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1. Introduction. In a 1960 paper, Cassels [3] studied the equations
xyz = x + y + z = 1 and their simultaneous solutions in Q. Numerous
papers on this system of equations were inspired by his work; for example,
see [1, 2, 4, 6, 7, 8, 10]. Of particular interest here is the work of Bremner [2]
in which he devised a method for finding all solutions in algebraic integers
in fields of degree less than or equal to four.

In this paper, we generalize Bremner’s methods to study the simultane-
ous solutions of the equations

(1) xyz = 1 and x+ y + z = k

with k ∈ Z and x, y, z algebraic integers in a field of degree at most four
over Q. This system was considered briefly by Thomas and Vasquez [9] in
their work on the extensively studied system x3 + y3 + z3 = λxyz.

Since the equations in (1) are symmetric, permuting the values of x, y,
and z in a solution generally yields additional solutions. Considering such
permutations to be equivalent, our goal, as is standard, is to determine all
equivalence classes of solutions, under specific restrictions.

To fix notation, let F be an algebraic number field with [F : Q] ≤ 4. Let
OF be its ring of integers. Fix k ∈ Z and let (x, y, z) ∈ O 3

F be a solution to
the system of equations given in (1).

Since xyz = 1, we see that x, y, and z must all be units in OF and
at least one of them, say x, must have norm 1. Combining xyz = 1 and
x+ y + z = k, eliminating z, we obtain y2 + (x− k)y + 1/x = 0. Hence,

2y = −x+ k ± x
√

1− 2k/x+ k2/x2 − 4/x3.

Setting xP = 1/x and yP = ±
√

1− 2k/x+ k2/x2 − 4/x3 (choosing either
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square root), we obtain a point P = (xP , yP ) on the curve

Ek : y2 = 1− 2kx+ k2x2 − 4x3

with xP , yP ∈ OF and xP a unit of norm 1.
Conversely, given a point (xP , yP ) on Ek with xP , yP ∈ OF and xP a unit

of norm 1, set

x = 1/xP ,

y = (k − 1/xP + yP /xP )/2,(2)

z = (k − 1/xP − yP /xP )/2.

Then x is clearly a unit of norm 1 in OF ; y, satisfying the equation y2 +
(x − k)y + 1/x = 0, is also in OF ; and z ∈ OF , since x + y + z = k. Hence
we obtain a solution to (1): (x, y, z), with x, y, z ∈ OF .

As is easily verified, the point (xP ,−yP ), which is also on Ek, corresponds
to the solution (x, z, y), a permutation of the solution corresponding to the
point (xP , yP ). In general, the automorphism ϕ : Ek(F )→ Ek(F ) defined by
ϕ(xP , yP ) = (xP ,−yP ) fixes equivalence classes of solutions to (1).

In this work, we consider the values of k for which |Ek(Q)| = 3. As is
easily verified, for any such k, Ek(Q) = {O, (0, 1), (0,−1)}. We note that this
condition excludes any k = −d2 with d ∈ Z−{0}, since (d, d3−1) ∈ E−d2(Q)
implies that

(3) |E−d2(Q)| > 3.

Since this condition also excludes k = 3, we see that, for all k under consider-
ation, Ek is an elliptic curve. We further note that |Ek(Q)| = 3 for almost all
values of k for which |Ek(Q)| is finite. In [5], we prove this fact and examine
the remaining cases with |Ek(Q)| finite.

In the following sections, we find all solutions to the system of equa-
tions (1) with |Ek(Q)| = 3 and (x, y, z) ∈ O 3

F where [F : Q] ≤ 4. We begin,
in Section 2, with the case [F : Q] ≤ 3, then, in Section 3, we consider
[F : Q] = 4.

2. Solutions with [F : Q] ≤ 3. Following the methods of Bremner [2],
we begin by determining all points (xP , yP ) ∈ Ek(F ) for any quadratic
field F .

Lemma 2.1. Let k ∈ Z be such that |Ek(Q)| = 3 and let [F : Q] = 2. If
P = (xP , yP ) ∈ Ek(F ) is a finite point, then for some t ∈ Q, either

1. xP = t and ±yP =
√

1− 2kt+ k2t2 − 4t3, or
2. x2P + t(t− k)xP + t = 0 and ±yP = (2t− k)xP + 1.

Proof. First note that if xP ∈ Q, then the coordinates in part 1 of the
lemma are immediate.
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Now assume that xP /∈ Q. Let P = (xP , yP ) be the conjugate of P over Q
and note that P ∈ Ek(F ). Let L be the line passing through P and P . Then
L is fixed by conjugation over Q and hence is defined by an equation with
rational coefficients. Let Q be the third point of intersection of Ek and L, and
note that, being fixed by conjugation over Q, Q is in Ek(Q). Since xP /∈ Q,
Q is a finite point in Ek(Q).

If Q = (0, 1), then the equation for L is y = mx + 1 for some m ∈ Q.
The x-coordinates of the points of intersection of L and Ek then satisfy the
equation (mx+ 1)2 = 1− 2kx+ k2x2 − 4x3, which simplifies to

4x3 + (m2 − k2)x2 + (2m+ 2k)x = 0.

Since xP /∈ Q, xP 6= 0, and so 4x2P + (m2 − k2)xP + (2m+ 2k) = 0. Letting
t = (m+k)/2 ∈ Q yields xP as in part 2 of the lemma and yP = (2t−k)xP+1.

If Q = (0,−1), by applying the homomorphism ϕ, from the introduc-
tion, to the previous case, we obtain the corresponding point with the same
expression for xP and −yP = (2t− k)xP + 1.

The following theorem gives all solutions to the system of equations
given in (1) with |Ek(Q)| = 3 and [F : Q] ≤ 2. It is easily verified that the
given solutions are distinct, unless k = −1, a value that is excluded by the
hypothesis, since |E−1(Q)| 6= 3.

Theorem 2.2. Let k ∈ Z be such that |Ek(Q)| = 3 and let [F : Q] ≤ 2.
If F = Q, then the equations x + y + z = k and xyz = 1 have no simulta-
neous solutions (x, y, z) with x, y, z ∈ OF . If [F : Q] = 2, the equations are
simultaneously solvable with x, y, z ∈ OF in exactly the following instances,
allowing for permutations of x, y, and z:

1. F = Q(ν) with ν2 = k2 − 2k − 3 and

(x, y, z) =

(
1,
k − 1 + ν

2
,
k − 1− ν

2

)
.

2. F = Q(ν) with ν2 = k2 + 2k + 5 and

(x, y, z) =

(
−1,

k + 1 + ν

2
,
k + 1− ν

2

)
.

Proof. It is easy to verify that each of these is a solution with x, y, z
∈ OF . To prove there are no other solutions, we assume that [F : Q] ≤ 2,
|Ek(Q)| = 3, and (x, y, z) ∈ O 3

F is a solution to the system of equations.
If x, y, z ∈ Q (and thus in Z), then xyz = 1 immediately implies that

x, y, z ∈ {−1, 1}. But then x + y + z = k implies that k = 3 or k = −1, in
which cases |Ek(Q)| 6= 3. So there are no rational solutions.

If not all of x, y, and z are in Q, but at least one is, say x ∈ Q, then
x = ±1. Solving the equation 1 + y+ 1/y = k leads to the solution in part 1
of the theorem, and solving −1+y−1/y = k leads to the solution in part 2.
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Now, suppose x, y, z ∈ F − Q and assume, without loss of generality,
that NF (x) = 1. Let P = (xP , yP ) be a point in Ek(F ) corresponding to the
solution (x, y, z). It follows that xP /∈ Q and NF (xP ) = 1. By Lemma 2.1,
since |Ek(Q)| = 3, x2P + t(t − k)xP + t = 0. Since NF (xP ) = 1, t = 1, and
so x2P + (1 − k)xP + 1 = 0 and ±yP = (2 − k)xP + 1. But this leads to a
solution, (x, y, z), with y or z equal to 1 ∈ Q, contrary to assumption.

The next theorem provides the solutions for the case [F : Q] = 3. Note
that the solutions given are distinct and that, for k ∈ Z, the given cubic
polynomials are irreducible. The solutions in part 2 were identified previ-
ously in [9].

Theorem 2.3. Let k ∈ Z and let [F : Q] = 3. The equations x+y+z = k
and xyz = 1 are simultaneously solvable with x, y, z ∈ OF in the following
instances, allowing for permutations of x, y, and z. If |Ek(Q)| = 3, then
these are the only solutions.

1. F = Q(µ) with µ a fixed root of X3 − (k + 1)X2 + (k + 2)X − 1 = 0
and

(x, y, z) = (µ2 − (k + 1)µ+ (k + 2), µ− 1,−µ2 + kµ− 1).

2. F = Q(µ) with µ a fixed root of X3 + (k + 3)X2 + kX − 1 = 0 and

(x, y, z) = (µ2 + (k + 3)µ+ k,−µ− 1,−µ2 − (k + 2)µ+ 1).

Proof. Let F be a cubic field. It is easy to verify that each of these is a
solution with x, y, z ∈ OF .

Suppose that |Ek(Q)| = 3 and (x, y, z) ∈ O 3
F is a solution to the system

of equations. By Theorem 2.2, x, y, and z cannot all be in Z. If at least one
is, say x ∈ Z, then x = ±1, and y and z are quadratic over Q, contradicting
the hypotheses. So x, y, z ∈ F −Q.

Assume, without loss of generality, that NF (x) = 1. Let P = (xP , yP )
be a point in Ek(F ) corresponding to the solution (x, y, z). From x /∈ Q, it
follows that xP /∈ Q.

Let C be the quadratic curve going through P and its two conjugates.
Let dy = px2 + qx + r be an equation for C with d, p, q, r ∈ Z, d 6= 0, and
gcd(p, q, r, d) = 1. Then the x-coordinates of the points of Ek ∩ C satisfy

d2(1− 2kx+ k2x2 − 4x3) = (px2 + qx+ r)2,

which simplifies to

(4) p2x4+(2pq+4d2)x3+(2pr+q2−k2d2)x2+(2qr+2kd2)x+(r2−d2) = 0.

Of the six points in Ek ∩ C, three are (xP , yP ) and its conjugates and,
from (4), at least two are infinite points. Let Q be the one additional point.
Since the coefficients of (4) are rational, the set of solutions is closed under
conjugation and thus Q must be rational.
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If Q is infinite, then p = 0. Thus, xP ∈ OF is a root of

4d2x3 + (q2 − k2d2)x2 + (2qr + 2kd2)x+ (r2 − d2) = 0.

But then, since NF (xP ) = 1, we have r2 = −3d2, a contradiction.

If Q = (0, 1), then since (0, 1) is on C, we have d = r. After removing
the extra factor of x, equation (4) becomes

(5) p2x3 + (2pq + 4d2)x2 + (2pd+ q2 − k2d2)x+ (2qd+ 2kd2) = 0.

Since xp is an algebraic integer of norm 1, each coefficient is divisible by p2

and 2qd+ 2kd2 = −p2.
Suppose that ` is a prime factor of d. Since −p2 = 2qd+ 2kd2, we have

` | p, and since p2 | (2pd+q2−k2d2), we also have ` | q. But d = r then implies
that ` | gcd(p, q, r, d), a contradiction. Hence, d = ±1. Assume without loss
of generality that d = 1.

It follows that p2 = −2q − 2k and p2 | (2pq + 4). From the first con-
dition, p is even; from the second, p | 4. If p = ±4, we get 16 | (±8q + 4),
a contradiction. Thus p = ±2. From p2 = −2q − 2k, q = −(k + 2).

If p = 2, then, by (5), the minimal polynomial for xP is x3− (k+ 1)x2 +
(k+2)x−1 and, from the equation for C, we have yP = 2x2P − (k+2)xP +1.
Using (2), this yields the solution in part 1 of the theorem. If p = −2, the
minimal polynomial for xP is x3 + (k + 3)x2 + kx − 1 and yP = −2x2P −
(k + 2)xP + 1. This yields the solution in part 2.

As noted in the introduction, if Q = (0,−1), the same solutions (up to
permutation) are obtained.

3. Solutions with [F : Q] = 4. The case [F : Q] = 4 is more compli-
cated, as illustrated by the following theorem and proof. Again, our method
of proof is motivated by [2].

Theorem 3.1. Let k ∈ Z and let [F : Q] = 4. The equations x+y+z = k
and xyz = 1 are simultaneously solvable with x, y, z ∈ OF in the following
instances, allowing for permutations of x, y, and z. If |Ek(Q)| = 3, then
these are the only solutions.

1. F ⊇ Q(γ, δ) where, for some t ∈ Z, δ is a fixed root of X2−tX−1 = 0,
γ is a fixed root of X2 = (δ − k)2 − 4(δ − t), and

(x, y, z) =

(
δ,
k − δ + γ

2
,
k − δ − γ

2

)
.

2. F ⊇ Q(γ, δ) where, for some t ∈ Z, δ is a fixed root of X2−tX+1 = 0,
γ is a fixed root of X2 = (δ − k)2 + 4(δ − t), and

(x, y, z) =

(
δ,
k − δ + γ

2
,
k − δ − γ

2

)
.
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3. F ⊇ Q(ω) where, for some t ∈ Z, ω is a fixed root of X4 + (t2 −
kt+ 2)X3 + (−kt+ 3t− k + 1)X2 + (t− k + 2)X + 1 = 0 and

x = −ω3+(−t2+kt−2)ω2+(kt−3t+k−1)ω+(−t+k−2),

(t−1)y = −ω3+(−t2+kt−1)ω2+(t2−3t+k)ω+(t−2),

(t−1)z = tω3+(t3−kt2+2t−1)ω2+(−kt2+2t2+t−1)ω+t2.

4. F ⊇ Q(ω) where, for some t ∈ Z−{1}, ω is a fixed root of X4 + (t2−
kt− 2)X3 + (kt− t+ k + 1)X2 − (t+ k)X + 1 = 0 and

x = −ω3 + (−t2 + kt+ 2)ω2 + (−kt+ t− k − 1)ω + (t+ k),

(t− 1)y = −ω3 + (−t2 + kt+ 1)ω2 + (−t2 + t− k)ω + t,

(t− 1)z = tω3 + (t3 − kt2 − 2t+ 1)ω2 + (kt2 + t− 1)ω − t2.
We note that letting t = 0 in part 1 of Theorem 3.1 recovers the solutions

in Theorem 2.2. (These solutions can also be found using combinations of
letting t = k + 1 in part 1, letting t = 2, −2, or k − 1 in part 2, or letting
t = k + 2 or k − 2 in part 4.)

Proof of Theorem 3.1. Let F be a quartic field. Again, it is easy to
verify that each of these is a solution with x, y, z ∈ OF , so we assume that
|Ek(Q)| = 3, with (x, y, z) ∈ O 3

F a solution.
Assume, first, that at least one of x, y, and z, say x, is of degree strictly

less than four over Q. Then, since x is a unit in the quartic ring OF , x is a
root of X2 − tX + ε = 0, with t ∈ Z and ε = ±1. So 1/x = ε(t − x). From
the introduction, we see that y satisfies y2 + (x− k)y + 1/x = 0 and thus

y =
−x+ k ±

√
(x− k)2 − 4ε(t− x)

2
.

This yields the solutions in parts 1 and 2 of the theorem.
Now assume that x, y, and z are each of degree four over Q. Let P =

(xP , yP ) be a point in Ek(F ) corresponding to the solution (x, y, z). Then
xP is also of degree four over Q. Let C : dy = px3 + qx2 + rx + s be the
unique cubic curve through P and its three conjugates, with d, p, q, r, s ∈ Z,
d 6= 0, and gcd(p, q, r, s, d) = 1. Then the x-coordinates of the points of
Ek ∩ C satisfy

d2(1− 2kx+ k2x2 − 4x3) = (px3 + qx2 + rx+ s)2,

which simplifies to

(6) p2x6 + 2pqx5 + (2pr + q2)x4 + (2ps+ 2qr + 4d2)x3

+ (2qs+ r2 − k2d2)x2 + (2rs+ 2kd2)x+ (s2 − d2) = 0.

Of the nine points in Ek ∩ C, four are P and its conjugates, and at least
three must be infinite. This leaves two points to be determined. Since the co-



Solutions to xyz = 1 and x + y + z = k 387

efficients of (6) are rational, the set of solutions is closed under conjugation.
Thus there are three cases to consider: at least one of the remaining two
points is infinite, both points are finite and rational, or neither is rational.

If at least one of the additional points is infinite, then p = 0. Thus
xP ∈ OF is a root of

q2x4 + (2qr+ 4d2)x3 + (2qs+ r2 − k2d2)x2 + (2rs+ 2kd2)x+ (s2 − d2) = 0.

Since xP is an algebraic integer of norm 1, each coefficient is divisible by q2

and q2 = s2−d2. Suppose that ` is a prime factor of gcd(q, d). Then ` | s and,
since q2 | (2qs+ r2 − k2d2), ` | r. Since p = 0, we see that ` | gcd(p, q, r, s, d),
a contradiction. Thus gcd(q, d) = 1. Now, since q2 | (2qr+ 4d2), we find that
q | 4d2, and hence q | 4.

If q = ±1 or ±2, then q2 = s2 − d2 and d 6= 0 yield a contradiction. So
q = ±4 and, thus, s = ±5 and d = ±3. But then q2 | (2qr + 4d2) implies
that 16 | (±8r+ 36), a contradiction. Hence neither of the additional points
in the intersection is infinite.

If one of the two additional points is (0, 1), the other cannot be (0,−1),
since these points cannot both be on C. So if the two additional points are
rational, there is a double point at (0, 1) or (0,−1). If the double point is at
(0, 1), then since (0, 1) is on C, we have d = s. Removing the extra factor of
x and making this substitution in (6) yields

p2x5 + 2pqx4 + (2pr + q2)x3

+ (2ps+ 2qr + 4s2)x2 + (2qs+ r2 − k2s2)x+ (2rs+ 2ks2) = 0.

The second root at 0 then implies that 2rs+ 2ks2 = 0 and so r = −ks.
Making this substitution and removing the extra factor of x, we are left with

(7) p2x4 + 2pqx3 + (q2 − 2pks)x2 + (2ps− 2qks+ 4s2)x+ 2qs = 0.

Since xP is an algebraic integer of norm 1, each coefficient is divisible
by p2 and p2 = 2qs. Suppose that ` is a prime factor of s. Then ` | p
and so, since p2 | (q2 − 2pks), ` | q. But d = s and r = −ks then imply
that ` | gcd(p, q, r, s, d), a contradiction. Hence s = ±1. Without loss of
generality, assume that s = 1.

It follows that p2 = 2q, so 2 | p and p | q. Then, since p2 | (2p− 2qk + 4),
we find that p | 4. Thus p = ±2 or ±4.

If p = ±4, then q = 8, and since p2 | (2p−2qk+4), we have 16 | (12−16k)
or 16 | (−4− 16k), each a contradiction.

If p = 2, then, by equation (7), the minimal polynomial for xP is
x4 + 2x3 + (1 − k)x2 + (2 − k)x + 1 and, from the equation for C, we
have yP = 2x3P + 2x2P − kxP + 1. This yields the solution in part 3 of



388 H. G. Grundman and L. L. Hall-Seelig

the theorem with t = 0. If p = −2, then the minimal polynomial for xP is
x4 − 2x3 + (k+ 1)x2 − kx+ 1 and yP = −2x3P + 2x2P − kxP + 1. This yields
the solution in part 4 with t = 0.

As before, if instead the double root is at (0,−1), then the same solutions
(up to permutation) are obtained.

Finally, suppose that neither additional point is rational. Since the points
are on the curve C, this implies that the x-coordinates of the points are not
rational. Since the two points must be conjugates, the x-coordinates satisfy
an irreducible quadratic polynomial with rational integer coefficients. By
Lemma 2.1, the quadratic polynomial has the form x2 + t(t − k)x + t = 0
for some t ∈ Q− {0}.

Recalling that xP is of degree four over Q, let a, b, c ∈ Z be such that
x4 + ax3 + bx2 + cx + 1 is the minimal polynomial of xP over Q. Then
equation (6) factors as

(8) p2(x2 + t(t− k)x+ t)(x4 + ax3 + bx2 + cx+ 1) = 0.

By Gauss’s lemma, since the other coefficients are integers, the coeffi-
cients of p2(x2 + t(t− k)x+ t) must also be integers. So p2t(t− k) ∈ Z and
p2t ∈ Z. Since k ∈ Z, we have p2tk ∈ Z, and so p2t2 ∈ Z. Since t ∈ Q and
p ∈ Z, this implies that pt ∈ Z and thus t = n/p for some n ∈ Z−{0}. Mak-
ing this substitution, expanding (8), and equating coefficients with those
in (6), we have:

2pq = p2a+ n(n− pk),(9)

2pr + q2 = p2b+ n(n− pk)a+ np,(10)

2ps+ 2qr + 4d2 = p2c+ n(n− pk)b+ npa,(11)

2qs+ r2 − k2d2 = p2 + n(n− pk)c+ npb,(12)

2rs+ 2kd2 = n(n− pk) + npc,(13)

s2 − d2 = np.(14)

Suppose that ` is a prime dividing p. Equations (9) and (10) imply that
` |n and ` | q, respectively, and (11) implies that ` | 4d2. If ` | d2, then ` | d,
and by (12) and (14), we find that ` | r and ` | s. But then ` | (p, q, r, s, d),
a contradiction. Thus (p, d)=1 and ` | 4, implying that `=2. Hence p=±2m

for some m ≥ 0.

If 4 | p, then (9) implies that 8 |n2 and so 4 |n. Equation (10) then implies
4 | q, and from (11), we find that 2 | d, a contradiction. Thus p = ±1, ±2.
Without loss of generality, assume p > 0.

Now, since p = 1 or 2, equation (9) implies that p |n and thus t = n/p
∈ Z. Then, by equation (14),

(15) d2 = s2 − p2t.
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Replacing n by pt and eliminating d2 from (9) through (13), we have

2q = pa+ pt(t− k),(16)

2pr + q2 = p2b+ p2t(t− k)a+ p2t,(17)

2ps+ 2qr + 4(s2 − p2t) = p2c+ p2t(t− k)b+ p2ta,(18)

2qs+ r2 − k2(s2 − p2t) = p2 + p2t(t− k)c+ p2tb,(19)

2rs+ 2k(s2 − p2t) = p2t(t− k) + p2tc.(20)

Using (16) to eliminate q and (20) to eliminate r in (17) through (19),
then simplifying, we obtain

(21) psa2 − 4psb− 8ks2 + 4p2tc+ 4kp2t− 4pst+ 2psta(k − t)
+ 4p2t2 + k2pst2 − 2kpst3 + pst4 = 0,

(22) 2p2sc− 4ps2 + 2kps2a− 8s3 − p3tac− kp3ta+ 8p2st+ 2p2sta

−2kp2stb− 2k2ps2t− p3t2a+ kp3t2c+ k2p3t2

+2p2st2b+ 2kps2t2 − p3t3c− p3t4 = 0,

(23) 4ps2 − 4s3a+ 4ps2tb+ 4ks3t− p3t2c2 − 2kp3t2c− k2p3t2

+ 4ps2t2c+ 4kps2t2 − 4s3t2 − 2p3t3c− 2kp3t3 − p3t4 = 0.

Next, multiplying (22) by 2t and (23) by pt, then using (21) to eliminate
b in each and letting

A = −2s+ pta− pt2(t− k)(24)

and

C = p2c+ kp2 − 2ps− 2s2 + p2t(25)

yields

s(t− k)A2 − 2tAC + 4s(3t− k)(p2t− s2) = 0(26)

and

s2A2 − t3C2 + 4s2(t3 − 1)(s2 − p2t) = 0.(27)

Recalling that s2− p2t = d2 and using (26) to eliminate C in (27) yields

(28) s2(A2 − 4d2)
(
(4− t(t− k)2)A2 + 4td2(3t− k)2

)
= 0.

At least one of the three factors of the left-hand side must be zero. We
consider each, beginning with the second.

If A2 − 4d2 = 0, then A = 2dε for some fixed ε = ±1. Combining this
with (15) and (26), recalling that t 6= 0, yields C = −2sdε, and combining
with (24) yields

(29) pta = 2dε+ 2s+ pt2(t− k).

Set α = s− dε. Then α(s+ dε) = s2 − d2 = p2t, by (15). Equation (17)
implies that p | q, so there exists v ∈ Z such that pv = q. Noting that,
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by (29), pt2(t − k) = pta − 2dε − 2s and combining this with (16), then
multiplying by α, we get αa = p+ αv. Thus, α | p.

Clearly, if p = 1, α = ±1. If p = 2, then (15) implies that s ≡ d (mod 2),
and so α = s− dε is even. Thus α | p implies that α = ±2. So in either case,
α = ±p. Let β = ±1 be such that

α = βp.

Now, since α(s + dε) = p2t, s + dε = βpt, and so s = βpt − dε =
βpt + βp − s. Thus, 2s = βp(t + 1). Combining C = −2sdε with (25), we
have

cp2 = 2s(p+ s− dε)− (k + t)p2.

Using 2s = βp(t+ 1) and s− dε = βp, c = βt− k + β + 1. From (29), using
s + dε = βpt, a = t2 − kt + 2β. Simplifying (21), eliminating a, c, and s,
yields b = t− βkt+ 2βt− kβ + 1.

Thus, if β = 1, we have (a, b, c) = (t2−kt+ 2,−kt+ 3t−k+ 1, t−k+ 2),
which yields the remaining solutions in part 3 of the theorem; and, if β = −1,
we have (a, b, c) = (t2 − kt − 2, kt − t + k + 1,−(t + k)), which yields the
remaining solutions in part 4. (In these parts of the theorem, we disallow
the value t = 1, which would duplicate the solution in part 2 with t =
k − 1. Further, although t 6= 0 at this stage of the proof, the solutions
corresponding to t = 0 were derived earlier.)

Alternatively, suppose that the first factor of (28) is zero and the
second is not, that is, s2 = 0 and A2 − 4d2 6= 0. Then s = 0 and, by (15),
d2 = −p2t. If p = 2, then this implies that 2 | d. But then, by (17), 2 | q and,
by (19), 2 | r. So 2 | gcd(p, q, r, s, d), which is a contradiction. Thus, p = 1.

We can now simplify equations (16) through (20) with s = 0 and p = 1,
and eliminate q from (17) and (18), using (16). This leaves us with

8r + (a+ t(t− k))2 = 4b+ 4t(t− k)a+ 4t,(30)

r(a+ t(t− k))− 4t = c+ t(t− k)b+ ta,(31)

r2 + k2t = 1 + t(t− k)c+ tb,(32)

−k = t+ c.(33)

Using (30) and (33) to eliminate b and c in (31) yields

4r(a− t(t−k)) = t3(t−k)3−2at2(t−k)2− t(t−k)(4t−a2)−4(k−3t−at).

Now, if a− t(t− k) = 0, then (30) simplifies to b = 2r − t and therefore
(32) becomes r2 + t3 = (2r − t)t + 1. Since t = −d2, this is equivalent to
(r − t)2 − (d3)2 = 1, which is impossible, since d 6= 0. So a − t(t − k) 6= 0
and thus

(34) r =
t3(t− k)3 − 2at2(t− k)2 − t(t− k)(4t− a2)− 4(k − 3t− at)

4(a− t(t− k))
.
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Using (30), (33), and (34) to eliminate b, c, and r in (32) yields

(35) (t(a−t(t−k))2+4)
(
(t(t−k)2−4)(a−t(t−k))2+4(3t−k)2

)
= 0.

If the first factor of (35) is zero, then −t(a − t(t − k))2 = 4. Using (24)
with s = 0, p = 1, and d2 = −t, we have A2 = t2(a − t(t − k))2 = 4d2,
contrary to assumption.

Thus the second factor of (35) is zero, and so

(4− t(t− k)2)(a− t(t− k))2 = (2(3t− k))2.

Hence, 4 − t(t − k)2 is a square. Recalling d2 = −t, we conclude that
4 + (d(d2 + k))2 is a square, and therefore d(d2 + k) = 0. Hence, since d 6= 0,
we have k = −d2. But then, by (3), |Ek(Q)| > 3, contrary to assumption.

Finally, returning to (28), suppose that the last factor in the product is
zero, while neither of the first two factors is zero. Then

(36) (4− t(t− k)2)A2 + 4td2(3t− k)2 = 0.

If A = 0, then, using d2 = s2 − p2t, equation (27) simplifies to t3C2 =
4s2d2(t3−1). It follows that t(t3−1) is a square, and therefore t and t3−1, be-
ing relatively prime, are both squares. Letting t = j2, we have that (j3)2−1
is a square. Thus j3 = ±1, and so j = ±1 and t = 1. Now, since A = 0,
equation (36) implies that 4td2(3t− k)2 = 0 and therefore k = 3t = 3, also
contrary to assumption.

Thus A 6= 0 and so, since t 6= 0, equation (36) is equivalent to

1− 2kt−1 + k2t−2 − 4t−3 = (2d(3t− k)A−1t−1)2.

It follows that (t−1, 2d(3t − k)A−1t−1) is a finite rational point on Ek. But
this implies that t−1 = 0, which is clearly impossible.

Therefore, there are no solutions other than those given in the statement
of the theorem.
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