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Exceptional sets in Waring’s problem:
two squares and s biquadrates

by

Lilu Zhao (Hefei)

1. Introduction. Waring’s problem for sums of mixed powers involving
one or two squares has been widely investigated. In 1987–1988, Brüdern [1, 2]
considered the representation of n in the form

n = x21 + x22 + yk11 + · · ·+ ykss ,

with k−11 +· · ·+k−1s > 1. Earlier, Linnik [8] and Hooley [6] investigated sums
of two squares and three cubes. In 2002, Wooley [11] investigated the excep-
tional set related to the asymptotic formula in Waring’s problem involving
one square and five cubes. Recently, Brüdern and Kawada [3] established
the asymptotic formula for the number of representations of the positive
number n as the sum of one square and seventeen fifth powers.

Let Rs(n) denote the number of representations of the positive number n
as the sum of two squares and s biquadrates. Very recently, subject to the
truth of the Generalised Riemann Hypothesis and the Elliott–Halberstam
Conjecture, Friedlander and Wooley [4] established that R3(n) > 0 for all
large n under certain congruence conditions. They also showed that if one is
prepared to permit a small exceptional set of natural numbers n, then the
anticipated asymptotic formula for Rs(n) can be obtained.

To state their results precisely, we introduce some notations. We define

(1.1) Ss(n) =

∞∑
q=1

q∑
a=1

(a,q)=1

q−2−sS2(q, a)2S4(q, a)se(−na/q),

where the Gauss sum Sk(q, a) is

(1.2) Sk(q, a) =

q∑
r=1

e(ark/q).
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As in [4], we refer to a function ψ(t) as being sedately increasing when ψ(t)
is a function of a positive variable t, increasing monotonically to infinity,
and satisfying the condition that when t is large, one has ψ(t) = O(tδ)
for a positive number δ sufficiently small in the ambient context. Then we
introduce Es(X,ψ) to denote the number of integers n with 1 ≤ n ≤ X such
that

(1.3)

∣∣∣∣Rs(n)− csΓ
(

5

4

)4

Ss(n)ns/4
∣∣∣∣ > ns/4ψ(n)−1,

where c3 = 2
3

√
2 and c4 = 1

4π. Friedlander and Wooley [4] established the
upper bounds

E3(X,ψ)� X1/2+εψ(X)2,(1.4)

E4(X,ψ)� X1/4+εψ(X)4,(1.5)

where ε > 0 is arbitrarily small.

The main purpose of this note is to prove the following result.

Theorem 1.1. Suppose that ψ(t) is a sedately increasing function. Let
Es(X,ψ) be defined as above. Then for each ε > 0, one has

E3(X,ψ)� X3/8+εψ(X)2,(1.6)

E4(X,ψ)� X1/8+εψ(X)2,(1.7)

where the implicit constants may depend on ε.

We establish Theorem 1.1 by means of the Hardy–Littlewood method. In
order to estimate the corresponding exceptional sets effectively, we employ
the method developed by Wooley [10, 11].

As usual, we write e(z) for e2πiz. Whenever ε appears in a statement,
either implicitly or explicitly, we assert that the statement holds for each
ε > 0. Note that the “value” of ε may consequently change from statement
to statement. We assume that X is a large positive number, and ψ(t) is a
sedately increasing function.

2. Preparations. Throughout this section, we assume thatX/2<n≤X.
For k ∈ {2, 4}, we define the exponential sum

fk(α) =
∑

1≤x≤Pk

e(αxk),

where Pk = X1/k. We take s to be either 3 or 4. By orthogonality, we have

(2.1) Rs(n) =

1�

0

f2(α)2f4(α)se(−nα) dα.
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WhenQ is a positive number, we define M(Q) to be the union of the intervals

MQ(q, a) = {α : |qα− a| ≤ QX−1},
with 1 ≤ a ≤ q ≤ Q and (a, q) = 1. Whenever Q ≤ X1/2/2, the intervals
MQ(q, a) are pairwise disjoint for 1 ≤ a ≤ q ≤ Q and (a, q) = 1. Let ν be
a sufficiently small positive number, and let R = P ν4 . We take M = M(R)
and m = (R/N, 1 +R/N ] \M.

Write

vk(β) =

Pk�

0

e(γkβ) dγ.

One has the estimate

vk(β)� Pk(1 +X|β|)−1/k.
For α ∈MX1/2/2(q, a) ⊆M(X1/2/2), we define

(2.2) f∗k (α) = q−1Sk(q, a)vk(α− a/q).
It follows from [9, Theorem 4.1] that whenever α ∈MX1/2/2(q, a), one has

(2.3) fk(α)− f∗k (α)� q1/2(1 +X|α− a/q|)1/2Xε.

We define the multiplicative function wk(q) by

wk(p
uk+v) =

{
kp−u−1/2 when u ≥ 0 and v = 1,

p−u−1 when u ≥ 0 and 2 ≤ v ≤ k.

Note that q−1/2 ≤ wk(q)� q−1/k. Whenever (a, q) = 1, we have

q−1Sk(q, a)� wk(q).

Therefore for α = a/q + β ∈MX1/2/2(q, a) ⊆M(X1/2/2), one has

(2.4) f∗k (α)� wk(q)Pk(1 +X|β|)−1/k � Pkq
−1/k(1 +X|β|)−1/k.

The following conclusion is (4.1) in [4].

Lemma 2.1. One has�

M

f2(α)2f4(α)se(−nα) dα = csΓ (5/4)4Ss(n)ns/4 +O(ns/4−κ+ε)

for a suitably small positive number κ.

The next result provides the value of the Gauss sum S2(q, a).

Lemma 2.2. The Gauss sum S2(q, a) has the following properties:

(i) If (2a, q) = 1, then

S2(q, a) =

(
a

q

)
S2(q, 1).

Here
(
a
q

)
denotes the Jacobi symbol.
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(ii) If q is odd, then

S2(q, 1) =

{
q1/2 if q ≡ 1 (mod 4),

iq1/2 if q ≡ 3 (mod 4).

(iii) If (2, a) = 1, then

S2(2
m, a) =


0 if m = 1,

2m/2(1 + ia) if m is even,

2(m+1)/2e(a/8) if m > 1 and m is odd.

(iv) If (q1, q2) = 1, then

S2(q1q2, a1q2 + a2q1) = S2(q1, a1)S2(q2, a2).

Proof. These properties can be found in [5, Lemma 2].

3. The proof of Theorem 1.1. Let τ be a fixed sufficiently small

positive number. Set Y = P
3/2+τ
4 ψ(X)2. We define m1 = m \M(X1/2/2),

m2 = M(X1/2/2) \M(Y ), m3 = M(Y ) \M(P4) and m4 = M(P4) \M.
Let η(n) be sequence of complex numbers satisfying |η(n)| = 1. Let Z be
a subset of {n ∈ N : X/2 < n ≤ X}. We abbreviate card(Z) to Z. We
introduce the exponential sum E(α) by

E(α) =
∑
n∈Z

η(n)e(−nα).

For 1 ≤ j ≤ 4, we define

(3.1) Ij =
�

mj

|f2(α)2f4(α)sE(α)| dα.

Lemma 3.1. Let I1 be defined in (3.1). Then

(3.2) I1 � P
4−1/4+s−3/2+ε
4 Z1/2 + P

s−1/4+ε
4 Z.

Proof. For any α ∈ m1, there exist a and q with 1 ≤ a ≤ q ≤ 2X1/2 and
(a, q) = 1 such that |qα − a| ≤ X−1/2/2. Since α ∈ m1, we conclude that
q > X1/2/2. It follows from Weyl’s inequality [9, Lemma 2.4] that

f2(α)� P
1/2+ε
2 for α ∈ m1.

Thus we have

I1 � P 1+ε
2

�

m1

|f4(α)sE(α)| dα

� P 1+ε
2

( 1�

0

|f4(α)6| dα
)1/2( 1�

0

|f4(α)2(s−3)E(α)2| dα
)1/2

.
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By Hua’s inequality [9, Lemma 2.5] and Schwarz’s inequality,

1�

0

|f4(α)6| dα�
( 1�

0

|f4(α)4| dα
)1/2( 1�

0

|f4(α)8| dα
)1/2

� P
7/2+ε
4 .

When s = 4, one has the bound
	1
0 |f4(α)2(s−3)E(α)2| dα � P4Z + P ε4Z

2.
Hence we get (3.2).

Indeed when s = 3, the estimate (3.2) holds with P
s−1/4+ε
4 Z omitted.

Lemma 3.2. Let I2 be defined in (3.1). Then

(3.3) I2 � P
4−1/4+(s−3)/2+ε
4 Z1/2 + P

s−τ/2+ε
4 ψ(X)−1Z.

Proof. We introduce

J1 =
�

m2

|(f2(α)− f∗2 (α))2f4(α)sE(α)| dα,

J2 =
�

m2

|f∗2 (α)2f4(α)sE(α)| dα.

Note that |f2(α)|2 � |f2(α) − f∗2 (α)|2 + |f∗2 (α)|2, where f∗2 (α) is defined
in (2.2). Then

(3.4) I2 � J1 + J2.

In view of (2.3), we know f2(α)−f∗2 (α)� P
1/2+ε
2 for α ∈ m2. The argument

leading to (3.2) also implies

(3.5) J1 � P
4−1/4+(s−3)/2+ε
4 Z1/2 + P

s−1/4+ε
4 Z.

One has, by Schwarz’s inequality,

J2 ≤
( �

m2

|f4(α)6| dα
)1/2
J 1/2 � P

7/4+ε
4 J 1/2,

where J is defined as

J =
�

m2

|f∗2 (α)4f4(α)2(s−3)E(α)2| dα.

In order to handle J , we need the estimate

(3.6)
�

m2

|f∗2 (α)4|e(−hα) dα =

{
O(P 4+ε

4 Y −1) when 0 < |h| ≤ 2X,

O(P 4+ε
4 ) when h = 0.
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Recalling the definition of f∗2 (α), we conclude that�

m2

|f∗2 (α)4|e(−hα) dα

=
∑∗

q≤X1/2/2

�∗

|β|≤1/(2qX1/2)

q−4
( q∑

a=1
(a,q)=1

|S2(q, a)|4e(−ha/q)
)
|v2(β)|4e(−hβ) dβ,

where the notations
∑∗ and

	∗
mean either q > Y or Xq|β| > Y . Whenever

(a, q) = 1, one finds by Lemma 2.2 that

|S2(q, a)| = |S2(q, 1)| ≤ (2q)1/2.

We obtain∣∣∣ q∑
a=1

(a,q)=1

|S2(q, a)|4e(−ha/q)
∣∣∣ = |S2(q, 1)|4

∣∣∣ q∑
a=1

(a,q)=1

e(−ha/q)
∣∣∣

≤ 4q2
∣∣∣ q∑
a=1

(a,q)=1

e(−ha/q)
∣∣∣ ≤ 4q2(q, h),

whence
�

m2

|f∗2 (α)4|e(−hα) dα� P 4
2

∑∗

q≤X1/2/2

�∗

|β|≤1/(2qX1/2)

q−2(q, h)

(1 +X|β|)2
dβ.

When h = 0, we have�

m2

|f∗2 (α)4|e(−hα) dα� P 4
2

∑
q≤X1/2/2

�

|β|≤1/(2qX1/2)

q−1(1 +X|β|)−2 dβ

� P 4
2X
−1 logX.

When h 6= 0, we get
�

m2

|f∗2 (α)4|e(−hα) dα� P 4
2 Y
−1

∑
q≤X1/2/2

�

|β|≤1/(2qX1/2)

q−1(q, h)

1 +X|β|
dβ

� P 4
2 Y
−1X−1(logX)

∑
q≤X1/2/2

q−1(q, h)

� P 4
2 Y
−1X−1+ε.

The conclusion (3.6) is established.
Now we are able to estimate J . When s = 4,

J =
∑

1≤x1,x2≤P4
n1,n2∈Z

η(n1)η(n2)
�

m2

|f∗2 (α)4|e(−(x41 − x42 + n1 − n2)α) dα.
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On applying (3.6), we can deduce that

J �
∑

1≤x1,x2≤P4, n1,n2∈Z
x41−x42+n1−n2 6=0

P 4+ε
4 Y −1 +

∑
1≤x1,x2≤P4, n1,n2∈Z
x41−x42+n1−n2=0

P 4+ε
4

� P 6+ε
4 Z2Y −1 + P 4+ε

4 Z2 + P 5+ε
4 Z.

Substituting Y = P
3/2+τ
4 ψ(X)2, we finally obtain

J � P
4+1/2−τ+ε
4 ψ(X)−2Z2 + P 5+ε

4 Z,

whence

J2 � P
4−τ/2+ε
4 ψ(X)−1Z + P

4+1/4+ε
4 Z1/2.

Similarly, when s = 3, one has

J � P
5/2−τ+ε
4 ψ(X)−2Z2 + P 4+ε

4 Z

whence

J2 � P
3−τ/2+ε
4 ψ(X)−1Z + P

4−1/4+ε
4 Z1/2.

Therefore,

(3.7) J2 � P
4−1/4+(s−3)/2+ε
4 Z1/2 + P

s−τ/2+ε
4 ψ(X)−1Z.

Combining (3.4), (3.5) and (3.7) leads to (3.3).

Lemma 3.3. Let I3 be defined in (3.1). Then

(3.8) I3 � P
4−1/4+(s−3)/2+ε
4 Z1/2 + P s−τ+ε4 ψ(X)−1Z.

Proof. Similarly to (3.4) and (3.5), we can derive that

(3.9) I3 � P
4−1/4+(s−3)/2+ε
4 Z1/2 + P

s−1/4+ε
4 Z +K,

where

K =
�

m3

|f∗2 (α)2f4(α)sE(α)| dα.

One has

K ≤ sup
α∈m3

|f4(α)|
( �

m3

|f∗2 (α)2f4(α)4| dα
)1/2

×
( �

m3

|f∗2 (α)2f4(α)2(s−3)E(α)2| dα
)1/2

.

In view of (2.3) and (2.4), for α ∈ m3 we have

f4(α)� P4q
−1/4(1 +X|α− a/q|)−1/4 + Y 1/2Xε � P

3/4+τ/2+ε
4 ψ(X).
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Since f∗2 (α)− f2(α)� P
1/2
2 for α ∈ m3, we easily deduce that

�

m3

|f∗2 (α)2f4(α)4| dα

� P
1/2
2

1�

0

|f2(α)f4(α)4| dα+

1�

0

|f2(α)2f4(α)4| dα� P 4+ε
4 .

Therefore we arrive at

K � P
11/4+τ/2+ε
4 ψ(X)

( �

m3

|f∗2 (α)2f4(α)2(s−3)E(α)2| dα
)1/2

.

Similarly to (3.6), we have

(3.10)
�

M(Y )

|f∗2 (α)2|e(−hα) dα =

{
O(P ε4 ) when 0 < |h| ≤ 2X,

O(P ε4Y ) when h = 0.

Note that
�

M(Y )

|f∗2 (α)2|e(−hα) dα

=
∑
q≤Y

�

|β|≤Y/(qX)

q−2
( q∑

a=1
(a,q)=1

|S2(q, a)|2e(−ha/q)
)
|v2(β)|2e(−hβ) dβ

� P 2
2

∑
q≤Y

�

|β|≤Y/(qX)

q−1(q, h)(1 +X|β|)−1 dβ

� (logX)
∑
q≤Y

q−1(q, h).

The desired estimate (3.10) follows easily from the above.

For s = 4, we derive that
�

m3

|f∗2 (α)2f4(α)2E(α)2| dα ≤
�

M(Y )

|f∗2 (α)2f4(α)2E(α)2| dα

=
∑

n1,n2∈Z
1≤x1,x2≤P4

η(n1)η(n2)
�

M(Y )

|f∗2 (α)2|e(−(n1 − n2 + x41 − x42)α) dα

� P 2+ε
4 Z2 + P ε4Y (P ε4Z

2 + P4Z)

� (P 2+ε
4 + P

3/2+τ+ε
4 ψ(X)2)Z2 + P

5/2+τ+ε
4 ψ(X)2Z,

whence

K � (P
15/4+τ/2+ε
4 ψ(X) + P

7/2+τ+ε
4 ψ(X)2)Z + P 4+τ+ε

4 ψ(X)2Z1/2.
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In particular,

K � P
4+1/4+ε
4 Z1/2 + P 4−τ+ε

4 ψ(X)−1Z

provided that ψ(X)� X1/64−τ . For s = 3, by (3.10) we have
�

m3

|f∗2 (α)2E(α)2| dα� P ε4Z
2 + P

3/2+τ+ε
4 ψ(X)2Z,

whence

K � P
11/4+τ/2+ε
4 ψ(X)Z + P

7/2+τ+ε
4 ψ(X)2Z1/2.

When ψ(X)� X1/64−τ , one has

K � P
4−1/4+ε
4 Z1/2 + P 3−τ+ε

4 ψ(X)−1Z.

We conclude from the above that

(3.11) K � P
4−1/4+(s−3)/2+ε
4 Z1/2 + P s−τ+ε4 ψ(X)−1Z.

By (3.9) and (3.11), we obtain (3.8).

Lemma 3.4. Let I4 be defined in (3.1). Then

(3.12) I4 � ZP
s−(s−2)ν/4+ε
4 .

Proof. In view of (2.3) and (2.4), for α ∈MP4(q, a), one has

f4(α)� P4w4(q)(1 +X|α− a/q|)−1/4 + P
1/2+ε
4

� P 1+ε
4 w4(q)(1 +X|α− a/q|)−1/4,

f2(α)� P2q
−1/2(1 +X|α− a/q|)−1/2.

Therefore we obtain

I4 � Z sup
α∈m4

|f4(α)|s−2
�

M(P4)

|f4(α)f2(α)|2 dα

� ZP
(s−2)(1−ν/4)+ε
4 P 2

4P
2
2

∑
q≤P4

w4(q)
2

�

|β|≤P4/(qX)

(1 +X|β|)−3/2 dβ

� ZP
2+(s−2)(1−ν/4)+ε
4

∑
q≤P4

w4(q)
2.

In light of Lemma 2.4 of Kawada and Wooley [7], one can conclude that

I4 � ZP
2+(s−2)(1−ν/4)+ε
4 � ZP

s−(s−2)ν/4+ε
4 .

Proof of Theorem 1.1. We denote by Zs(X) the set of integers n with
X/2 < n ≤ X for which the lower bound∣∣∣∣Rs(n)− csΓ

(
5

4

)4

Ss(n)ns/4
∣∣∣∣ > ns/4ψ(n)−1
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holds, and we abbreviate card(Zs(X)) to Zs. It follows from (2.1) and
Lemma 2.1 that, for n ∈ Zs(X),∣∣∣ �

m

f2(α)2f4(α)se(−nα) dα
∣∣∣� Xs/4ψ(X)−1,

whence ∑
n∈Zs(X)

∣∣∣ �
m

f2(α)2f4(α)se(−nα) dα
∣∣∣� ZsX

s/4ψ(X)−1.

We choose complex numbers η(n), with |η(n)| = 1, satisfying∣∣∣ �
m

f2(α)2f4(α)se(−nα) dα
∣∣∣ = η(n)

�

m

f2(α)2f4(α)se(−nα) dα.

Then we define the exponential sum Es(α) by

Es(α) =
∑

n∈Zs(X)

η(n)e(−nα).

One finds that

(3.13) ZsX
s/4ψ(X)−1 �

�

m

|f2(α)2f4(α)sEs(α)| dα.

Note that m = m1 ∪m2 ∪m3 ∪m4. Now we conclude from Lemmata 3.1–3.4
and (3.13) that

ZsX
s/4ψ(X)−1 � P

4−1/4+(s−3)/2+ε
4 Z1/2

s + P s−δ4 ψ(X)−1Zs

for some sufficiently small positive number δ. Therefore

ZsX
s/4ψ(X)−1 � X1−1/16+(s−3)/8+εZ1/2

s .

This estimate implies Z3 � X3/8+εψ(X)2 and Z4 � X1/8+εψ(X)2. The
proof of Theorem 1.1 is completed by summing over dyadic intervals.
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[1] J. Brüdern, Sums of squares and higher powers, J. London Math. Soc. (2) 35 (1987),
233–243.
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