)$ and we are assuming that $s\left(m^{\prime}\right)$ is deficient. Therefore,

$$
\sum_{h} \frac{\tau(h)}{h} \leq\left(\sum_{h} \frac{1}{h}\right)^{2}<4
$$

So, summing the previous expression over h, m^{\prime} we get an estimate which is $\ll x / d \log y$. This completes the proof of (3.9) and Theorem 1.2 .

Acknowledgements. Research of F. L. on this project was carried out while he visited the Mathematics Department of Dartmouth College in Spring 2014. F. L. thanks the Mathematics Department of Dartmouth College for their hospitality. We thank Paul Pollack for his interest in the paper, and we thank the referee for a careful reading and helpful queries.

References

[dB] N. G. de Bruijn, On the number of positive integers $\leq x$ and free of prime factors $>y$, Nederl. Akad. Wetensch. Proc. Ser. A 54 (1951), 50-60.
[CZ] Y.-G. Chen and Q.-Q. Zhao, Nonaliquot numbers, Publ. Math. Debrecen 78 (2011), 439-442.
[DL] J.-M. De Koninck and F. Luca, On the composition of the Euler function and the sum of divisors function, Colloq. Math. 108 (2007), 31-51.
[E56] P. Erdős, On perfect and multiply perfect numbers, Ann. Mat. Pura Appl. 42 (1956), 253-258.
[E73] P. Erdős, Über die Zahlen der Form $\sigma(n)-n$ und $n-\varphi(n)$, Elem. Math. 28 (1973), 83-86.
[EGPS] P. Erdős, A. Granville, C. Pomerance, and C. Spiro, On the normal behavior of the iterates of some arithmetic functions, in: Analytic Number Theory (in Honor of Paul T. Bateman), B. C. Berndt et al. (eds.), Birkhäuser, Boston, 1990, 165-204.
[ELP] P. Erdős, F. Luca, and C. Pomerance, On the proportion of numbers coprime to a given integer, in: Anatomy of Integers, CRM Proc. Lecture Notes 46, Amer. Math. Soc., Providence, RI, 2008, 47-64.
[HR] H. Halberstam and H. E. Richert, Sieve Methods, Academic Press, London, 1974.
[KS] I. Kátai and M. V. Subbarao, Some further remarks on the iterates of the φ and the σ-functions, Ann. Univ. Sci. Budapest Sect. Comput. 26 (2006), 51-63.
[K] M. Kobayashi, On the density of abundant numbers, PhD thesis, Dartmouth College, 2010.
[KPP] M. Kobayashi, P. Pollack, and C. Pomerance, On the distribution of sociable numbers, J. Number Theory 129 (2009), 1990-2009.
[P] J. Pintz, Recent results on the Goldbach conjecture, in: Elementare und analytische Zahlentheorie, Schr. Wiss. Ges. Johann Wolfgang Goethe Univ. Frankfurt am Main 20, Franz Steiner Verlag Stuttgart, Stuttgart, 2006, 220-254.
[Pol] P. Pollack, On the greatest common divisor of a number and its sum of divisors, Michigan Math. J. 60 (2011), 199-214.
[PY] C. Pomerance and H.-S. Yang, Variant of a theorem of Erdős on the sum-of-proper-divisors function, Math. Comp. 83 (2014), 1903-1913.
[T] L. Troupe, On the number of prime factors of values of the sum-of-properdivisors function, J. Number Theory 15 (2015), 120-135.

Florian Luca
School of Mathematics
University of the Witwatersrand
P.O. Box Wits 2050

Johannesburg, South Africa
E-mail: florian.luca@wits.ac.za

Carl Pomerance
Department of Mathematics
Dartmouth College
Hanover, NH 03755-3551, U.S.A.
E-mail: carl.pomerance@dartmouth.edu

Received on 22.6.2014 and in revised form on 20.1.2015

[^0]: 2010 Mathematics Subject Classification: Primary 11A25; Secondary 11N37.
 Key words and phrases: sum of proper divisors, aliquot sum, applications of sieve methods.

