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Exceptional sets in Waring’s problem:
two squares and s biquadrates

by

LiLu ZHAO (Hefei)

1. Introduction. Waring’s problem for sums of mixed powers involving
one or two squares has been widely investigated. In 1987-1988, Briidern [, 2]
considered the representation of n in the form

n=ai oyt 4l
with k' +---+k;' > 1. Earlier, Linnik [8] and Hooley [6] investigated sums
of two squares and three cubes. In 2002, Wooley [11] investigated the excep-
tional set related to the asymptotic formula in Waring’s problem involving
one square and five cubes. Recently, Briidern and Kawada [3] established
the asymptotic formula for the number of representations of the positive
number n as the sum of one square and seventeen fifth powers.

Let Rs(n) denote the number of representations of the positive number n
as the sum of two squares and s biquadrates. Very recently, subject to the
truth of the Generalised Riemann Hypothesis and the Elliott—Halberstam
Conjecture, Friedlander and Wooley [4] established that Rs(n) > 0 for all
large n under certain congruence conditions. They also showed that if one is
prepared to permit a small exceptional set of natural numbers n, then the
anticipated asymptotic formula for Rs(n) can be obtained.

To state their results precisely, we introduce some notations. We define

00 q
(1.1) Si(n) = > q > *S2(q,a)*Su(g,a)*e(—na/q),
q=1 a=1
(a,q)=1

where the Gauss sum Sk(q,a) is

(1.2) Sk(g,a) =Y e(ar¥/q).

r=1
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As in [4], we refer to a function 1 (t) as being sedately increasing when 1 (t)
is a function of a positive variable ¢, increasing monotonically to infinity,
and satisfying the condition that when ¢ is large, one has ¥(t) = O(t)
for a positive number § sufficiently small in the ambient context. Then we
introduce Es(X, 1) to denote the number of integers n with 1 < n < X such
that

5

(1.3) ‘Rs(n) - CSF<>4GS(n)nS/4 > n*/4y(n) 71,

4

where ¢3 = 2/2 and ¢4 = §. Friedlander and Wooley [4] established the
upper bounds

(1.4) Bs(X, ) < XY*ey(X)?,
(1.5) Eq(X,¢) < XY ey(X)1,

where € > 0 is arbitrarily small.
The main purpose of this note is to prove the following result.

THEOREM 1.1. Suppose that 1 (t) is a sedately increasing function. Let
Es(X,v) be defined as above. Then for each € > 0, one has

(1.6) E3(X, ) < X35y (X)?,
(1.7) Ey(X,0) < X35y (X)?,
where the implicit constants may depend on €.

We establish Theorem [I.1] by means of the Hardy—Littlewood method. In
order to estimate the corresponding exceptional sets effectively, we employ
the method developed by Wooley [10, [11].

As usual, we write e(z) for €2™*. Whenever ¢ appears in a statement,
either implicitly or explicitly, we assert that the statement holds for each
€ > 0. Note that the “value” of € may consequently change from statement
to statement. We assume that X is a large positive number, and v (¢) is a
sedately increasing function.

2. Preparations. Throughout this section, we assume that X /2 <n<X.
For k € {2,4}, we define the exponential sum

fela)= > elazh),
1<z< Py
where P, = X 1/k We take s to be either 3 or 4. By orthogonality, we have
1

(2.1) Ry(n) =\ fa(@)* fa(@)*e(—na) da.
0
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When @ is a positive number, we define 9(Q) to be the union of the intervals
Mo (q,a) = {a: |ga —a| < QXY

with 1 < a < ¢ < Q and (a,q) = 1. Whenever Q < X'/2/2, the intervals

Mo (g, a) are pairwise disjoint for 1 < a < ¢ < @ and (a,q) = 1. Let v be

a sufficiently small positive number, and let R = P}. We take 9t = M(R)

and m = (R/N,1+ R/N]\ 9.

Write
Py,

ve(B) = | e(+*8) d.
0
One has the estimate

we(B) < Pu(1+ X|[B])~*.
For o € Mx1/25(q,a) € M(X1/2/2), we define

(2:2) fi(@) = ¢ ' Sk(g, a)v(a — a/q).
It follows from [0, Theorem 4.1] that whenever o € Mx1/2/9 (g,a), one has
(2.3) (@) = fi(@) < ¢'*(1+ X|o = a/q))/*X°.

We define the multiplicative function wg(q) by
—u—1/2
wk(p“’“*”) - {]]:]_9“_1 when v > 0 and 2 <wv <k.
Note that ¢~ /2 < wy(q) < ¢~ Y/*. Whenever (a,q) = 1, we have
q ' Sk(q,a) < wi(q).
Therefore for a = a/q+ B € Mx1/25(q,a) C M(X1/2/2), one has
(2.4) fi(@) < wi(g)Pe(1 + X|8) ™" < Pog M (1 + X |B) ",

The following conclusion is (4.1) in [4].

when v > 0 and v =1,

LEMMA 2.1. One has

| f2(0)* fal@) e(—na) da = cI'(5/4) &4 (n)n*/* + O(n*/*=rF)
m
for a suitably small positive number k.

The next result provides the value of the Gauss sum S3(q, a).
LEMMA 2.2. The Gauss sum Sa(q,a) has the following properties:
(i) If (2a,q) = 1, then

Sala.0) = () la 1)

Here (5) denotes the Jacobi symbol.
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(ii) If q is odd, then
S2(q, 1) = {?112 Z:fq - ! (mod 4),
iq if ¢ =3 (mod 4).
(iii) If (2,a) =1, then
0 ifm=1,
S5(2™,a) = { 2™/2(1 +i%) if m is even,
2m+1)/2¢(q/8) if m > 1 and m is odd.
(iv) If (q1,92) = 1, then
S2(q192, a192 + azqr) = S2(q1, a1)S2(g2, az).

Proof. These properties can be found in [5, Lemma 2. u

3. The proof of Theorem Let 7 be a fixed sufficiently small
positive number. Set ¥ = Pj/2+71/1(X)2. We define m; = m \ 9M(X/2/2),
my = M(X/2/2) \ M(Y), mg = M(Y) \ M(Py) and my = M(Py) \ M.
Let n(n) be sequence of complex numbers satisfying |n(n)| = 1. Let Z be
a subset of {n € N : X/2 < n < X}. We abbreviate card(Z) to Z. We
introduce the exponential sum £(a) by

E(a) = Z n(n)e(—na).

nez
For 1 < j < 4, we define

(3.1) Z; = | |f2(0)* fa(@)°E(a)| dav.
m;
LEMMA 3.1. Let Z; be defined in (3.1)). Then
(3.2) Il < Pf_1/4+5_3/2+621/2+Pj_1/4+€Z.

Proof. For any o € my, there exist a and ¢ with 1 < a < ¢ < 2X'/2 and
(a,q) = 1 such that |go — a| < X~/2/2. Since a € my, we conclude that
q > X'/2/2. 1t follows from Weyl’s inequality [0, Lemma 2.4] that

fQ(Oé) < P21/2+€ for a € mj.

Thus we have

T, < Py | [ fa(a)*E()| da

m

1 1
< P ({170 do) " (§111(0)2 De(0)? da) "
0

0
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By Hua’s inequality [9, Lemma 2.5] and Schwarz’s inequality,

! ! 12,1 1/2 7j24e
170 da < ([Ifa(@)!da) " (§Ifs(@) da) " < P/,
0 0 0

When s = 4, one has the bound S(l) |£1(a)2C=3E(a)?| da < PyZ + P{Z2.
Hence we get (3.2)).
Indeed when s = 3, the estimate 1D holds with P} “H4E 7 omitted. m

LEMMA 3.2. Let Iy be defined in (3.1). Then
(33) Ty < Pffl/4+(573)/2+521/2 + ijf/2+5w(X)71Z‘
Proof. We introduce

T = | I(fe() = f3()* fa(@)*E(a)| da,

m2

Ja = | 1£5()? fa(@)*E(a)] da.

m2

Note that |fa(a)]? < |f2(a) — f3(a)> + |f3(a)|?, where f3(a) is defined
in (2.2). Then

(3.4) I < T+ Jo.

In view of |D we know fo(a) — f5 (o) < 1321/2+‘E for & € my. The argument
leading to (3.2)) also implies

(3‘5) Ty < P;lfl/4+(sf3)/2+€Z1/2 +P4571/4+€Z‘
One has, by Schwarz’s inequality,

1/2
I < ( S ’f4(a)6’d04) / j1/2 < PZ/4+€\71/27

my
where J is defined as
T =V 15()" fa(@)*C9E(a)?| da.

my
In order to handle 7, we need the estimate

O(P{TY 1) when 0 < |h| < 2X,

(3.6) S |f5‘(o¢)4|€(—ha) da = { O(P4+s) when h =0
A = 0.

m2
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Recalling the definition of f5(a), we conclude that
| 1£3 (@) le(~ha) da

m2
q

=3 T (3 ISl e—ha/e) ) [ea(B)e(—h) ds,
a<XVY2 |BISY/aX?) sl

where the notations " and {* mean either ¢ > Y or X¢|8| > Y. Whenever
(a,q) = 1, one finds by Lemma [2.2 that

[S2(q, a)| = |S(g,1)] < (29)"/2.

We obtain
q
| Z 1Sag. @)|'e(~ha/)| = |S2(a. DI 3 e(~ha/a)
a=1
(»q) 1 (a,q9)=1
q
‘ > e(=ha/q) ) < 4¢*(g, h),
a=1
(a,9)=1
whence
—2
. * * q (¢, h
| 153 (@) le(~ha)da < P4 S el
) : (1+ XI5
a<X'/?/2 |B|<1/(2¢X1/?)
When h = 0, we have
§ If5() le(=ha)da < PY Y | ¢ '(1+X|8))72
m2 q<X1/2/2 |BI<1/(24X1/2)
< Py X 'log X.
When h # 0, we get
—1
| 15 (@) fe(—ha)da < PRY ™" > | q . Iﬂ)l g
my q<X1/2/2 IBISI/(2qX1/2
<PY 'X 'logX) Y q'(g.h)
q<X1/2/2

< Pyylx—ite

The conclusion ({3.6)) is established.
Now we are able to estimate J. When s =4,

J= > ) | [f5(@) (=] - 23+ n1 - n2)a) da.

1<z1,22<Fs m2
ni,ne€Z
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On applying (3.6), we can deduce that

4 - 4
J < > Py 4 ) pP}te
1<z1,22< Py, n1,n2€2 1<z1,22< Py, n1,n2€Z
zi—a3+n1—na#£0 o —w3+n1—ng=0

< P46+622y—1 + Pf-‘rsz? + P45+€Z.
Substituting Y = Pj/%Tw(X)Q, we finally obtain

J < PRy ()2 72 4 piteg,

whence

jQ < Pj—T/Q'i‘Ew(X)flz_i_Pf+1/4+621/2.
Similarly, when s = 3, one has

T < P45/2—T+€w(X)—2z2 +Pf+EZ

whence

Jo < PITIAEy(x) Tz 4 PR 2,
Therefore,
(3.7) Ty < Py g1j2  peeT/hey, xy=ly

Combining (3.4)), (3.5) and (3.7) leads to (3.3)). =
LEMMA 3.3. Let I3 be defined in (3.1). Then

(3.8) Ty < Pf_1/4+(8_3)/2+521/2 +PTRE(X) " 2,
Proof. Similarly to and , we can derive that
(3.9) Ty < Pf_1/4+(5_3)/2+5Z1/2 +PZ—1/4+5Z K,

where

K= § 15 fa(a) € (a) da-

One has
/
€ < sup fa(@) ((§ 153 (@2 (@) da)

X ( S |f2*(0‘)2f4(a)2(3*3)5(a)2|da>1/2

m3

In view of (2.3) and (2.4)), for & € mg we have
fila) < P4q_1/4(1+X|a—a/q|)_1/4—|—Y1/2X€ < P43/4+T/2+s¢(X).
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Since f(a) — fa(a) < 1321/2 for a € m3, we easily deduce that

} 1f3 () fa()*| da

m3

1 1
< P2\ | fa(@) fa() ! da + || fo(@)? fa()!| da < PEHe.
0 0

Therefore we arrive at

< PV (] 15 (0)2 fa(@)* e )2 do)

m3

1/2

Similarly to (3.6)), we have
310) ] Ife(-ha)da = {

Mm(Y)

O(Pf)  when 0 < |h] < 2X,
O(PfY) when h=0.

Note that

£ (0)?le(—ha) da
Mm(Y)
q

=3 1 a2 (Y 1Sa.a)Pe(—ha/a))va(8)Pe(~hB) dp
a<Y BSY/@X) sl

<Py | a'ema+xipnT!

asY |BI<Y/(¢X)

< (log X) > 4 (e, h

q<Y

The desired estimate (3.10)) follows easily from the above.
For s = 4, we derive that

VI (@2 fal@PE(@)lda < | |£5() fa(@)?E(@)?| da

m3 M(Y)
4
= Z S |f5 (« —(n1 —ng + 2 — x3)a) do
ni1,n2€EZ DJI(Y
1<z1,22< Py

< PXEZ? L PY(P{Z% + Py2)
< (PFe 4 PPy (x)2) 22 + PP y(X)? 2,
whence

K< ( 15/4+T/2+€¢(X) +PZ/2+T+€T,Z)(X)2)Z+Pf+7+€¢(X)2Z1/2-
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In particular,
K < Pyt g12 o plomrey(x) Ty
provided that ¢(X) < X'/64=7. For s = 3, by (3.10) we have
J 15 (08 (0)* doc < P{Z* + BP0 (X)?Z,

m3
whence

When (X) < X1/64=7 one has
K < P72 4 pirtey(x) Tz,
We conclude from the above that
(3.11) K < P}/ 8/2e 712y pseriey(x)~l 7,
By and , we obtain . =
LEMMA 3.4. Let Zy be defined in . Then
(3.12) Iy < Zpismv/Ate
Proof. In view of and , for a € Mp,(q,a), one has
fi@) <€ Pawa(q)(1 + X|a — a/ql) ™4 4 Py*
< P w(q)(1+ X|a = a/ql) 7%,
fa(@) < Pog*(1+ Xla — a/ql) ™12,
Therefore we obtain

T, < Z sw |fa(@))”? | |fa(@) fa(@)]? da

acmy

M(Py)
<« ZPETOIE P22 S™ (g | (14 X18) 2 dB
q<Py IBI<Ps/(aX)
q<Py

In light of Lemma 2.4 of Kawada and Wooley [7], one can conclude that
T, < ZP42+(S*2)(17V/4)+5 < ZPZf(sz)V/4+5' -

Proof of Theorem . We denote by Z4(X) the set of integers n with
X/2 < n < X for which the lower bound

5

’Rs(n) — cSF(4>465(n)n3/4 > n*/4y(n) 7!
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holds, and we abbreviate card(Zs(X)) to Zs. It follows from (2.1) and
Lemma [2.1] that, for n € Z4(X),

J f2(0)? fa(@)e(=na) da| > X (X) 7,

m

whence
3 ‘ [ f2(0)? fal@)e(=na) da‘ > Z, X p(X) L.
neZs(X) m
We choose complex numbers n(n), with |n(n)| = 1, satisfying

‘ S fa(@)? f4(a)’e(—na) da| = n(n) S f2(@)? fa(a)’e(—na) do.

m m

Then we define the exponential sum Es(a) by

Es(a) = Z n(n)e(—na).

neZs(X)
One finds that
(3.13) Z X (X)) < | | fa()? fa()*Es(a) | da.
m

Note that m = m; Umy U mg Umy. Now we conclude from Lemmata (3.1

and (3.13)) that
Z X (X)) Py ETIREE 712 4 pamty(x) 71
for some sufficiently small positive number §. Therefore
ZSXS/4¢(X)—1 << X1_1/16+(S_3)/8+6Z51/2.

This estimate implies Z3 < X%/8+5¢)(X)? and Z; < X'/8te(X)2. The
proof of Theorem is completed by summing over dyadic intervals. m
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