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1. Introduction

1.1. Background. Let K be a number field with set of places M. For
each v € Mg lying over a rational prime p let || - ||, denote the absolute
value extending the usual absolute value | - |, on Q. For a finite set S C Mg
containing all of the archimedean places, let Ux, s C K* denote the usual
S-unit group of K given by

Uks={ae K*:|al,=1forall v¢S}.

The S-unit group, modulo its torsion subgroup, can naturally be embedded
into R® by the usual logarithmic embedding, which sends each £ € U K.,S
to the vector whose v component is the logarithm of the normalized v-adic
absolute value of &:

(1) l:Ugks/Tor(Ugs) = R &€ ([K,: Qylog||€]l0)ves-

A fundamental result in algebraic number theory is Dirichlet’s S-unit theo-
rem, originally proven by Dirichlet for the units of a number field and then
extended to S-units by Hasse and later Chevalley (see [5, Theorem II1.3.5]):

THEOREM (S-unit theorem). The S-unit group Ug s is a finitely gener-
ated abelian group of rank #S—1, and under the image [(Uk s) of the S-unit
group under the logarithmic embedding into RS is a lattice which spans the

hyperplane
{eeRS: Yz, =0} RS,
veS

In other words, Dirichlet’s theorem tells us that:
(A) Since all nonzero algebraic numbers satisfy the product formula, and
hence the condition ), x, = 0 under the logarithmic embedding,

the S-unit group of a number field K spans the largest possible
vector space it can.
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(B) The algebraic rank of the S-unit group is equal to the real dimension
of the vector space it spans. In particular, it is not larger, as in the
example of Z & Zn C R, which has rank 2 but spans a space of real
dimension 1. In other words, under the logarithmic embedding, any
vectors which are QQ-linearly independent must also be R-linearly
independent. (Observe that this is equivalent to the nonvanishing
of the S-regulator.)

Suppose K is a number field and S a finite set of places of K containing
all of the infinite places. This paper provides a generalization of Dirichlet’s
theorem to the group of all algebraic S-units:

(2) U®={aecQ":|af,=1forall we Mgy
such that w t v for any v € S},
where M,y denotes the set of places of K («a). Specifically, we show that

U glg is, modulo its torsion subgroup, a normed vector space (written multi-
plicatively) which satisfies conclusions (A) and (B) above, that is, it spans
the largest possible hyperplane, and its vectors which are independent over
the scalar field Q retain their linear independence over R. Naturally, unlike
the S-unit group Uk g of K, the algebraic S-unit group U;lg is of infinite
rank and thus gives rise to an infinite-dimensional real vector space. Thus
our choice of vector space norm is essential, which of course is not the case
in finite dimension, where all norms are equivalent. The natural choice for a
norm is the absolute logarithmic Weil height, and we will work in the com-
pletion with respect to the Weil height introduced by Allcock and Vaaler [I].
Finally, we will show that, as in the classical Dirichlet theorem, if one drops
the assumption that S contain all of the archimedean places, then the vector
space spanned can in fact be a proper subspace of the hyperplane determined
by the product formula.

Our theorem statement is in fact strictly stronger than that of the clas-
sical S-unit theorem; indeed, we will demonstrate below (see Remark
that the classical S-unit theorem is an easy consequence of “projecting down
to K” from the space U;lg. However, our proof relies on the classical S-unit
theorem and thus does not provide an independent proof of Dirichlet’s re-
sult. Nevertheless, our proof involves several novel elements, including the
use of results from functional analysis (for example, Lemma for which
we refer the reader to [I], is proven using the Stone-Weierstrass theorem)
and the use of projection operators, particularly the Pg operator defined
below in , to approximate numbers with respect to the height. Projec-
tion operators associated to number fields also play a key role in [3] and [4];
however, while the operators used in [3], [4] are typically continuous exten-

sions of well-defined maps Q" /Tor(Q”) — Q" /Tor(Q™) (for example, for
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a number field K/Q, the Px operator is a scaled analogue of the algebraic
norm down to K), the operator Ps used in the proof here differs in that it
is essentially an analytic object which is defined in the completion and does
not arise from any such map of algebraic numbers modulo torsion. But even
though Pg will not in general fix the whole space Q" / Tor(@x), it will fix
the vector space of S-units, and its continuity as a linear operator will be
seen to be essential to establishing our main results.

1.2. Function space formulation. We now briefly recall the construc-
tions of Allcock and Vaaler [I] which allow us to view the group of algebraic
numbers modulo torsion as a vector space normed by the absolute loga-
rithmic Weil height. We refer the reader to [1l [4] for more details on the
constructions used here. We will let G = Gal(Q/Q) denote the absolute
Galois group throughout. Let K denote the collection of all number fields.
Observe that K is naturally a partially ordered set under containment. For
each K € K, we endow My with the discrete topology. Then the collection
of sets {Mg : K € K} naturally forms a projective system under inclusion
with the projection maps for a pair of number fields L/K given by mapping
the place w of L to the place v of K which one obtains by restricting || - ||,
to K. We form the inverse limit

Y = 1£1 My,
KeK
which is a locally compact, totally disconnected Hausdorff space. Notice that
the points of Y exactly correspond to the places of Q. The sets Y (K, v) for
any K € K and v € Mg given by

(3) Y(K,v)={y €Y :y|v}
naturally form a basis for the topology of Y. The following result, the proof

of which we will defer to §2| characterizes the sets of places which most
naturally generalize the sets that occur in Dirichlet’s theorem:

LEMMA 1.1. A subset S CY of places of Q is compact open if and only
if there exists a number field K and a finite set of places T' C Mg such that

S=JY(K ).
veT

We associate to each equivalence class of a nonzero algebraic number «
modulo torsion (that is, the roots of unity) a function f, given by

(4) fa:Y =R,  y—log|aly.

We recall that as Y consists of places of @, the notation ||« above refers to
the y-adic absolute value, that is, the absolute value that extends the usual
p-adic absolute value if y lies over a finite prime p, or extends the usual
absolute value at the archimedean place. As each « has a finite number of
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places where it has a nontrivial valuation, the functions f, are compactly
supported. They are also locally constant on an appropriate collection of
sets of the form Y (K, v) (where, say, o € K*), and therefore they are con-
tinuous on Y. Recall that, as a divisible torsion-free abelian group, the group
@X / Tor(@x) is naturally a vector space, written multiplicatively, over Q.
The map

X X
(5) ¢:Q /Tor(Q") = C.(Y), aw— fa,
sending each equivalence class modulo torsion to the associated function
in the vector space C.(Y') of continuous, compactly supported functions, is

then a vector space isomorphism onto its image. We denote the image of ¢
by F, that is,

(6) F={facCe(Y):aecQ"/Tor(Q)}.

We remind the reader here that F is a (countable) proper subspace of
C.(Y), as each f, € F corresponds uniquely to some equivalence class

o € Q" /Tor(Q™). Lastly, to each number field K € K we associate the
Q-vector space which K*/Tor(K™) spans:

(7) Vi ={fa:a" € K*/Tor(K*) for some n € N} C F.

Each Vi has a canonical projection Px : F — Vi associated to it which
is defined and studied in [4, §2.3]. Continuous projection maps will play an
important role in the proofs of our main theorems.

Allcock and Vaaler construct a Borel measure A on Y such that, for each
number field K and place v of K, [ |

K, :Q,

(3) MY () = e
The L' norm of such a function with respect to this measure is then precisely
twice its absolute logarithmic Weil height:

[K’U : Qv]
9  2n(a)= ) Wllog ool = Y1 fa()| dAW) = [l falls
vEMK ’ Y
(where we assume without loss of generality that a € K* for some number
field K'). The product formula now takes the form

(10) | faly) dA(y) =0,
Y
and thus the space F naturally sits inside the vector space

{ge Cu(Y) :Sgd)\:O}

which, with appropriate restrictions on the support of g, will form the nat-
ural generalization of the space {z € R® : 3 =z, = 0} from the S-unit
theorem.



A generalization of Dirichlet’s unit theorem 359

The LP norms for 1 < p < oo, which we term the LP Weil heights,
naturally make F a normed vector space, for which we may ask if the space of
algebraic S-units Uglg is dense in its appropriate codimension 1 hyperplane,
thus satisfying the analogue of part (A) of Dirichlet’s theorem. To this end we
note that Allcock and Vaaler [I, Theorems 1-3] determined the completions
of F with respect to the LP norm, which we denote F):

{ge LYY, \): §, gdA=0} ifp=1,
(11) Fp =< LP(Y,)\) if 1 <p< oo,

Co(Y) if p = o0,
where Cy(Y) denotes the usual space of continuous functions which vanish
at infinity.

1.3. Main results. Our main results are the following three theorems,
which first provide a generalization of both parts of Dirichlet’s result to the
larger group of all algebraic S-units, and then demonstrate that if the as-
sumption that the archimedean places are included in S is discarded then the
space spanned by F(.S) may in fact be a proper subspace of the hyperplane
determined by the product formula.

THEOREM 1.2. Let S C Y be a compact open set containing all of the
archimedean places. Then the vector space of algebraic S-units

(12) F(S) ={fa € F :supp(fa) C S}

is dense in the closed vector space

(13) Fp(S,0) = {g € Fp :supp(g) € S and Sg = 0}
S

for all 1 < p < oo, where F, denotes the completion of F under the LP
norm.

We remark that Theorem [1.2| generalizes part (A) of Dirichlet’s theorem
as, by Lemma|l.1

(14) F(8) = ¢(UF)

for some number field K and a finite subset T" C Mg containing all of the
archimedean places, where U;lg is defined as in and ¢ as in . We note

that by ,
{g € LP(Y) : supp(g) € S and {49 =0} if 1 <p < oo,
F p(S ) 0) = .
{9 € Co(Y) :supp(g) € S and {49 =0} if p=oo.
Regarding the R-linear independence of Q-linearly independent vectors,
that is, conclusion (B) of Dirichlet’s theorem, we prove the following:

THEOREM 1.3. Let S C Y be a compact open set containing all of the
archimedean places, and let F(S) be the vector space of S-units defined
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above in . Let fo,s---s fa, € F(S) and suppose there exist elements
T,...,mn € R, not all zero, such that Y ;" 7ifa, = 0. Then there exist
$1,...,5n € Q, not all zero, such that Y ;" | $;fa, = 0.

REMARK 1.4. We note that the classical S-unit theorem can be easily
obtained assuming the statements of Theorems and To see this,
recall from [4] that the projection operator Pg : F — Vi defined in [4]
§2.3] is a conditional expectation, and thus maps functions supported on S
to themselves, and it also acts as the identity on Vk g, and thus Px (F(S))
= Vk,s, the Q-vector space span of the S-units of K. Since Pk is continuous,
Theorem implies that Vi g spans the hyperplane of functions supported
on S and locally constant on the sets Y (K,v), which is part (A) of the
classical theorem for the S-units of K, and since Pk is a linear operator,
the conclusion of Theorem implies that the elements of Vi ¢ which are
R-linearly dependent are also Q-linearly dependent, fulfilling conclusion (B)
of the classical S-unit theorem and recovering the classical result.

As we noted above, our proof uses the classical result, and thus we must
include the archimedean places, which constitute precisely the set Y (Q, o0),
in our set S. In fact, it is not possible to entirely remove this assumption,
and Theorem [I.2] is sharp in the following precise sense. Say S is defined
over a field K if we can write S as a union of sets Y (K, v) where v ranges
only over places of K. Thus for example if v is an infinite place of a real
quadratic number field K then S = Y (K,v) is defined over K and any
extension thereof but not defined over Q since S C Y (Q, c0). Then we have:

THEOREM 1.5. Let S C Y be a compact open set such that SNY (Q, 00)
= (. Let S be defined over a number field K which has at least one real
archimedean place and suppose at least two places v # w € My are such
that Y(K,v) UY (K,w) C S. Then the closure of the S-units space F(S) in
the LP norm is a proper subspace of Fp(S,0).

EXAMPLE 1.6. Let S =Y (Q,2) UY(Q,3). Then the vector space F(S)
consists of nonzero algebraic numbers which along with all of their conju-
gates in the complex plane lie on the unit circle and have nontrivial valua-
tions only on places lying over 2 and 3. We note that S is actually defined
over (Q and thus Theorem applies, so the space F(S) is not dense in
Fp(S,0). In fact, if we restrict to elements of F(S) which arise from Q,
then this result is clear: there is no element of Q* which can have a pos-
itive valuation over 2 and a negative valuation over 3 and vanish on the
infinite place, by the Q-linear independence of log 2 and log 3, while in the
completion F,(S,0) we can easily construct such a function as we have no
such number-theoretic obstructions. The idea of the proof of Theorem
is that, by using projections, we can demonstrate that it is impossible that
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some element supported on .S from an extension of Q can make up for these
missing functions in attempting to approximate elements of F,(S,0), and
thus the closure of F(S) is a proper subspace.

Lastly, we demonstrate by the next example that even in the case where
the vector space of S-units spans a proper subspace of the hyperplane
Fp(S,0), the space need not be trivial.

ExaMPLE 1.7. Let S = Y(Q,5) UY(Q, 7). By Theorem the space
F(S) is not dense in F, (9, 0) for any 1 <p < oco. Let K = Q(i) where i> = —1,
and let v be the nonarchimedean place of K associated to the prime ideal
(2—i) and w the place associated to (2+1). Notice that since 5 = (2—1i)(2+1),
we have Y(Q,5) = Y (K,v)UY(K,w) C S. Let a = (2—1i)/(2+i) € K*, and
observe that f, is supported only on Y (Q,5) C S and therefore f, € F(95).
Thus, F(S) # {0} is nontrivial, as claimed, although it is not dense in
Fp(S,0).

2. Proofs

2.1. Compact open sets of places and proof of Lemma In
this section we prove Lemma|l.1} as well as some other results which are not
essential to the proofs of our main theorems but are of interest in themselves.

Proof of Lemma . Our proof follows the same approach as in [I, Lem-
ma 1]. Since S is open in Y, we may choose for each y € S a number field
LW such that y lies over the place v® of L&) and Y (L® v®)) ¢ S. Notice
that the collection {Y (L®), v®)) : y € S} is an open cover of the compact
set S and as such it has a finite subcover,

{Y(Ly, Un)}flvzla

where the L,, are number fields and v, is a place of L,,. Let L = L1 --- Ly be
the compositum. Then clearly each set Y (L, vy,) is a finite union of Y (L, w)
where w ranges over the places of L which lie over v,. Thus, we can select
finitely many places w; of L such that S = |J; Y (L,w;) and we have the
desired result. =

Although Lemma [[.1] suffices for our purposes, with only a little more
work one can see that there exists a unique minimal field of definition of
any compact open S. We will now demonstrate this result. Recall that G
acts on the set Y in a well-defined manner given by ||ay = [[e 7 o, (see
[1] for more details). We make the following definition:

DEFINITION 2.1. Let S C Y be a compact open set, and let K be a
number field. We say S is defined over K if there exists a set T C Mg
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(necessarily finite) such that

S=|JY(K ).
veT
Notice that by Lemma[I.] there always exists some number field K such
that S is defined over K.

LEMMA 2.2. A compact open set of places S is defined over a number
field K if and only if for any place v € My such that SNY (K,v) # () we
have Y (K,v) C S.

Proof. If S is defined over K, this is obvious from the definition and the
fact that the sets Y (K, v) are disjoint from each other for different places v.
Suppose now that the conclusion holds. Define

T={veMg:SNY(K,v)#0}.

Since Y = U, e, Y (K, v), the collection {Y(K,v) : v € T} forms an open
cover of S. By compactness, T" must therefore be finite, and S must in fact
be the union of the sets Y (K,v) forveT. n

PROPOSITION 2.3. Let S be a compact open set. Then S is defined over
K if and only if K is a finite extension of the field

(15) k = Fix(Stabg(S)),

where Stabg(S) = {0 € G : 0(S) = S} and Fix(-) denotes the usual fized
field of a subgroup of the absolute Galois group.

Thus k& is the unique minimal field over which S is defined, and such a
field may be naturally associated to any compact open set S as the field of
definition of S.

Proof of Proposition 2.3. First, let us show that any field over which §
is defined is an extension of k (and in particular, that & is indeed a number
field, so the subgroup Stabe(S) must have finite index in G). By Lemmall.1]
S is defined over some number field K. Clearly Gal(Q/K) C Stabg(S), since
S is a union of sets of the form Y (K,v) but Gal(Q/K) must fix such sets
if it is to act trivially on K. (That is, if y € Y (K, v) but oy were not, then
for some o € K we would have |||, # ||@/ sy as y and oy must lie over
distinct places of K, and hence |0~ al|, = |[[c™tally = ||alloy # |||y, which
implies that a # oa, and so o ¢ Gal(Q/K).) But then k C K by the Galois
correspondence, and in particular k£ is a number field.

Now let k = Fix(Stabg(S)). We will show that S is in fact defined over k.
Assume it is not; then by Lemma there must exist a place v of k£ such
that S NY (k,v) # 0, but Y(k,v) € S. Since the sets of the form Y (L, w)
for L a finite Galois extension form a basis for the topology (see [1]), there
exists some such L which contains k£ and satisfies Y (L,w) € SN Y (k,v).
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Then the place v of k splits into places of L, including w. Let w’ be a place
of L such that Y(L,w") C Y(k,v) \ S. By the same reasoning such an L
exists, after replacing L with a larger Galois extension if necessary. Then
there exists o € Gal(L/k) such that cw’ = w. Lifting o to G, we see that
o(Y(L,w")) = Y(L,w) and ¢ € Gal(Q/k) C G. But then o € Stabg(S)
by definition of k as the fixed field of Stabg(S), but for any y € Y (L, w),
o(y) € S because o(y) € Y(L,w') C Y(K,v)\ S by construction. But this
is a contradiction to ¢ being in the stabilizer of the set S. =

2.2. Proof of Theorem The proof will proceed in a series of
lemmas. For an open set £ C Y, we let LC(E) denote the set of all locally
constant functions on E, that is, functions f such that supp(f) C E and,
at each y € FE, there exists an open neighborhood N of y such that f is
constant on N. We let LC.(E) denote the locally constant functions on F
with compact support. We assume 1 < p < oo and we denote by || - ||, the
usual LP norm throughout.

LEMMA 2.4. Let f € LC.(Y). Then there exists a number field K such
that

fly) = Z Ty Xy (Kw) (Y);

veEMg
where £, € R and is zero for almost all v, and x g denotes the characteristic
function of the set E.
Proof. This is [I, Lemma 4]. =

LEMMA 2.5. For any given € > 0 and f € C(Y(K,v)) there exists a
g € LC(Y(K,v)) such that ||f — gl|, < €, where K is a number field and
vE Mg and 1 < p < 0.

Proof. This is proven in [I] in the course of proving Theorems 1-3. m

LEMMA 2.6. Let S CY be a compact open set. For any given € > 0 and
f € C(S) there exists a g € LC(S) such that || f — g, < €.

Proof. By Lemma there exists a field K and a finite set of places
T C Mg such that S = [J,cp Y (K, v). Observe that when each space is
endowed with the LP norm we have

c(s) =@ o (k,v)),
veT

where the direct sum notation implies that each C(Y (K, v)) space is en-
dowed with the LP norm and the finite number of vector spaces are combined
with the /2(T) norm. The result then follows immediately from Lemma
above. m
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Throughout the remainder of this section, S will denote a compact open
subset of Y. Let

LC(S,0) = {feLC(S) : Sf:O},
S
C(S,0) = {feC(S) : gfzo},
S
Fp(8,0) = { € s supp(f) € S and | f = 0}.

S
(We note in passing that F1(S5,0) = F1(S) = {f € Fi : supp(f) C S}, but
that this is not the case for p > 1.)

LEMMA 2.7. For any given € > 0 and f € LC(S,0) there exists g € F(S)
such that || f — gl|p < €; here F(S) denotes the S-unit space defined in (12)).

Proof. Suppose we have f € LC(S,0). By Lemma f has the form
(16) fly) = Z Ty * XY (L,v) (v)

veT
where T'= {v € My, : Y(L,v) C S}, L is some number field over which S
is defined, and z, € R. Notice that the Q-vector space span of the S-units
of L in F is precisely F(S)NVy. Let

R(T,0) = {x eRT: E;[?zg]]x :0}.

Observe that we have natural embeddings
©: VL NF(S) = R(T,0), for (log|lals)ver,

and

0 : R(Ta 0) — ~Fp(Sa O)a (xv)UET = Z Ly * XY (L) (y),
veT
and that 6 o ¢ : Vi, N F(S) — F,(S,0) is the inclusion map. (Notice that
the embedding ¢ is a rescaled version of the logarithmic embedding
used in the statement of Dirichlet’s theorem.) Observe that if x, is as in
above, the element x = (z,) € R(7,0) has 6(x) = f. By Dirichlet’s
S-unit theorem for the S-units of L, we see that the image ¢(F(S)NVy) is
a Q-vector space of full rank in R(7,0), and is thus dense (in any norm, as
all vector space norms are equivalent on finite-dimensional spaces). Observe
that the LP norm on F,(S5,0) induces a norm on R(7T’,0) which agrees with
its restriction to V7. Thus, since R(7, 0) is finite-dimensional, we see that for
any € > 0 we can approximate z € R(7,0) by an element of g € F(S)NVp,
with
lg = fllp = llg = 0(2)[lp = lle(g) —xl| <€ m
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Define
(17) Pg : fp — fp(S, 0)
as) (PsD)(w) = xs(y) (f<y> L dA(z)).
\E) )

LEMMA 2.8. The map Ps is a continuous projection in LP norm onto
its range Fp(S,0) for 1 < p < oo.

Proof. First, observe that Pg is well-defined, as the integral of an LP
function on a compact set is well-defined, and note that for 1 < p < oo,

1PsSllp < @) - FW)llp + | §£(2) axz)]
S

< fllp + A 2IS - xsllp < (14D f s

while for p = oo,

1Ps lloe < lIxs() - Flloe +| § £(2) dAC2)]
S

< [ flloe +ACS) - 1S - Xslloo < (1 4+ AN oo
and thus for all 1 < p < 00, Pgs is continuous with LP operator norm @
1Psllp < 14 A(S) 1P
(with the usual convention that 1/00 = 0). It is easy to see that Ps? = Pg,

and thus Pg is a projection onto the subspace F, (.S, 0), on which it obviously
acts as the identity. =

LEMMA 2.9. For any given € > 0 and any f € C(S,0) there exists a
g € LC(S,0) such that ||f — g, < €.

Proof. Let f € C(S,0) C C(S). By Lemma[2.6|we can choose h € LC(S)
such that || f — k||, < €. Observe that Psf = f, so

If = Pshllp = [[Ps(f = Wllp < [1Psllp - [1f = Bllp < [IPsllp - e
Observe further that Pgh differs from h by a constant function on S (namely,
—ﬁ §gh) and therefore is also an element of LC(S), and in fact, lies in

LC(S,0). Thus we may take g = Pgh.

LEMMA 2.10. For any given € > 0 and any f € F,(S,0) there exists a
g € C(S,0) such that || f — gl <e.

(*) Recall that the (operator) norm ||T|| of a linear transformation T on a normed
vector space V is defined as the infimum of the values C' > 0 such that ||Tz|| < C||z|| for
all 0 # z € V (or oo if no such value exists). Moreover, T is continuous if and only if it
has a finite operator norm.
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Proof. Let f € Fp(S,0). Since C.(Y) is dense in Fp, we can choose
h € C.(Y) such that || f — h||, < e. Then observe that Psf = f, so

If = Pshllp = 1Ps(f = W)llp < [|1Psllp - If = hllp < [[Psllp - €,
and Psh € C(S,0) as well since it is a continuous function restricted to a

compact open set minus a function constant on that set. Thus we may take
g= Psh. u

Proof of Theorem 1.2. Combining the above lemmas, we see that given
any f € Fp(S,0) there exists a g € F(S5) such that ||f — g||, < 3e by the
triangle inequality. Since F,(.5,0) is closed (it is defined as the null space of
the linear functional § g on Fp) the proof is complete. =

2.3. Proof of Theorem Suppose the equivalence class of f,, has
a representative oy € @X. Let K = Q(au,...,a,). Then f,, € Vi for each i.
Let T'={v € Mk : Y(K,v) C S}. Each f,, corresponds exactly to a vector
xi = (Tip)ver € RT under the logarithmic embedding defined in above;
specifically, we let

[Kv : Qv]
v = ——— Jo, h Y(K,v).
Liv [KQ} fal(y) where y € ( 7U)
(Recall that since f,, € Vi, it is constant on the sets Y (K, v), so this is
well-defined.) Notice that

n

@Z ~x; CUUk ),

i=1
where Uk 1 denotes the usual S-unit subgroup of the field K. By the classical
Dirichlet S-unit theorem, any R-linear dependence amongst the vectors x;
implies a Q-linear dependence by the discreteness of the lattice [(Ux 1) (as
discussed in part (B) of Dirichlet’s S-unit theorem above). But then any
linear dependence amongst the z; vectors is obviously equivalent to the
same dependence amongst the f,, functions by construction. =

2.4. Proof of Theorem We begin with the following lemma:

LEMMA 2.11. Suppose S is a compact open subset of Y which is de-
fined over a number field K that has at least one real archimedean place. If

SNY(Q,00) =0, then the subspace
Vk.s ={f € Vk :supp(f) C S} C F(S)
is trivial, that is, Vi, = {0}.
Proof. We recall the theorem of Blanksby and Loxton [2] that a number
field L is a CM-field (that is, it is a totally imaginary quadratic extension of

a totally real field) if and only if there exists 8 € L such that L = Q(f) and
|Bll, = 1 for all places v|oco. Now, suppose that 0 # f, € Vi g. Then there
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exists an n € N such that o™ € K and o™ ¢ Q. But supp(f,)NY (Q, 00) =0,
so ||a™||y = 1 for all v|oo. Therefore Q(a™) must be a CM-field by the
result of Blanksby and Loxton, but this is a contradiction as Q(a™) is totally
imaginary and would be contained in K, which has a real embedding. Hence
we must have Vi g = {0}. u

Proof of Theorem [1.5, Suppose that F(S) is in fact dense in F,(S,0).
By assumption we have a number field K over which S is defined and which
has at least one real archimedean place. Let LC(S,0,K) C F,(S,0) de-
note the subspace of continuous functions supported on S with integral
zero which are locally constant on the sets Y (K, v). Since by assumption
there exist at least two places vi,v2 of K such that Y(K,v;) C S, the
space LC(S,0, K) is nonzero (consider the function which takes the value
+1 on Y(K,v1), —1 on Y (K, vy), and vanishes elsewhere). Let 0 # f €
LC(S,0,K), and normalize f so that ||f|l, = 1. If F(S) is indeed dense,
then for any € > 0 there exists some g € F(S) such that ||f — g[/, < e
Let Pg : F — Vi denote the orthogonal projection as defined in [4], §2.3].
We recall from [4] that Pg is a norm one projection with respect to all LP
norms, 1 < p < oo, and thus extends by continuity to the completion F).
We therefore have

(19) If = Prglly = 1P (f = 9)llp < [[f —gllp <e

since Pxf = f by the fact that Px is a conditional expectation on the
sets Y(K,v) (see [, Lemma 2.10]). But Pxg € F(S)N Vg = Vi g = {0}

by Lemma so Pgg = 0 and || f][, < € by above, but this is a
contradiction to our normalization of f when we take any 0 < e < 1. m
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