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1. Introduction. The distribution of prime numbers shares many prop-
erties with the distribution of numbers that are representable as a sum of two
squares, an analogy that is occasionally employed to obtain model problems
for questions about the primes. Let us consider the distributions of the two
sets in arithmetic progressions. Starting with the average orders, we have
on the one hand the prime number theorem, asserting that m(z) ~ x/log x.
For the set S of sums of two squares on the other hand, Landau proved
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an analogous asymptotic in 1908, namely

Z 1s(n) ~ Bz /+/logx ,

n<x

where B = % sz?) (mod4)(1 - p72)

Turning towards more general arithmetic progressions, let a and ¢
be coprime integers; then the primes congruent to a modulo ¢ satisfy
m(x;q,a) ~ x/($(q) log x). Building on Landau’s result and the analogy
to primes, Prachar [20] proved in the 1950s that, when furthermore a =
1 (mod ged(4,q)), sums of two squares show the following behaviour @

-1/2

X
Y. ls(n)~ Bqﬁ :

n<x
n=a (mod q)
where
4, ~
Bq:Bq—l( Q) H (1+p 1).
2,9 _,
p=3(mod4)

plg

The factor (4,q)/(2,q) describes that the density of sums of two squares is
twice as high in the progression n = 1 (mod 4) as it is in n = 1 (mod 2).
From pairs (a,q) that are not coprime, one needs to remove those choices
from consideration that lead to whole progressions entirely lying outside the
set S. Examples are integers n such that n = 3 (mod 32), which are never
a sum of two squares, or numbers of the form (3 - 5)n + 32, which can only
be a sum of two squares when 3 | n. When excluding such classes a (mod gq),
the constant B, only needs to be adapted by restricting the product over
p =3 (mod 4) to primes dividing ¢/gcd(a, q).

Thus, both sets, the primes and the sums of two squares, show some
uniformity in the distribution in residue classes once one excludes residue
classes that for obvious reasons contain too few elements.

It is natural to ask whether this uniformity carries further: is, for in-
stance, the distribution uniform enough to determine asymptotically the
density of solutions to linear equations within these sets? More precisely, we
are interested in an asymptotic for correlations of the form

> @i,

n€ZiNK =1

where the ; : Z% — Z are affine linear forms and where the arithmetic
function f : Z — R is either the characteristic function 1g of the sums of
two squares, or the characteristic function of the primes.

(*) This compact formulation of the result is due to Iwaniec [15].
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Green and Tao [8] studied these correlations in the case of the primes.
They replaced for this purpose the sparse set of primes by a weighted ver-
sion of asymptotic density 1 which is given by the von Mangoldt function.
We shall not normalise the characteristic function 1g in an analogous way,
but instead consider the intrinsically weighted function that is given by
the representation function of sums of two squares, R(n) = [{(z,y) € Z :
2?2 +y? = n}|. Counting lattice points in a circle of radius VN immediately
shows that the representation function has indeed an asymptotic density
given by >y R(n) ~ mN. As we will see, the nilpotent Hardy-Littlewood
method which Green and Tao developed to handle linear correlations among
the primes can also be employed in the case of the representation func-
tion R(n).

Instead of restricting attention to representations as sums of two squares,
the slightly more general case of representation by a positive definite binary
quadratic form f(x,y) = ax?+bxy+cy? will be considered. The correspond-
ing representation function is then given by

Ry(n) = {(z,y) : f(z,y) = n}|.

Notation. Throughout the paper, we write [m] for the set of num-
bers {1,...,m} and e(x) for exp(2mz). We let v, : N — Ny denote the
p-adic valuation. If T is a finite set, we use the expectation notation E;cp
to abbreviate |T'|™' 3", . A linear correlation is defined along a system
U = (Y1,...,9%) : Z¢ — 7! of affine linear forms. Such a system may be
written as ¥(n) = ¥(0) + ¥(n), for a linear map ¥. We regard ¥ as fixed,
while ¥(0) may, for instance, depend on K. Thus, all implicit constants in
asymptotic notation, such as O(), o() and <, are allowed to depend on the
coefficients of the linear map ¥, the dimensions d and ¢ of the domain and
the target space of ¥, and on the discriminants of the forms fi,..., f;.

Methods and results. The nilpotent Hardy—Littlewood method pro-
vides a scheme that allows one to obtain, for any given arithmetic function
h with sufficiently quasirandom behaviour, an asymptotic for the expression

t

neKnzd i=1
where K C [~N, N]? is convex and satisfies 1;(K) C [1, N] for each i €
{1,...,t}. We proceed to describe the basic set-up for the method. There
are two main requirements on h. One is that h has small Gowers uniformity
norms (see Section and the other is that one can find a majorant v :
{1,..., N} — Ry such that

1. (magorant property) the pointwise estimate h(n) < Cv(n) is satisfied
for an absolute constant C independent of NV,
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2. (density condition) h has positive relative density in v in the sense
that EnSNh(n) ~ C/EnSNI/(n),
3. (pseudorandomness) v is a pseudorandom measure.

A pseudorandom measure resembles a true probability measure. Apart
from requiring its total mass to be approximately 1, that is, E,<yv(n)
= 1+ o(1), there are two further defining conditions for a pseudorandom
measure: the linear forms condition and the correlation condition. Each of
them places some independence requirements upon v. The linear forms con-
dition for instance requires

Enexrze | [ v(Wi(n)) = 1+ 0(1)

i=1

to hold for certain systems of affine linear forms. Once in possession of such
a pseudorandom majorant, a number of tools are available. We will describe
them as we encounter them.

Regarding the first condition on A, which was the smallness of certain
Gowers uniformity norms, there is an explicit (and quite strong) necessary
condition that has to be satisfied: A must be equidistributed in residue classes
to small moduli. The results quoted at the beginning of this introduction
show that neither the characteristic function 1g(n), nor its weighted ver-
sion r(n) meet this requirement. In such a situation, it may be possible to
decompose the function h into a sum of functions that are more uniformly
behaved and consider each of these functions separately. This decomposition
is known as the W-trick and will be carried out in Section [7l

In Section [2] we construct a majorant for the representation function
attached to a primitive form f. This majorant will be slightly modified in
accordance to the W-trick in Section [l In Section [0 we check that our
majorant is indeed pseudorandom.

In the course of the minor arc analysis, which starts in Section we ob-
serve that polynomial subsequences of §-equidistributed linear nilsequences
are still reasonably equidistributed (see Proposition below). This re-
sult will be deduced from the quantitative equidistribution theory Green
and Tao worked out in [10]. In connection with their factorisation theo-
rem [10, Thm. 1.19], it could prove a useful tool for the minor arc analysis
of a wider range of arithmetic problems.

Due to the quite complex foundations of the Green—Tao methods it
proved not feasible to provide a self-contained account of it here. This pa-
per therefore strongly depends on [8]. It furthermore relies on results about
the divisor function from [18], which will be used in the construction of the
pseudorandom majorants.
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Results. In [18] a pseudorandom majorant for the normalised divisor
function 7(n) = (log N)~*Y djn 1 has been constructed. Here we shall com-
bine this majorant with a sieving majorant to obtain a pseudorandom ma-
jorant for the function R¢(n) which counts the number of representations
of n by a primitive positive definite binary quadratic form; results for the
non-primitive case are immediate corollaries.

With this majorant at hand, we obtain, employing the machinery from
[6, 8] in combination with the inverse theorem for the Gowers uniformity
norms [11], an asymptotic for the representation function Ry evaluated along
systems of linear equations:

THEOREM 1.1. Let f1,..., fi be primitive positive definite binary quadra-
tic forms. Let W = (a1, ..., 9;) : Z& — 7t be a system of affine linear forms
such that no two forms 1; and v are affinely dependent. Suppose that the
coefficients of the linear part W are bounded and that K C [N, N]? is a
convez body such that W(K) C [0, N]t. Then

Y Rpi(n) .. Ry, (¢u(n) = Boo [ [ By + o(N9),

nezZinkK
where
2w
—D; ’

Boo = VOI(K) H
i=1

and

H pfmm(a)(pm)

Bp = lim EaE(Z/me)d pm

m—r0o0

)

i€]t]

with py a(q) denoting the local number of representations of A (mod q) by f,
that 1is,

pra@) = {(z,y) € ld*: f(z,y) = A (mod ¢)}|.

Theorem [1.1] extends previous results by Heath-Brown [12] and improve-
ments thereof by Browning and de la Breteche [1], where the case of sums
of two squares, f;(z,y) = 2% + y?, for i = 1,...,4, together with systems
W : 72 — Z* was considered. We emphasise, however, that, in contrast to
the results from [12] and [1], we unfortunately do not obtain explicit error
terms in our asymptotic.

The most interesting case of correlation along a system of affine linear
forms is certainly the ‘infinite complexity’ case of

EHSNR]@(TL + al) ... Rf(n + ad),

corresponding to the prime-tuples problem. In this case the linear forms
involved are not independent and thus an asymptotic would give very strong
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information on the regularity of distribution of the function involved. Results
of this type lie out of reach of the Green—Tao Hardy—Littlewood method.

It is worth mentioning at this point a recent related result of Henriot [13]
which provides a correct order upper bound for E,<nF(|Q1(n)], ..., |Q¢(n)]),
where F' : N* — Rs( belongs to a family of functions that does include
F(ny,...,n) = 1_[;:1 Ry, (n;), and where the Q; are coprime irreducible
polynomials. The bounds in this result are independent of the discriminant
of the polynomial Qg ... Q;.

Theorem has some natural arithmetic consequences. Analysing the
frequency of 4-term arithmetic progressions in sums of two squares (weighted
by the representation function) may be viewed as a special case of studying
the (average) number of simultaneous zeros of a pair of diagonal quadratic
equations, namely solutions to

o3+l — 223 — 225 + 22 + a2 =0,
x5+ 2 — 228 — 223 + 2% + 2 = 0.

While the respective system for 3-term progressions may be easily handled
by the circle method, Heath-Brown mentions in [12] that in order to give
an asymptotic for the number of 4-term arithmetic progressions in sums
of two squares “it would appear that one would require a version of the
‘Kloosterman refinement’ for a double integral”. Browning and Munshi [2]
have succeeded in showing that the circle method can in fact be employed
to study any pair of quadratic equations in n > 9 variables that takes the
form

Fi(zs,...,x,) = —c(x% + x%), Fy(xs,...,25) = 0.

Previously, the classical Hardy—Littlewood method had been successfully
applied to pairs of diagonal quadratic equations in at least nine variables:

THEOREM 1.2 (Cook [3]). Let F,G : Z° — Z be integral diagonal quadra-
tic forms such that for all real \, u, not both zero, A\F + uG is an indefinite
form in at least five variables. Then there is some positive constant Ky such
that the number of simultaneous integral zeros of F' and G in the box

PS.TZSCP, iZl,...,g,
s given by
N(P) = KoP° +0(P°) as P — cc.

Our result, which is in fact an analogue of [8, Thm. 1.8], considers certain
highly singular systems of quadratic equations in eight or more variables.

THEOREM 1.3. Lett > 4 and let f1,..., fr be primitive positive definite
binary quadratic forms. For an integer s <t — 2, let A € Mgy(Z) be a full
rank matriz whose row-span over Q contains no non-trivial element with
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less than three non-zero entries. Define a height function H : Z*' — Rsq by
H(z) = max i(x2i_1,22:).
(z) jellot} fJ( 2j~1, T2j)
Then the simultaneous zeros of the system of quadratic forms
t

Fi($1, - ,CL‘Qt) = Z aiyjfj($2j,1, l‘gj), 1€ {1, ey S},
j=1

satisfy the following asymptotic:

{xeZ?:H(z) <N, Fi(z) == Fy(z) =0}
NG R = SR
B m 001;[ pt (N )7
where
o — lim Hz € (Z/p™Z)? : Fi(z) = = Fy(z) =0 (mod p™)}|
P S (pm)2t—s
and

Qoo i= {z € {1,...,N?}t: Az = 0}|.

We conclude this introduction with the fairly short deduction of Theo-
rem [L.3]

Proof of Theorem from Theorem [1.1. The number of simultaneous
zeros of bounded height of the forms F, ..., F} can be reinterpreted in terms
of representation functions:

(1.1) HzxeZ®:F(zx)=---=Fy(z) =0, H(z) < N}|

To turn the latter expression into the form of a linear correlation, we may
follow [8| §4]: Pick a basis for the integer lattice

I:={z€Z": Az =0}.

Since A has full rank, I" has rank d := ¢t — s, and thus there are linear forms
1, .., Z% — 7 such that

I'={(1(n),...,p(n)) : n € 29},

This system of forms has finite complexity, as otherwise we would find i # j
such that a;1); = a;1; for some non-zero integers o, oj. Hence,

F={z€Z": A2 =0, ayz; — ajz; = 0},
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which implies by the full rank assumption on A that the row-space of A
contains a non-trivial element with less than three non-zero entries, a con-
tradiction.

Thus, (1.1) takes a form to which Theorem applies and we obtain
{zeZ?: Fi(z)=---=Fy(z) =0, H(z) < N}|

t
= > 1177 wi(ny)

neNeNw—1([1,N?2]) j=1
(2m)?

VD1 -

= vol(R%, nw~1([0, N2]')) Hﬁp +o(N*).

Note that
vol(RLy NP 1([0, N3)")) = [{n € Z* : W(n) € [0, N?]'}| + o(N??)
. —{ze{1,.. N2} Az = 0}] + o( N2,
which justifies defining as = [{z € {1,...,N?} : Az = 0}|. It remains
to interpret the local factors g, in terms of Fi,..., F;. If m is sufficiently

large, then the Z-basis (1;);¢[q of I" gives rise to a ba81s of {z € (Z/p™Z)" :
Az =0 (mod p™)}, whence

t m
P @)
Ewesprzyt | | = me = p )
j=1

x> T a1, 225) € ™+ fi(wa-1,25) = 5(a) (mod p™)}]

a€(Z/pm7)d j=1
_ Hz € (Z/p™Z)? . Fy(x) = = Fy(z) =0 (mod p™)}|
(pm)2t—5 ?

which yields 8, = «,, for all primes p. =

2. A majorant for the representation function via the Kronecker
sum

Preliminaries and notation. Recall that a binary quadratic form
f(z,y) = azx? + bxy + cy? is primitive when (a,b,c) = 1 and that its dis-
criminant is given by D(f) = b?> — 4ac. Throughout this paper all binary
quadratic forms will be assumed to be positive definite. The number of ways
a form f represents an integer n is described by the representation function
Ry : Z — 7 defined by

Ry(n) = {(z,y) : f(z,y) = n}|.
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In order to make use of some multiplicative properties of R, we introduce
the function 7y : Z — Z defined by

ri(n) := Ry(n)/k(D),
where k(D) denotes the number of automorphs of binary forms of discrimi-
nant D. We have k(D) = 6,4, 2 according to whether D = -3, D = —4 or
D < —4, respectively.
Closely related to r¢ is the function 7p(y) : Z — Z which counts—up to
the factor k(D)—the number of ways n is represented by any equivalence
class of forms of discriminant D = D(f). We define rps) by

rognm) = > rp(n),
D(f")=D(¥)
where f’ runs through a complete system of representatives of primitive
forms of discriminant equal to D(f).

The function rp(s) majorises ry and has some properties that suggest
it may be a good candidate to start the construction of a pseudorandom
majorant with: on the one hand, the number h(D) of equivalence classes of
primitive forms of discriminant D is finite, and thus the average order of
Tp(f) is comparable to the average order of r¢; on the other hand, rp(y) has
an arithmetic representation as a divisor sum, a structure that proved to
be well suited for the construction of a pseudorandom majorant in both [6]
and [18].

Let f be a primitive positive definite form of discriminant D. Then
rf(n) =0 for n < 0 and r¢(0) = 1. For positive integers n coprime to D, rp

has the representation
D
rp(p)(n) = Z(E)

dln

as a character sum, where (°) is the Kronecker symbol. For general n, we
pick up another factor which depends only on ged(n, D) and the parities of
the o in Hp|D,pa||n p®. We will see in Corollary that

D
(2.1) rD(f)(n) <p Z(E)
din
for all n € N.
Recall that the Kronecker symbol is only non-zero when its entries are
coprime and that furthermore the following lemma holds (see for instance [4,
Thm. 1.14]).

LEMMA 2.1. If D = 0,1 (mod 4) is a non-zero integer, then there is a
unique character xp : (Z/DZ)* — {—1,1} such that xp(p (mod D)) = (%)
for odd p coprime to D.
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Let Qp denote the set of primes for which xp(p) = —1. Note that this
is the union of the primes in a collection of progressions modulo D. By
multiplicativity we have

(22) Z(%) => xo@d) = [ +xp@) +--+x0(®")
dln d|n p*||n

1 (e
= 71p(n) H 5(14‘(—1) )s
p*|In,p€EQpD
where
p(m) = II @+
p*|lm, xp (p)=1

We denote by Pp the set of primes for which xp(p) = 1. Thus, a square-
free number n is represented by some form of discriminant D(f) only if all
of its prime factors belong to Pp or divide D(f).

We can say a little more about the sets Pp and Qp: Since x is a non-
principal character taking values %1, the fact that > ¢z /pz)- x(a) = 0
implies that both Pp and Qp are the union of the primes in exactly ¢(D)/2
progressions modulo D. Thus, the square-free numbers that are coprime
to D and representable by some form of discriminant D are those numbers
whose prime factors belong to a set comprising asymptotically half the prime
numbers.

As a last piece of notation, given any set P of primes, let (P) denote the
set of natural numbers all of whose prime factors belong to P. Thus we may

write
TD(n): Z 1d|n
de(Pp)

Construction of the majorant. The key observation for the construc-
tion of our majorant for ry is that according to and it suffices
to find two majorants separately: one for a divisor-type function related to
Tp, and one for the characteristic function of the set of numbers without
Qp-prime factors. Writing P}, = PpU{p : p| D}, the characteristic function
of interest is Lipsy- The shifts by square factors of the form HpE o5 p*® only
influence the asymptotic density by a constant factor and may be taken care
of separately. If v is a majorant for 7p and if 8 is a majorant for Lipry, then
r¢(n) is majorised by

me(Qp)

The majorant ( for Lips) will be chosen as a sieving majorant. In fact,
the approach via sieve weights in [8] proves universal enough to apply here
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too without much change. Concerning v, we make use of the results on the
divisor function from [18].
Since neither 7p nor 1<7>]»5> has asymptotic density, we proceed to deter-

mine the average order of 7p and show that E,<xn7p(n) < (log N)'/2. This
suggests renormalising the factors in the bound on rpy) as follows:

DN
TD(f)(TZ) <p (10gD](V))1/2 Z 1<p£>(n/m2)(10g N)1/2.
me(Qp)

m2|n
Iwaniec [15] proves via sieve theory that it is indeed the case that Lipry is
of average order (log N)~/2. This bound, however, is not needed here.
LEMMA 2.2. 7p satisfies the asymptotic bounds
E,<n7p(n) < (log N)'/2,
where the implicit constants may depend on D.

Proof. We have

1 N 1
de(Pp) de(Pp)
d<N d<N

To estimate the last sum, observe that on the one hand

1 —1\-1 1/2

> S < [ 0—pH) " < (log V)72,
de(Pp) pPEPD
d<N p<N

where the last step follows from the prime number theorem in arithmetic
progressions in the form

1
Z p 1= ——loglog(N) + O(1).
_ ?(q)
p=a (mod q)
p<N

The above remains true when replacing Pp by (Q},) := Qp U{p : p| D}
and O(1) by Op(1). On the other hand the following chain of inequalities
allows us to deduce a matching lower bound:

logN—i—O(l)_ZiLS( 3 1>< 3 1)

mq ma
n<N m1€(Pp) m2€(Q5,)
m1<N ma<N
1 1/2
<<< > ml)(logN) .
m1E€(Pp)

mi1<N
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The divisor-type majorant. To start with, we recall the divisor func-
tion majorant that was constructed in [18] based on Erdés’s work [5]. For
any v > 0 define the truncated divisor function 7, : [N] — Z by

Ty(n) = Z Lajn

d<N7

and the truncated restricted divisor function 7p  : [N] = Z by

TpH(n) = Z Lajp-

de(Pp)
d<N7
PRrROPOSITION 2.3 (|18], majorant for the divisor function). Let & =27
for some m € N. Let Cy be a parameter and write Xg = Xo(C1, N) for the
exceptional set of alln < N satisfying either

(1) n is excessively “rough” in the sense that it is divisible by some prime
power p®, a > 2, with p® > logc1 N, or
(2) n is excessively “smooth” in the sense that if n =[], p® then

H pa > Nﬁ/loglogN'
pS]\fl/(loglogN)3

Further, define U(i,2/€) := {1} for i = logy(2/€) — 2, and U(4,2/€) =0
else. If s > 2/¢, write U(i,s) for the set of all products of my(i,s) :=
[¢s(i + 3 — logy 5)/100] distinct primes from the interval [NV N1/2'.
Define v¢ : [N] = R by

(loglog N)3 6loglog log N

ve(n) == Z Z Z 271y Te(n) + lnex,7(n).

s>2/€ i>logy s—2 uel(i,s)
Then 1(n) < De(n) for alln < N, provided N is sufficiently large.

Note that the main term of 7¢ has low complexity in that it only in-
volves small divisors since all u < N¢. Restricting all occurrences of divisor
functions in 7¢ to only count divisors in (Pp), yields a majorant for 7p of
the same order of magnitude as 7p. We make one further modification and
replace the cut-off in the definition of 7p by a smooth cut-off of the form
which appears in Green and Tao’s A-majorant. This turns out to be advan-
tageous when establishing the linear forms condition. Thus, let x : R — R
be a smooth, even function that is supported on [—1, 1] and has the property
x(z) =1 for x € [-1/2,1/2]. Define 7j,  : [N] = Z by
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Then 7p /2 < 7} (n) < Tp,5(n). With this definition we have the following
lemma.

LEMMA 2.4 (A majorant for 7p). Let the sets Ul(i,s) be those which
Pmposition produces for § = v/2. Let vp : [N] = R be defined by

Cvpy(n)
(loglog N)3 61oglog log N

GO VD i S M ORI ]

s>4/v i>logy s—2 uel(i,s)

Then 7p(n)/(log N)Y/2 < Cvp . (n) for all n € [N] and there is some con-
stant C' bounded independently of N such that En<nvp(n) =1+ o(1).

Proof. We begin by checking the majorisation property. For any n € [N],
write n = npm where np is the largest factor of n that belongs to (Pp).
Then

7p(n) = 7(np) < 0y pa(np) < Cllog N)?vp - (np) = C(log N)/2vp 4 (n),

as required. The existence of C follows as in the proof of |18, Prop. 4.2],
taking into account that E,,<nTp,/2(m) =< (log N)'/2, which is proved in
much the same way as Lemma .

The sieving type majorant. The next task is to give a majorant
B : N — R* for the characteristic function of the set (Pj) of numbers
without Qp-prime factors. Adapting the Selberg-sieve majorant for primes
from [§] to the set (P}), we aim to remove all integers that have prime factors
p from Qp with p < N7. Let x : R — R be a smooth, even function that is
supported on [—1, 1] and satisfies x(0) = 1. Define, in analogy to [8, App. D],

)= Aol = Clos (S (5L )

d|n, de{Qp)

for some constant C”. The results from [8] show that C’ may be chosen such
that E,<ny8(n) = 1+ o(1). This will play a role in Section @ Note that
B(m) = C'(log N)'/? at every Qp-prime-free integer m < N, and thus we
have the pointwise majorisation

Lipsy(n)(log N)'/? < C''B(n), n e [N].

3. A reduction of the main theorem. While it is possible to apply
the nilpotent Hardy-Littlewood method to the representation function rj
itself, it is the aim of this section to show that we can deduce the main
theorem from a similar statement about a smoothed version of 7, that is,
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a function that agrees with r everywhere except on a sparse set where the
restricted divisor function 7p shows exceptionally irregular behaviour.
First note that the pointwise bound 7¢(n) < rp(s)(n) < 7(n) for n € N
of the representation function of any primitive positive definite quadratic
form f by the divisor function gives the following second moment estimate.

LEMMA 3.1 (Second moment estimate). Let fi,..., f; be primitive pos-
itive definite binary quadratic forms and let U = (Y1, ...,9) : Z™ — 7 be
a system of affine-linear forms whose linear coefficients are bounded by L.
If K C [-N,N]? is a convex body such that W(K) C [0, N]t, then

Enezmnk H ’I"i. (¢Z(n)) <t,m,L (IOg N)Ot(l)'
1€(t]
Proof. Let K' := {z € K : ¥(z) € [1,N]'}. Then Holder’s inequality
yields
1/t
Enezrac [ 3 (i(n) < [T (1 + Enezmore 3 (@i(n)))

i€t 1€t]
1
< [T (0 + Enezmnre 7 (i(n))) /"
i€[t]
The remaining steps are standard; cf. the proof of [18, Lemma 3.1] for de-

tails. m

The next lemma, which is a combination of some technical lemmas
from [5], describes an exceptional set for the divisor function, i.e. a sparse set
containing those numbers on which the divisor function behaves particularly
irregularly.

LEMMA 3.2. Let C1 > 1 be a parameter and write Xo for the set of all
positive n < N satisfying either of the following:

(1) n is excessively “rough” in the sense that it is divisible by some prime

power p®, a > 2, with p* > logcl N,
(2) n is excessively “smooth” in the sense that if n =[], p® then

H pa > N’y/loglogN7
pSNl/(loglogN)?’

(3) n has a large square divisor m?|n, m > N7.

Then
t

E,exnzd Z 17/)i(n)€X0 < (log N)_CI/Q'
i=1

Proof. See [5] for the original results or |18, §3] for their adaptation to
this situation. =
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The previous two lemmas allow us to deduce the main theorem from an
equivalent statement about smoothed versions of the representation func-
tions 7. The particular smoothed functions we shall work with will be
chosen in Section [7l

LEMMA 3.3. Let f1,..., ft be primitive positive definite binary quadratic
forms. For each i € [t], let 74, : {0,...,N} — R denote a function that
agrees with ¢, on [N]\ Xo, that is, outside the exceptional set of the divisor
function, and which further satisfies 0 < 7, (n) < ry,(n) for alln € XoU{0}.
If the parameter Cy of the exceptional set is sufficiently large, then the main
theorem holds if and only if under the same conditions

Y Tali(n) .. 7 () = Boo [ [ By + o(NY).
neZiNK P

Proof. This follows by the Cauchy—Schwarz inequality from the previous
two lemmas and the bound

t
Z Z Ly (n)=0 < Nl o

neKNZ? i=1
The above lemma in particular shows that a pseudorandom majorant
used in the proof only needs to majorise the function ¢ (or 7¢) on the set of
positive unexceptional integers. We can therefore truncate the summation
over dilates of m2, m € (Qp), in the majorant to those m with m < N7.
Furthermore, we may restrict attention to the case where ¥(K) C [1, N]'.

4. Distribution in residue classes. The transference principle from
[6, |8], which we shall employ later, only works with functions h that are
sufficiently quasirandom in the sense that all U¥-norms ||h — Eh|« up to
some order k, determined by the specific system ¥ one is working with, are
small. A necessary condition for the uniformity norms to be small is that
the function A at hand is equidistributed in residue classes to small moduli.
This condition is in fact equivalent to requiring that h does not correlate
with periodic nilsequences of short period (cf. Section .

As seen at the start of the introduction, the representation function ry
does not have this property. To remove these obstructions to uniformity,
one can try to split the function r; into a sum of functions each of which
does not detect a difference between residue classes to small moduli. This
strategy is known as the W-trick. In order to find a suitable decomposition,
we shall investigate the quantities

E’HSN]-TLEﬁ (modgq) Tf (n)
for fixed period ¢ and fixed residue class 3. Define

ps.8(q) == {(z,y) € [a)* : f(z,y) = B (mod q)}|
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to be the number of representations of § (mod ¢), and let
K(N) = f}([0,N]) C R*.

This is the area enclosed by the ellipse f(z,y) = N and hence a convex set

of volume
2N

V=D’
A volume packing argument (cf. |8, App. A]) yields
> ko)=Y 1= pfﬁf’) vol(K) + O(VN q),

q
n<N (z,y)EK (N)NZ2
n=0 (mod q) f(z,y)=B (mod q)

vol K(N) =

which proves the following lemma.

LEMMA 4.1. Let P := {n < N : n = 8 (mod q)} be an arithmetic
progression. Then the average of the representation function of f along P
satisfies

Buerry(n) = 1oprs A0 0(1P o),

In view of this lemma it is not surprising that we will make use of several
further observations on the densities pfﬁ(q)q_l, which will be established
in Section [6l

LEMMA 4.2. py5(q) only depends on the genus class of f.

Proof. Two forms f; and fy belong to the same genus if and only if they
are locally equivalent in the following sense: for every non-zero integer m
there exists o, € Glao(Z/mZ) such that

fl(x’y) = f2((l‘a y)am) (HlOd m)
Thus, ps, 3(q) = ps,,3(q) for all positive integers ¢ and all 5 € [¢]. =

The reason this lemma is important to us is that it allows us to consider
instead of ry the following more regularly behaved function in all questions
regarding the distribution in residue classes. Let the genus class representa-
tion function 74 : N — N be defined by

rg(n) =E(rs(n) | f € 9),
where f runs through a system of representatives of classes in the genus g.
Under the assumptions of Lemma [4.1] we then have

(4.1) Encprp(n) = Bncpryp(n) + O(IP|7/2¢?),
where g(f) denotes the genus that contains f.
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5. Results from the theory of binary quadratic forms. The aim of
this section is to prove the bound on the number of representations of a
positive integer n by a form of discriminant D, which was used to construct
the majorant function in Section

5.1. Representation by primitive forms of fixed discriminant.
The question of whether or not m is properly representable by a primitive
form of discriminant D is linked to the solubility in x of the congruence

(5.1) 22 = D (mod 4m);

see |16}, p. 506] or [21}, p. 172]. If f is a form of discriminant D that represents
m properly, then f is equivalent to (m,n,*) = mX?2 +nXY + Y2 where
D = n? — 4mk for some integer k.

CrAamMm 1. Consider the solutions x = n to (b.1) that satisfy 0 < n <
2m. These form a complete set of incongruent solutions modulo 2m. Those
solutions among them for which (m,n,(D — n?)/4m) is primitive are in
one-to-one correspondence with the distinct classes of primitive forms that
represent m properly.

Proof. Let f be a primitive form and suppose there are coprime u and
v such that f(u,v) = m. Choose a solution (zp,wp) to 1 = uzp — vwp. Then

u v D —n?

Y2

f(XY) 1=f<(X,Y)< >> =mX?+nXY +

Wo 20
is an equivalent form with leading coefficient m. Choosing different solutions
w=wy+w and z = 29 + 2/ to 1 = uz — vw, we have w’ = tu and 2’ = tv
for some non-zero integer ¢, which implies that the middle coefficient n
is unique modulo 2m. In particular (m,ni,*) ~ (m,ng,*) if and only if
ny = ng (mod 2m).

Observe that in the other direction every solution z = n to 2% =
D (mod 4m) yields an equivalence class (m,n, ) of forms of discriminant
D that represents m properly. =

In order to determine the number of classes of forms that represent m,
we are interested in two pieces of information:

1. the number of solutions = to #? = D (mod 4m), and
2. how many of these solutions yield primitive forms (m, z, %) of discrim-
inant D.

A third necessary piece of information regards the number of proper repre-
sentations by a fixed class of forms: any two proper representations of m by
a fixed form f are related by an automorph. Thus each class C(f) of forms
equivalent to f represents m properly in k(D) different ways, where k(D) is
the number of automorphs of forms of discriminant D.



252 L. Matthiesen

In order to analyse the number of solutions to , we introduce the
related irreducible quadratic polynomial P(x) = 22 — D, which has discrim-
inant 4D.

Let p(a) := |[{k € [a] : P(k) = 0 (mod a)}| denote the number of
zeros modulo a. The counting function p is multiplicative by the Chinese
remainder theorem, which leaves us to determine p at prime powers. If p { D,

then (cf. |14, Thm. 12.3.4])

2 ifp=2 a=2,

pr") =4 21+ xp(p) ifp=2a>2,

l+xp(p)  ifp>2.

In the remaining case of primes p | D, Hensel’s lemma implies that
p(p®) = p(prUPIHY) if o > v, (4D).

For p| D we will show below that, in fact, there are no primitive forms that
properly represent an integer m with v,(m) > v,(D) for some prime p.

If m is coprime to D, then each solution to 22 = D (mod 4m) yields a
primitive form, and p(4m) is directly linked to the number r},(m) of classes
of primitive forms that represent m properly: ri(m) = $p(4m).

We turn to the case where ged(D, m) > 1. If there is a prime p dividing
ged(D, 4m) to an odd power, then solutions to D = n? —4mk yield primitive
forms if and only if each such p divides both D and 4m to the same power.

Considering the set of forms arising from solutions to , we can, if
ged(m,4D) > 1, retrieve the number of primitive forms among them via
an inclusion-exclusion argument. Indeed, when d = ged(m,n, k), then m/d
is properly represented by the form (m/d,n/d,k/d) of discriminant Dd—2.
Note that automorphs of forms of the first kind are also automorphs of forms
of the second kind and vice versa.

Let p® || m and suppose that p° || D, o > 1.

We begin by analysing the largest range for a, a > ¢ > 1. When o is
odd, then there are, as seen above, no primitive forms that represent p®
properly. Suppose next that ¢ is even and define

J(p) = |{: 2% = D (mod p)}| — |{z: 22 = Dp~? (mod p*~1)}|.
This quantity counts the number of solutions to 22 = D (mod p®) for which

x? = D + kp® for some k not divisible by p. The expression for p'(p®)
simplifies to
P(p*) = {a: 2> = Dp~@ (mod p*~7)}|
—{z :a® = Dp™7 (mod p*~' =)},
which is seen to be 0 by Hensel’s lemma (note that p { Dp~?). Thus, no

power p® { D of a discriminant-prime with p?| D is properly representable
by a primitive form.
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What remains are even powers p* | D, o < o, and the case p® || D. In
the former case, any solution to D = n? + 4mk with p®/? || n satisfies p { k.
Hence there are p®/2(1 — p~!) choices for n (mod p®). In the latter case,
p 1k if and only if ple/2] | 7, hence there are pl®/2] choices in this case.

In total, the number r*(m) of primitive forms properly representing m
is given by

1 — a
5(1 + 12’[D) H(l +xp(p)) H (qa/Q(l —4q 1)1a<01a even T qL /2 104:0)’

plm q|D
ptD q%||4m
q?[|4D

where p and ¢ run over primes, and where the factor 1/2 takes account of
the fact that for every solution z € [4m], x4 2m is the unique other solution
determining the same class of forms.

Collecting everything together, we obtain the following explicit expres-
sion for rp:

COROLLARY 5.1. The total number of representations (proper and im-
proper) of an integer m by classes of primitive forms of discriminant D
satisfies

rp(m) = Y rp(m/6?)

52|m

N )

5% |m ptD
(6,0)=1p°}ma~2
% H |_m1no¢0 1)/2J1aeven+q|‘U/J a a(mod2)1a20)

ql/(D,m)
q%||4m
q°[|4D

< \/BZXD(d)a

dlm

where p,q run over primes.

5.2. Representation by genera. Recall that the representation func-
tion 7y : N — N of a genus class g was defined to be ry(n) =E(rp(n) | f'€g),
where f’ runs through a system of representatives. This function is of in-
terest since by Lemmas [£.1] and [£.2] it has the same distribution in residue
classes as any function r; with f € g. We aim to reduce the problem of de-
termining the number of representations of an integer n by a specific genus
class to that of counting certain representations of the factor n’ of n that is
coprime to D.

This is advantageous for the following reason. The values in (Z/DZ)*
that are represented by a form f with D(f) = D form a coset of the subgroup
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in (Z/DZ)* that is generated by the values the principal form represents
(cf. |4, Lemma 2.24]). Thus, different genera represent disjoint sets of values
in (Z/DZ)*. This means that the character sum expression of the function
7p(f) Which counts representations of all classes in (D) yields an arithmetic
expression for the function r, which just considers those classes of genus g.
Indeed, let R, denote the non-zero residues modulo D that are represented
by forms in g. Then for n’ copm'me to D we have

Zl’ b (mod D) ZXD

igi vem,

For an arbitrary positive integer n, let n = npn®n’ be the factorisation
for which n’ is coprime to D and np is the largest divisor np | (n, D) such
that n/(n'np) = 72 is a square. This factorisation is chosen in such a way
that Corollary implies rp(n) = rp(n’np), which is of interest because
in n’np the factor that is not coprime to D is bounded.

Let (n'np,b,c) be a primitive form properly representing n'np. Then,
since np | D, we have (np,b) > 1 and hence (np,c) = 1 by primitiveness of
the form. Since further (np,n’) = 1, we have

(n'np,b,c) =~ {c,~b,npn’) =~ (c,—b,npn’) * (np, —b,n’c) * (n'c, —b,np)
~ (cnp,—b,n') x (n'c, —b,np) ~ (n',b,enp) * (np,b,n’c).
Note that all forms involved are primitive.
Thus, we can decompose the representation into separate ones for the
coprime factors n’ and np. We aim to use this multiplicative property of

representation by primitive forms of fixed discriminant in conjunction with
the following lemma.

LEMMA 5.2. The principle genus Go is a subgroup of the class group (a
finite abelian group). The genera form cosets of Gy in the class group.

Proof. See e.g. [21, p. 197, Thm. 2.8]. =
With the help of this lemma we have

n) = igi Z rg*g’*l(nD)rg' (n/)

If the residue n’ (mod D) is representable by a form of discriminant D, then
let g, denote the unique genus class that represents n’ (mod D). We may
use the arithmetic representation of r, , to obtain the following lemma.

~2

LEMMA 5.3. Given n = npn'n® as above and a genus class g, then

rg(n) = Tgxg ) (np) Z xp(d)

d|n’
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6. Representation in Z/qZ. This section contains several results on
the densities py, g(p®)p~, which will be established using results from the
previous section and the following proposition.

PROPOSITION 6.1. Let P = {gom + By : m < M} be a progression such
that D | qo and By #Z 0 (mod p%) for any p® || qo. Then

1/2 €
EnGPZXD(d) = CH(l —xn(p Z Lpe XD (P%) + O< M1/2 >

dn plao =20

where C' = (14 xp(Bo/(Bo, q0)))L(1,xp) = O(1).

We defer the proof to the end of the section. The following lemma is a
rather immediate consequence.

LEMMA 6.2. Let q be a positive integer that is divisible by D and let
B € [q] be such that B # 0 (mod p*) for any p® || q. Then

2@ _ 1O = xp@Pp™) D 1pepxn@®),

q plg >0
where C' =1, (ﬁp)(l +xp(B8/(8,49)))h(D) = O(1).

Proof. By Lemmas and [5.3| we have, for P(M) = {m = 8 (mod q) :
m < M},
ZEIC) 2n = lim E,cpanrs(n) = lim E,cpanrys(n)
q k(D)\/j Moo NEP(M) Moo MEP(M)Tg(f)

Torgt (O0) i Enepin) d§|: xo(d)

By Proposition and the class number formula the result follows. m

With the help of the previous lemma and a result of Stewart [22], we
obtain the following more explicit information on the densities py, 5(p®)p~.

LEMMA 6.3.

(a) Let po be a prime that divides D and suppose that 5 # 0 (mod p§).
Then

ps.(P5)pe " = O(1)
as  and a vary. If o > vy (D) and B # 0 (mod pf), then

P8P = prpins 03 Hpo TV for any k € Z/poZ.
(b) If po t D then for B # 0 (mod p§),

pra03)po = (1= xp(po)pg ) Y 1,0 5XD(75)-
70

(c) Let p be any prime. Then pso(p®)p~* < «a.
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Proof. (a) We may assume o > v, (D). Let By € (Z/DZ)* be a residue
representable by f and let ;i be such that 8; =  (mod pfy) and £ =
Bo (mod pvr(P )) for any prime divisor p # pg of D. By choice of 8y we have
0.5 (p?»(P)) > 1 for p # po. The previous lemma yields

Pf.pi (pg Hp|D,p7$po pvp(D))
20 Hp|D,p#po pr )

=0(1),

whence the first part of (a) follows by multiplicativity of p. Define g2 € Z
to be such that 8 = fy (mod p»(P)) for any prime divisor p # pg of D and
B2 = B+ kpf (mod p8‘+1). Then, by Lemma

B _
prs8) _ pps@8) _ P15 (PG Toin,ppy P ) (Pfﬂo(pv‘”(D)) ) l
(o} & D b
Po 2 pg Hp‘D7p;ép0 pvp( ) p| D, p#po pvp( :

vp (D) —1
— 1 ((B)0) (1 + xo(B)AD) ] (W)
: pID, p#po p

1
_ Pf,ﬁz(P3+1) _ Pf,B+kpd (p8+ )

a+1 a+1
Py 20

The proof of part (b) is almost identical. Let 8y € (Z/DZ)* be a residue
representable by f and let §; be such that 51 = § (mod pff) and p; =
Bo (mod p»(P)) for any prime p| D. Then (81, D) = 1 and g(f) is the unique
genus class representing $; (mod D). Hence r () gﬁ—/l (1) > 1, as the principal

genus represents 1. Since J; is representable by f, there is some m such that

> dimp+p Xp(d) > 0, hence, in particular xp(mD+B1) = xp(B1) = 1. Two
applications of Lemma yield

Pr.sW8) _ prsu(08) _ prs (0§ D) (pf,ﬁl (D)>_1

PO jZi) oD D
= (1= xp@o)py") D L 5XD(0))-
>0

Part (c) follows from |22, Corollary 2], which implies, as shown in [2|
Lemma 31], that any quadratic polynomial P(z) = a12? + asz + a3 of
discriminant Dp = a% — 4aqag satisfies

{z e Z/p*Z : P(x) =0 (mod p*)}| < 2pur(DP)/2,

Consider for fixed y the polynomial Py(z) = f(z,y) = az? + bzy + cy?
of discriminant y?D(f). There are less than p®~* values of y € Z/p®Z for
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which p* || y. Thus

a—1

pro(®) <2 p*FpftrPUNZ « ap®. .
k=0

An immediate corollary, which will be essential for the W-trick, states
that the p-densities are constant for lifts of non-zero residues 5 (mod p®) to
higher powers of p:

COROLLARY 6.4. Let p be a prime and suppose that a > vy(D) and
B # 0 (mod p%). Then

pr.3(P*)P" = pf st (P*T)

Proof. This follows from parts (a) and (b) of Lemma 6.3

p~ @D forall k € Z]pZ.

Proof of Proposition[6.1 Multiplicativity and the assumption on Sy yield

Enep Y xp(d) = (H > 1pa|ﬁ0XD(pa)>Em§M > xn(d)

dn plgo =0 dlgm+-8

where (g, 8) = 1, and g and gp have the same prime divisors. We will estimate
the mean value of Zd|qm+ﬂ Xxp(d) by the hyperbola method. Recall that xp
is a character to the modulus [], pp (cf. [19, Ch. 9.3]) and let x7, be the
character to the modulus Hp‘ o P that is induced by xp. (Note that ¢ is

divisible by le pp.) Thus x7,(n) is only non-zero when n is coprime to g.
Then

Eo<m<ym Y XD(d):EO§m<M< Yo b+ ) XE(d)),

dlgm+6 dl(g?;/ﬁ) dl(gm;ﬁ)
< >

where the cut-off T" will be chosen as T' = \/gM. We begin with the large
divisors.

Writing G := (Z/qZ)* and denoting its dual group by G, we have

Bocment 3 Xpld Z Z () S ()
d

d|(gm+p) "<M‘1 xeG
a>T d>T

Since T2 > qM this equals
M = Z X(B) D x(m) > (b))
| ‘ XEG m<T T<d<Mgq/m

The character xx7, is a non-principal character to the modulus ¢ unless x is
the character x7, induced by x p. We consider the cases x = x7, and x # xp
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separately. For x # x7,, we have

% LA Z x(5) Z x(m) Z (xxp)(d) = O(qT/M).
&l xeG m<T T<d<Mgq/m
X#XD

If x = xp, we have

Z Xp(m Z (Xpxp)(d)

m<T T<d<Mq/m

n<Mq m:m2<n

(n,q)=1
1 Mq—m? ¢(q)
=xp(B) xp(m)| ——— —= + 0O(q)
P oM T% P ( m q )

— o S0 xolm) L 4 Oflog(a)v/a/)

m<~/qM
(m,q)=1
m
> XDn(l )—XD]\(f) > xp(m)ym+ O(log(q)\/q/M).
m<a T <vam
(m,W)=1 (m,W)=1

The second term is seen to be small, that is, O(1/q/M), by partial summa-
tion. The first sum, ), _ il Xp(m)/m, is a partial sum of the convergent
series a

Xp(m) ) _ _ xp(p)\ 2rh(D)
2 m _g<1 p >L(1’XD) H<1 p )k(D)\/j'

m>1 plg

Bounding their difference sum by partial summation, we obtain

bl _ 1y (1_W>L<1,XD>+O<¢TM>-

m<\/qM p<w(N) P

Hence, the large divisors satisfy

Bnerr 3 Xold) = xo(d T (1= 22 21, x0) + Ollo(a)a/ D)

d|(gm+p) plg
a>T
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Concerning the small divisors sum, we obtain

Brcr 3 00 = 37 3 (@' +00)

g =
-y B | O(J\Tf)
- s T (1-222) vo(% )
-] (1- 222 + ovarmn),

Putting everything together, we obtain the estimate

Eo<m<y Y xp(d)
d|gm+8

= 1+ o)L x0) [T (1= 2220 4 O1og(a)v/a/D)

p
plg

which proves the result. »

7. W-trick. The aim of this section is to find a decomposition of the
function 7 into a sum of functions that are equidistributed in residue classes
to small moduli.

In the case of primes (see [6]), this was achieved by defining W =
Hpgw(N)p to be the product of primes up to w(N), where w : N — R
is a slowly growing function. For n with ged(n, W) = 1 the von Mangoldt
function then splits as

A(n) = Z A(n)lnza (mod W)>»
a€(Z/WZ)*
and it suffices to consider the functions n — A(Wn + a), a € (Z/WZ)*,
which are equidistributed in residue classes to small moduli.
In the case of the divisor function, the most natural decomposition makes

use of the restricted divisor function that only counts divisors coprime to
W (and is thus likely to be a quasirandom function): define

(n) := Z Ljp-
d: (d,W)=1
Then
T(?’L) = T,(’I’L) Z 1w\n7
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where w runs over all integers entirely composed of primes < w(N). The
second factor, >, Lyn, is almost periodic. Indeed, let a(p) be such that

pa(p)—l < (log N)Cl+1 < pa(p).

Then any number n that is divisible by some w as above with p®® | w for
some p < w(N) belongs to the exceptional set Xy from Lemmal[3.2] Choosing

W = H pa(p)7

p<w(n)

one can achieve that the second factor is a periodic function of period W,
when adjusting the values of 7 at exceptional integers. This way, it suffices
to consider the functions of the form n + 7/(Wn + a) for non-zero residues
a € [W]. In fact, observing that 7(Wn + a) = 7/(Wn + a) W Lwja for
unexceptional values of a, we essentially consider functions of the form n +—
T(Wn + a).

In the case of representation functions a very similar W-trick works. We
use the same choice of W as in the divisor function case above.

DEFINITION 7.1. Let A be the set of residues a (mod W) such that

pf,a(W) >0
and such that a # 0 (mod p®®)).

Thus A contains only residue classes that are representable by f, and
every n € [N] which fails to satisfy the second condition, that is, for which
n =0 (mod po‘(p)) holds, belongs to the exceptional set X from Lemma

DEFINITION 7.2 (Normalised and W-tricked representation function).

Let 8 € A and define ' 5 : [N/W] — R by

T\ —1
oty = O, 7 (11507

_kD)WW=D pra@* @)\
p<w(N)
Thus, by Lemma [4.1]
Enng},g(m) =1+ O(W?)M*l/z).

7.1. The major arc estimate. Our next aim is to give a major arc
estimate for the W-tricked function T;ﬁb: we show that this function has,
up to a small error, a constant average on arithmetic progressions whose
common difference is small in the sense that it is w(V)-smooth.

DEFINITION 7.3. An integer is called k-smooth when each of its prime
divisors is at most k.
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PROPOSITION 7.4 (Major arc analysis for 1% 5). Let P C [N/W] be a
progression of w(N)-smooth common difference q1 and let € A. If P =
{ggtm + qo : 0 < m < M} has length M, then

W(Waq)?
M1/2 ’

Eneprys(n) = Bocmemryg(@m+qo) = 1+ O<
Proof. Corollary [6.4] implies

prs(W) _ Py, qu+,8(WQ1)
w th

Hence the result follows from Lemma [4.1] =

7.2. W-tricked majorant. Finally, we need to slightly adapt our ma-
jorant function for r; to its W-tricked version. Let § € A. Then Lemmas
and [5.3] yield the pointwise majorisation

am) < S0 4(n) = 0 (oMW ™1 3 xp(d)

fl~gf d|Wn+8
-1
—on) II (1-27) ¥ .
p<w(N) d[Wn+43
pld=p>w(N)

where the last step uses Lemma [6.2] Since each function 7’ (3 5( n) has average
order 1 + o(1), the last expression is of bounded average order. Thus, the

function
o) = > xpld)

din
pld=p>w(n)

may be used in place of 7p(y) to run through the construction of the majorant
as in Section 2l In view of the results from that section and the remarks at
the end of Section Bl we find

rb(f) (n) < /BID,'y(n)V/D,'y(n)7

where
(loglog N)? 6log log log N
vpan) = Y Y Y 2Lath,(n),
$>2/~ i>logy s—2 wueU(i,s)
with

logd
/ A
™Dy "= Z dlnx(log N2'y>
de(Pp)
pld=p>w(N)
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and

o= X (X 1m2dnﬂ<d>><(1§§g§lw>)2'

me(Qp) de(Qp)
plm=p>w(N) p|d=p>w(N)
m<N7Y

For the two factors B})ﬁ and 1/3377 one shows in the same way as for the
original majorants that

C(Bp,) :=+logN [ (1+q¢ ") "EacnBp,(n)

q€Qp
g<w(N)

and .
T @-p) " Encnvp,(n)

Vlog N pePn

p<w(N)

C(Vbn,) =

are bounded independently of N. Since 8},  and vp, . are given by short
divisor sums running over coprime sets of divisors, the average order of
their product satisfies

EnSNB/D;y(n)V/D,’Y(n) = ETLSN/BID;y(n)EmSNVID,'\/(m) + NO(’Y)_I
Indeed, for coprime integers y;,y2 < N7, we have
1 _ _

Bt Lypin = —— + ONF'™1) = ByeylyjaBncalpgn + O,
and since the total number of divisors in the sum E,<nf}, . (n)vp, . (n) is
NOO) | the statement follows.

Since [, (1 — xp(p)p~1)~! = C + o(1) for some constant C, we
have proved the following lemma.

LEMMA 7.5 (W-tricked majorant). Let 5 € A. Then
r},ﬁ(m) < 6ID,'~/<Wm + 5)”2),7(Wm + ﬂ)
for allm < N/W. Furthermore, there is a positive real number Cp , = O(1)

such that ) .
ﬁD,’y (n) VD,"/ (n)

=1+4o0o(1).
o (1)

E.<n

8. Local factors and the reduction of the main theorem to
a W-tricked version. Define the smoothed representation function 7 :
[N] = R by

77f(n) = Tf(n)ln (mod W)€ A"
According to the definition of A, this function satisfies the conditions of
Lemma Thus it suffices to study correlations of functions 7; in order
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to prove the main theorem. As the main theorem will show, the asymptotic
behaviour of these correlations,

(8.1) > R Wn(n). .. (),

neKNZa

is determined by the local behaviour of the affine-linear system ¥ modulo
small primes.

By splitting the summation range into progressions of common differ-
ence W, we reduce the task of estimating (8.1)) to an assertion (Proposi-
tion below) about the uniformity of the W-tricked representation func-
tions. Local factors measuring irregularities of the system ¥ modulo small
primes will appear in this process.

Define for fixed quadratic forms fi, ..., f; and for an affine-linear system
W 7% — 7! the set of residues
Ay = {a € [W)? 1#%( a) € Ay, for all i € [t]}
{ pr“wz(a ) > 0 and H"L/JZ ) # 0 (mod p”P(W))}.

Notice that any n with non-zero contribution to (8.1 is congruent modulo
W to an element of this set. For a fixed element a € Ay let ¥ = (¢1,...,¢) :
7% — 7! be the affine-linear system satisfying

Vi(Wm + a) = Wibi(m) + ci(a)
with ¢;(a) € [W]. Thus, ¢;(a) = ¢;i(a) (mod W), and 1; and ); only differ

in the constant term.

The main result will be deduced from the following proposition.

PROPOSITION 8.1. Let ¥ : 7% — 7 be a finite complexity system of
forms, let a € Ay, and let ¥ : Z% — 7 be defined as above. Then

¢
> 175 e @i(m)) = vol(K') + o((N/W)4),
meZINK' i=1
where K' C [—N/W,N/W|% is a convex body with W (K')+c(a) C [1, N]t.
For every a € Ay, define the convex body
K, ={zeR*:Wz+aecK}

and note that vol(K,) = vol(K) /Wd. Then we can rewrite (8.1) by means
of Proposition as follows:
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82) > Ta{i(n)...Th(e(n))

neKNZd

= JIr@(Wm+a)

a€Ay meK,NZd i=1

_ d / 7 pfiﬂlfi(a)(W) 2m
- Z Z Hrfi,cz'(a)(wl(m)) k(D;)v/—D;

acAy meK,NZdi=1

S

_ vol(K —|— o(N%) Z H P i s (a) W 2

%
,?I
S
|
S

acAy i=1

i 2w d ! pfi,’llii(a) (W)
= VO](K) H m + O(N ) Eae[W}dltZE.A@ H T
7=1 =1

By the Chinese remainder theorem, the above expectation is in fact a prod-
uct over local densities, that is

. _
Pfiapi(a)y(W)
(8.3)  E,cqpalacas [| %
=1

(p)
flﬂ;z)l(a‘ ( )
H EaG(Z/pa(P)Z H o ®) 11/’1‘((1)5&"0 (mod p(P))

p<w(N

where a(p) = vp(W). To complete the proof that (| and (8.3)) indeed
imply the main theorem, two further lemmas are required. The first shows
that the above factors at primes are essentially local factors:

LEMMA 8.2 (Local factors). Let p be a prime. Then

a(p) )

t
Pfipi(a) (p
Eoezrwzy ||~ ooy L

2 (@20 (modpew) = Fp + O((log N)=/%),
=1

where

t
p iYila (pm)
Bp = lim E (Z/me)dHL

m—00 m
i=1 p

1s the local factor at p.

The second lemma is an estimate of the local factors.

LEMMA 8.3. Let W = (21,...,9;) : Z% — Z% be a system of affine-linear
forms for which no two forms 1; and 1; are affinely dependent, and all of
whose linear coefficients are bounded by L. Then

By =1+O0p4r(p?).
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Thus,
II 5= <1+0m< )) Hﬁp
p<w(N)
A second consequence of this lemma is that
By + O((log N)~“1/%) = B,(1 4+ O((log N)~€1/%))  for all p > 1.

For the remaining p < 1, we require an upper bound on j3,. Since Lemma
implies pfi,A(pa(p))p_“(p) < ap) < loglog N for any A € Z/pa(p)Z, we
may deduce from Lemma the very crude bound 3, < (loglog N). Thus,
by , and the two lemmas stated above, we obtain

S T @) .. 7 (i(n)

neKNZ4
= (Boo +o(N) [T (By+O((log N)=“1/%))
p<w(N)

= (Boo + O(Nd)) (1 + O((log N)_Cl/5))7r(w(N))

< H 5 < loglogN)O(t)>>
P Ci/5
pew(N (log V)1
:Boo H Bp"i'o Nd :/BOOHBP+0(Nd)>
p<w(N) p

where we used that w(N) = loglog N. Apart from the proof of the two
lemmas, we have reduced the task of establishing the main theorem to that
of proving Proposition

We conclude this section with the proofs of the lemmas, for the purpose
of which the following notion is introduced.

DEFINITION 8.4 (Local divisor densities). For a given system ¥ =
(11, ...,9¢) of affine-linear forms, positive integers dy, ..., d; and their least
common multiple m := lem(dy, . .., d;) define local divisor densities by

ag(di,. .. dt) =Ky ez /mzye H Ly, (n)=0 (mod d;)-

i€t]
Proof of Lemma . We shall show more precisely that /3, satisfies
(p)
Pfii( )(pa )
(84) By =Eoczpmna | [ Wlw(a)fo (mod po(»))

=1

t
+O((a(p))") > Eoc@/pmzy | [ 1os(@)=0 (modpo)-

- i=1
M:=max; a;>a(p)
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Suppose m > a(p). We split the sum E ¢ (7,/pmz)a I, P as(a) (P )p~™ over
residues a into two parts according to whether
t

L1 vs@20 (moape) = 1 or 0.

i=1
First note that for any a with 1;(a) # 0 (mod p?) for all i € [t], any lift
W(a+ kp?), k € [p]¢, is componentwise divisible to the same powers of p as
¥ (a). Hence, Corollary [6.4] implies

t m
Pfitpi(a) (™)
EQE(Z/PmZ)d H pm 1%(“)%0 (mod p(P))
=1

t o(p)
P api(a) P™P)
EaG(Z/pa(P)Z)d H W1¢z(a)$ﬂ (modpoc(p)).
i=1

Thus, the terms of the first type give rise to the main term of (8.4). Com-
bining parts (a)—(c) of Lemma m 6.3| yields the general bound

P fisii
(a << Z 11% =0 (mod k)>»

which shows that terms of the second type are bounded by

O((a(p))t) Z e(z/pM7)d H 11111 =0 (mod p%i)-

0<ai,...,ar<m: =1
M:=max; a;>a(p)

This proves the above expression for ,. In order to establish the lemma, it
thus remains to bound the sum over divisor densities

Op 1= Z ag (p™, ..., p™).

Q1,eeey0t
M:=max; a;>c(p)

Since the coefficients of ¥ are bounded, we have

a1

O‘!I’(p s 7pat) = EnG(Z/pmaxi a;7)d H 171%-(71)50 (mod pai) K P
=1

— max; a;

which yields
5p < Z p- max; a;

ar,...,at
max; a; >ao(p)

Recall that
loglog N

a(p) = (W) = (Cy + 1) 5%

+O(1)
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for some sufficiently large integer C;. Estimating the number of tuples
(a,...,a;) with max;a; = j crudely by (j + 1)}, we conclude that for
p < w(n) = loglog N,

8y < > pijt < > pI/?
j>C1(loglog N)/2logp j>Ci1(loglog N)/2logp
< (log N)=¢1/4,
Hence, (a(p))'d, < (log N)~€1/5 which proves the result. =

Proof of Lemma [8.3. We may assume that p is large enough so that
pt Di...Dy. For such primes Lemma [6.3|(c) yields

) Pfibi(a) )
Bp = ﬂ}gnoo EaG(Z/me)d H T
Jjelt]
t .
= lim Eue(z/pmzyd TTC = X0, > Lpsjss (X0, (07)
=1 7>0
= Z a(p™,...,p™) H (1-— XD, (p)pil)XDj (p).
A1yt JElt]

By splitting the sum ) = into terms according to whether no a; is
PARRS]

non-zero, exactly one a; is non-zero, or at least two a; are non-zero, we

obtain

Bp=>_ a@™,....p") [ =xp,@)p~")xn, (™)

ai,...,at jE[t]
t
=TT = xo,mp {1+ > > xo, 0"~ |
JElt i=1 a;>0
+ 0( 3 a(pal,...pat)).
a,...at

at least two a; >0

Here we used the fact that, for sufficiently large p with respect to ¢,d and L,
we have a(p®,...,p") = p~% whenever qa; is the only non-zero exponent.

It is easy to see that the main term equals 1+ O;(p~2). Concerning the
error term, we employ the fact that we are dealing with a finite complexity
system of forms, i.e., no two forms are affinely related. For every p which is
sufficiently large with respect to t,d, L we have

a(pal7 o 7pat) <p max;;(a;+a;) < pflfmaxi a;

whenever at least two a; are non-zero. There are at most £j~! choices of
coefficients a1, ..., a; that satisfy max; a; = j, and thus the contribution of
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the error term to the value of 3, may be bounded by
oSt ) = o),
Jj=1
This proves the lemma. =

Simultaneous majorant. To summarise, we reduced the task of prov-
ing the main theorem to that of proving Proposition 8.1 This will be car-
ried out by the nilpotent Hardy—Littlewood method in the remainder of this
paper. In order to apply the method, specifically Proposition below, we
require, for every occurring collection of {r} a@ =1 t} a € Ay,
a pseudorandom majorant that simultaneously majorises all r’ Foci(a)” The

function oy, , : [N/W] = RT,

B, A (Wm +bi(a))vp, . (Wm +bi(a))
CDiﬁ ’

(8.5) o(f).a(m) == Eigy

has the required majorant property.

9. Linear forms and correlation conditions. In this section we
check that the majorant oy, , defined in (8.5)) for a collection of W-tricked
representation functions T}l,q (@) r}tyct(a) is (after a minor technical mod-
ification) indeed a pseudorandom measure, that is, satisfies the linear forms
and correlation conditions.

Write M = N/W, let M’ be a prime satisfying M < M’ < Oy q4.1.(M),

* . +
and define o7, [M'] - R* by
{ %(1 + a(fi),a(n)) ifn <M,

i (n) =
(M) 1 i M <n<M.

As is seen in [8, App. D], o ( fi)a is D-pseudorandom if the following two
propositions, which are technical reductions of the linear forms and correla-
tion conditions from [8], hold true.

PROPOSITION 9.1 (D-Linear forms estimate). Let 1 < d,t < D and
let (i1,...,it) € [t]' be an arbitrary collection of indices. For any finite
complexity system W : Z¢ — Z' with bounded coefficients |¥|ny < D and
every convex body K C [0, N]? such that W(K) C [1, N/W]t, we have

(90 Encganie [ [ vb,, o (Webi(n) +6:,)8p, (Wj(n) +bi,)

sl d—1+0p(v) t
Na—1+0p(y
= <1+OD<VOI(K) >+0D(1)>j]‘_J;CDij7'Y

provided v is small enough.
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PROPOSITION 9.2 (Correlation estimate). For every 1 < mg < D there
exists a function oy, @ Zpp — RT with bounded moments Enez,,, o, (1)
Kim,q 1 such that for every interval I C Zyy, every 1 < m < mg and every

m-tuple (i1,...,im) € [t|™ and every choice of (not necessarily distinct)
hi,...,hpm € Zpyp we have
Ener H VD 'y 7”L+h )+b13)ﬁD 'y( (n+h )+bl]) < Z Umo(hi_hj)
J€[m] 1<i<j<m

provided vy is small enough.

Recall that the W-tricked majorant I/Dj ’W(Wm—i—bj (a))ﬁ’Dj 77(Wm+bj(a))
for r}j’ ., has divisor sum structure:

92) ¥, (1B, ,(n)

(loglog N)? 6logloglog N logd
(Y YT S Y Srn(is)

s=2/~ i=logy s—2 wu€U(i,s) de(PDJ> vlu

(duW)=1
logm; loge 2
x > X W m?2|n Z Lemzin () log N7 -
m;€(Qp;) D;)
(mj,W)=1 (8 W) 1

The function y above is a cut-off. As no characters appear in this section,
there is no danger of confusion.

Our strategy to prove the linear forms estimate is as follows. The first
step is to show that in order to asymptotically evaluate (9.1) we may ignore
all terms that arise from divisor densities of dependent divisibility events,
that is, events {n : [T;cqy La;jpi(n)} where (a1,...,az) are not pairwise co-
prime. The second step is the observation that the densities of independent
divisibility events are, up to a small error, independent of the system ¥
of forms, which will finally allow us to reduce the verification of the linear
forms condition to the task of verifying it separately for each of the two
factors of each of the majorants in the case where ¥ : Z — Z is the identity
function. The same strategy was used in 18, §6].

The main tool to exploit the divisor sum structure of our majorants is
the following simple lemma (see [8, App. A] for a proof).

LEMMA 9.3 (Volume packing argument). Let K C [~B, B]? be a convex
body and ¥ a system of affine-linear forms. Then

> T Lasiwstny = vol(E)a(dy, . .., di) + O(B*lem(dy, ... dy)).

n€ZINK i€(t]
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In order to remove the above mentioned dependent divisibility events,
we need to replace x by a multiplicative function. A way to achieve this has
been found by Goldston and Yildinnm and was employed and modified by
Green and Tao [8] to check the linear forms condition for their majorant
function for W-tricked primes. In this respect, the proof of Proposition
below builds on [8, App. D]. In particular, we shall employ many of the
small technical arguments from there.

Recall that the cut-off y was chosen to be a smooth, compactly supported
function. Let ¥ be the modified Fourier transform of x, defined via

e“x(x) = [ 9(&)e " dg.
R

Fourier inversion, compact support and smoothness of x, and partial inte-
gration yield the bound

9(E) <a (1+E)~A

for all A > 0. Green and Tao make use of this rapid decay to truncate the
integral representation of x as follows. Let I = {¢ € R : |¢] < log'/2 N7},
then for any A > 0,

(93) X< logm > Sm logNV’l9 d{
R
=
I

log N7

mTEENTY(€) dE + O (m— 198N 1og=A N,

Later on, this truncation will simplify the process of swapping integrals and
summations. We proceed to check the linear forms estimate.

Proof of Proposition . Define the system @ = (¢;) ey : 7% — 7! by
@j(n) := Wip;(n)+b ;- A prime p is called ezceptional for @ if the reduction
of @ modulo p has affinely dependent forms. For the system defined here, all
exceptional primes are bounded by w(N) + O(D). All information we will
use about @ is the bound on exceptional primes and the fact that it has finite
complexity. Consider an arbitrary cross term that appears on the left hand
side of when inserting the definition and fixing the parameters
sj,1j,u;j for each factor. That is, we consider

log d,;
P IL( 5 S 2t ) )

Jet] dje PD ) vjluj
(dju; W )
" Z log m;; Z (e)x log e; 2
X log N7 m3lip; () HLE log N7
m;€(Qp,) i €(2p

(mj?W)zl
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- <H25m(ej)u( Irw) 11 X(lizgi\fV))

dm,ee " j€E[t] x€
T {djmj.ej.e}

X EnEZdﬂK H 1uid¢m§5¢\<p¢(n)’
1€[t]

where &; = lem(e;, €]) and where we denote by bold letters such as d any

t-tuple of positive w(N)-smooth integers which we shall implicitly assume to
satisfy the correct multiplicative restrictions, e.g. d; € (P;) and (d;, v;W) = 1
in this case.

Note that u;d; mjej = NOO) for all summands with non-zero contri-
bution. Indeed, d],ej,e],mj < N7 by definition of the cut-off. We have
uj < N7 by construction of the divisor majorant, as the u; arise as di-
visors of certain numbers bounded by N7 (cf. also the remarks following
Proposition 4.2 of [18]). Therefore, the volume packing lemma implies

EnGZdﬁK H QSiT(ui)luidimgaiwi(n)
i€t]
= o@(uldﬂn%q, .. utdt'mt Et H 2%ir —|— O(Md 1+0(y /VO]( ))
i€[t]

where the bound 2% < 9(loglog N)? < M7 allowed to hide the factors 2% in
the error term.

Since ujdjm?sj = NOO)| there are only NOO) terms altogether in all
sums of the majorant, including those over sj, i; and w;. This and the
boundedness of y imply that the volume packing error term has a total
contribution of O(M4=1+00) /vol(K)) towards (9.1), and we are left with
the main term, that is,

5 ettt T owemerio) T A(222).

d,m,e.e’ JE[t] :EE{dj,mj,ej,e;.}

Next we show that we may assume that each wu; is coprime to ujdjm?zsj for
all j # i and that (u;,d;m?e;) = 1. These properties yield

2 2 2 2
ag(urdimices, ..., udymie) = ag(dimiey,. .. ,dtmtat)u —
1...Ut

We shall also abbreviate u = (uy, ..., u;), implicitly assuming that the con-
ditions u; € U(ij, sj) on these tuples still apply.
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CLAIM 2. For all choices of (sj) e and (ij);ey we have

> aw((widimieien) T 2% mles)n(e))r(us)

dmeee U Jelt] 1
ogx
* 1l X <log N7 >

ze{djm;,e;j.€;}

= Y au((dmeiy) 3 H” ule;)u(e))

d,m.e,e’ UL, Ut FE[E]

log _ —4
N (loglog N)
< T xpms) +onl )

ze{dj,mj.ej,e}}

where E' indicates that the sum is extended only over choices (uy,...,ut)
satisfying the coprimality conditions (ui,ujdjmigj) = 1 whenever i # j and
(usy dim?e;) = 1 fori € [t].

Proof. We have to bound the contribution from the excluded choices of
(u1,...,u). Any prime divisor of any u; is at least as large as N'1/(loglog N)?
by construction. Thus, whenever the coprimality conditions fail, the divis-
ibility events we are considering are included in {n : p?| [Licyy #i(n)} for

some p > N1/(oglogN 2, By finite complexity and the bounds on exceptional
primes of @, we have

— _ -3
Z By ezani1p2| 1, ¢i(n) <t Z p 2 =0iN (loglog N) ).

N (log log N)73 N (oglog N)73
<p< N7 <p<N7

We will make use of this with the help of Cauchy—Schwarz. Since 2% <
9(loglog N)* a1 since x? is at most 1, we can crudely bound the following
second moment:

N log x 2
nGZ‘iﬁK H ( Z 1uidim?5i\¢i(”)2 ZT(ui) H X2<log NV))

i€[t] ~d,m,u,ee’ Ie{dj,mjvejﬁ;‘}
) 2t\ 1/t
2t(loglog N)3
< 2?Hloglos )T TT <EneZdﬂK< Yo ludmieumT (Uz‘)) )
i€[t] dm,u,ee €[N

< (log N)©O®)g2t(loglog Ny
The combination of these two bounds proves the claim. =

Note that the same argument furthermore shows that the main term
from Claim [2] equals
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(9.4)
9 2% 7 (u;) , log =
Z ag((dim; Ei)ie[t}) H Z Tﬂ(ej)ﬂ(ej) H X oz N7
d,m,e,e’ jelt] s J = g

{djmj.ej.e;}
+ OD(N—(loglog N)’4).

Thus, we are left with the main term in . We proceed by inserting the
integral representation (9.3)) of each of the 4t factors involving x. Multiplying
out this product we obtaln a main term and a number of error terms. Since
x(logm/log N7) <« m~ /108N a1l these error terms may be seen to be
of the same form, which allows us to combine them into one error term.
Writing 2z, = (14 i&;x)/log N7 for j € [t], k € [4] and noting that |z ;| <
(log N7)~1/2 we see that the main term from is equal to

05 3 (HZ2 uC >a¢(d1m181,...,dtm?€t)

dm.ee “icft] w
{S SHMGJ —zJ1/—zJ2d—zjd _ZJ4H19§jk dgjk
! Ijel ke[4]
+ OA(log_A N T (eseldymy) =953 ).
JElt]

The error term here indeed has small contribution: On the one hand, we

have 2SjT(Uj)
> Yoy Moon

815058t U1 5e.50t JE[t] uz €U (i5,55)

See the proof of [18, Proposition 4.2] for details. On the other hand, the
divisor sum is bounded:

Z ag(dimier,. .. dymie;) H (ej‘?;‘djmj)_l/logm

d,m,e,e’ JE[¢]

SRR | R | BRI

dm,e,e’ p>w(N JElt

!
ptifldim} ‘51 P |lejesdm;

< H 1+1/10gN’Y)) O(t) < (IOgN)O(t)
p>w(N)
Here, we crudely bounded the number of occurring t-tuples (a1, ..., a;) that

satisfy max; a; = k by k°® and apply to each of these tuples the bound
ag(p™,...,p%) < p~*.

Thus, when we choose A in sufficiently large, the error term above
makes a total contribution of <4 log_A/2 N7.
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It remains to estimate the main term from above. Changing the order of
summation and integration leads to an absolutely convergent sum in the in-
tegrand. Since the range of integration is compact, this change is permitted,
and hence the main term is equal to

00 [f( X (X2 )astdmionna)

I I “dmee “ielt] ui

" N(ej)u(eg)ej—zme;—zj,zdj—zj',:smj—zj,zx> H V(& k) dEji k-
sl Reldl

Our next aim is to show that all relevant terms in the integrand are in fact
the independent terms, that is, they are those terms for which the ¢ products
uidim?&:i, i € [t], are pairwise coprime. This will eventually allow us to swap
the sums with the product while only introducing a small error. For the u;
we have just done this.

Since each entry of d, m, e, and € is completely composed of primes
greater than w(NV), the following claim holds.

CrLAM 3. We have

" aol(dimieiier) [T mlennte))e; el 2d; > m; ™

d,m,e,e’ JE[¢]

= (14 Op(w(N)™))
/ —zj, —Zj,2 37%j, %,
x> as((dimieien) [ mlepnle)e; ey 2d; o m; ™,

d7m7e7el ]G[t]

where Y. indicates that the summation is extended only over choices of
t-tuples that satisfy the coprimality condition (d;m;e;, dymyey) =1 for any

i

Proof. Note that the summand is multiplicative and may be written as
a product over primes p > w(N). Any summand

ag((dimie)iey) [ wlej)u(e))e; @ e 2d, 2 m;
Jelt]

with entries failing coprimality may be factorised into a product of one factor
of the same form that satisfies coprimality and one factor for which every
prime p that appears as a divisor of some d;m;e; divides at least another
dymyey, i' # 4. For a fixed tuple (K1, ..., k) of the latter type (that is, p| k;
implies p| [ [,/ 4 k), the contribution may be bounded as follows employing
the triangle inequality:
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Ot(kl, .. .,k‘t)
/ —Zzj —Zzj —Zj —Zj
x‘ Z O@((dz’m?&')ie[t}) H M(ej)ﬂ(eg')@j el 72d; J’smj 7
d,m,e.e’ Jjelt
(dimies, k1...ky)=1
= Oé(kl,... ,kt)
<| I a+ow™)
plk1...ky
X auttamagn T] e 50 o
d,m,e,e’ JElt]
alky,....k) [ @+o0@™)
p|k1~-kt
/ s —z . —
< | Y as((dimie)ien) [ mlei)ule))e; ™ e 2d, % m |,
d,m,e,e’ JE[t]

Next, we bound the sum over all terms a(k1, ..., k) [T, (1 + O(p™h)
that occur. Written as a product over primes, a crude bound for this quantity
is given by

[I {1+ X o+ +ahaskp™,....0")(1+0p™)} -1,
p>w(N) ata11e7ast’itw0
a; >0

where we used the very crude bound 75(p%) < a4 on the generalised di-
visor function 75. The five factors correspond to dl, m , €i/ei, €if€; and
e;e ; /€i. To further bound the above expression, we observe that the number
of tuples (ay,...,a;) with max;a; = k is at most tk!~!. For such choices
of (ay,...,at), we have Y, a} < tk* and ag(p™,...,p™) < p~*~1 since &
has finite complexity and at least two of the a; are non-zero. Further, for
large enough p, we have p *#2k*=3(1 + O(p~')) < p~3#/4 for all k > 1. We
certainly may assume that N is large enough for p > w(N) to satisfy this
condition. Thus

> Olat+-+ah)as(p™,...,.p")1+0(p™ ")) <> p -1 <p=32,

ai,...,a¢ k>1
at least two -
a; >0

Since

IT A+ -1< > 232 <w(N)™2
p>w(N) n>w(N)

the result follows. =
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Note that in the above claim

! —Z; —2Zi —2Zj —Zj
(9.7) Z g ((dimie)icy) Hu(ej)u(eé)ej My my

d,m,e,e’ JEt]
H j —27 1 ) —Zj,2 77%5,3,  —%j4
E el d m, .
d m €5 J J
d,m,e,e’ je[t] J

The last step of the rearrangement is to show that we may swap the inner
product and sum in the integrand.

CLAIM 4. The sum and product in (9.7)) may be interchanged:

j fz —z z 25
E H ] Jle; J2d J3mj 5,4
]m 5]

dm,e,e je[t]

:U'(ej):u’(el') —zj —2j2 1—Z%; —zj
—1 2 I | 2 : J 11 =25, ,3 4
(1+O / We] 7 €j Jde J mj e,
Je[t] djvm]aep i 7

Proof. The proof is essentially the same as the one of the previous
claim. =

The next claim will imply that the integral equals, up to a small
error, the integral of the main term from Claim

CLAIM 5.
[T X M) ey om o T ot

I I'jeftldymyese; kel4]

X H d&j i = O(1).

(3" kel x[4]
Proof. (Cf. |8, equation (D.23) and the proof thereof].) We begin by
writing the integrand as a product over primes

ple)ple€)) oo i aiy a2
II > e ey 72y my ™ I 0(g)
JTVGE

jG[t] dj,?’ﬂj,@j,@& k€[4]

<A H H + & k)

JE[t] kel4]
X H (1 _ q_l_zj’l _ q_l_zj’Q + q_l_zj,l_zj,Q) H (1 _p—l—ijg)—l.
qeQ; PEP;

For s > 0, the prime number theorem in arithmetic progressions yields

1 1
—1—s
= —log — (1).
g P 20gS+ODZ()

pEQ;
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This also holds for P; in place of Q,. Thus, if we choose A sufficiently large,
the above is seen to be bounded by

IT TT a+ 18D~

JE[t] kel4]
X H (1 _ q—l—ijl _ q—l—ng + q—l—ijl—ng) H (1 _p—l—ijg)—l
1€Q; pEP;
< TT TT 0+ 16560 M2l 2125 0 2 250 + 250] 72 258 /2
JE[t] kel4]
< log' Nlog ™ NT TT (1 + 1€, )21+ 1&2D) " TT 1+ 1€5D)
JE(t] kel4]
)=A/2,

< [T TT @+

JE[t] kel4]
For any A > 2 the integral of the final expression is O(1). =

Together with Claim [3 equation (9.7) and Claim [4] the above claim
implies that the integral is given by

(H Z 28T UZ > S S H Z wegsze;Zj,zdj—zj,:amj—sz
7 jriticg

€[] i 1 j€elt] dj,mj,e],e
X H ﬂ(&j,k) H dgj’,k’ + 0(1)
ke[4] (7", k" ) Elt]x[4]

After removing the truncation of the integral again, the latter expression is
seen to equal

(IS S 29 I (2 )+

i€ft] wi JElt] dj,mj,ej.ef M z€{ej,efm;,d;}

Putting everything together, we have shown that

]E’VLEZdQK H V/Dij Y (SOJ (n) )5/1)1] Y (SDJ <n>)
jelt]

= (1+ Oa(w(N)""?)

277—“1 (e5)u(e;)
(XX X o

JE[] " sjstiug di omye e

J

< I X(;)Zg]@) +on)

z€{ej el my.d;}
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The last expression now is independent of @. Applying the asymptotic in
each of the known one-dimensional cases

EnSNV/Dij ,’y(n)ﬁlDij ,'y(n) = CDij ~ T 0(1)7

where @ : Z — Z is given by the identity, implies that each of the factors
above is of the correct form. This completes the proof of the proposition.

Proof of Proposition [9.2 The proof of the correlation estimate follows
in a very similar manner to those of the corresponding estimates for the di-
visor function majorant in [18| §7] and the von Mangoldt function majorant
from [8, App. D]. We restrict attention to the case of pairwise distinct h;;
the remaining case follows, as before, by choosing o, (0) sufficiently large.
Employing the volume packing lemma, we may show as in [18, §7] that

WHVD AW (n+ hy) +0i,)Bp, (W (n+ hy) + b))

j€[m]
< II > et™,....p"™),

plA  a1,..,.0m
p>w(N)
where A := [, (W (hj—hgr)+bg, —b; ). This estimate allows us to proceed
as in [18, §7].

10. Application of the transference principle. This section pro-
vides a quick overview of the results around the von Neumann theorem and
the inverse theorem for the Gowers norms. We apply these results at the
end of the section to reduce Proposition to a non-correlation estimate.

In the dense setting, that is, if ¢ : Z — R is a bounded function with
asymptotic density, the Gowers uniformity norms, defined as

1/2¢
lgllrrsvy = (Exe[N}Ehe[N]s H grx+w- h)) ,
we{0,1}

capture all information on the correlations of g with respect to finite com-
plexity systems. This generalises as follows.

PROPOSITION 10.1 (Green—Tao [8], generalised von Neumann theorem).
Lett,d, L be positive integer parameters. Then there are constants C1 and D,
depending on t,d and L, such that the following is true. Let C' with Cq <
C < Oy,4.1(1) be arbitrary and suppose that N' € [CN,2CN] is a prime. Let
v:Zn — RT be a D-pseudorandom measure, and suppose that f1,..., fi :
[N] = R are functions with |fi(z)| < v(z) for all i € [t] and x € [N].
Suppose that W = (Y1, ...,1Y) is a finite complexity system of affine-linear
forms whose linear coefficients are bounded by L. Let K C [~N,N]¢ be a
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convez body such that W(K) C [1, N]t. Suppose also that

(10.1) lfglgt | fillore—1n) = o(1).
Then
ST fiwi(n)) = o(N%.
neK ielt]

Establishing the Gowers uniformity condition itself is a task that
is conceptually equivalent to that of finding an asymptotic for the expression
> oner ey f(¥i(n)) directly, and should therefore not be any easier. The
specific system of affine-linear forms that appears in the definition of the
uniformity norms, however, allows an alternative characterisation of Gowers
uniform functions.

A characterisation of Gowers uniform functions. Whether or not
a function f is Gowers uniform, is characterised by the non-existence or
existence of a polynomial nilsequence @ that correlates with f. On the one
hand, correlation with a nilsequence obstructs uniformity:

PROPOSITION 10.2 (Green—Tao [8, Cor. 11.6]). Let s > 1 be an integer
and let 0 € (0,1) be real. Let G/I" = (G/I',dgr) be an s-step nilmanifold
with some fired smooth metric dg/r , and let (F'(g(n)I"))nen be a bounded
s-step nilsequence with Lipschitz constant at most L. Let f : [N] — R
be a function that is bounded in the Li-norm, that is, assume | f|lL, =
Epenvilf(n)| < 1. If furthermore

Enen)f(n)F(g(n)I") > 6
then
| fllrserny >s6,0,0/r 1-

An inverse result to this statement has been known as the Inverse Con-
jecture for the Gowers norms for some time and has recently been resolved
(see [11]). The inverse conjectures are stated for bounded functions. With
our application to the normalised divisor function in mind, we only recall
the transferred statement (cf. [8, Prop. 10.1]) here.

PROPOSITION 10.3 (Green-Tao—Ziegler, relative inverse theorem for the
Gowers norms). For any 0 < 6 < 1 and any C > 20, there ezists a finite
collection M, sc of s-step nilmanifolds G/I', each equipped with a metric
da)r, such that the following holds. Given any N > 1, suppose that N' €
[CN,2CN] is prime, that v : [N'] — Rt is an (s + 2)25T!-pseudorandom
measure, and that f : [N] — R is any arithmetic function with | f(n)| < v(n)

() For definitions of nilmanifolds and nilsequences, see, for instance, [10].
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for all n € [N] and such that

| s+ = 6.

Then there is a nilmanifold G/I" € Mg 5 in the collection and a 1-bounded
s-step nilsequence (F(g(n)I"))nen on it that has Lipschitz constant Og 5o (1),
such that we have the correlation estimate

[Enein)f(n)F(g(n) )| >s50 1.
This inverse theorem now reduces the required uniformity-norm estimate

(10.1)) to the potentially easier task of proving that the centralised version
of f does not correlate with polynomial nilsequences.

10.1. Reduction of the main theorem to a non-correlation es-
timate. We already reduced the main theorem to the W-tricked version
given in Proposition which we now restate:

PROPOSITION . Let ¥ : 7% — 7t be a finite complexity system of
forms, let a € Ay, and let ¥ : Z% — 7t be the translate of ¥ defined as in
Section 8. Then

t
Epezinis | [ 7 ey (M) = 1+ 014.1(1),
i=1
where K' C [-N/W,N/W1? is a convex body such that W¥(K') + ¢(a) C
[1, Nt
Writing
¢ ¢

Emezink: H r}i,ci(a,) ((m)) = Epezing H ((T}i,ci(a)(w(m)) - 1) + 1)
i=1 i=1
and multiplying out, we obtain a constant term 1 and all other terms are of
a form the generalised von Neumann theorem applies to, provided we can
show that

7%, csay — Llle-2 = o(1)
for all ¢ € [t]. By the inverse theorem, it suffices to show that
B, e n/i) (s a0y () — DE(g(n) )| = 0 r4(1)

for all (t—2)-step nilsequences (g(n)I"), -y sw and 1-bounded Lipschitz func-
tions F. This task will be carried out in Sections T4HI8l

11. Non-correlation with nilsequences. The so far standard line
of attack to obtain a result of the form ‘the function h does not correlate
with k-step nilsequences’ is to employ the Green—Tao factorisation theorem
[10, 1.19], which allows us to reduce this task to the case where the nilse-
quence is close to being equidistributed. A separate estimate which shows
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that h does not correlate with periodic (nil)sequences allows us to further as-
sume that the Lipschitz function involved has zero mean, that is, SG r F=0.
Periodic sequences are regarded as major arcs. We have already deduced a
major arc estimate in Section The remaining case with the strong as-
sumption that the nilsequence behaves in a very equidistributed way corre-
sponds to the minor arc analysis of the classical Hardy—Littlewood method
(cf. the discussion in [9, §4]). The procedure of passing to the equidistributed
(minor arc) case is fairly independent of the individual problem and is com-
pletely described in §2 of [9]. Thus, we restrict our attention here to providing
the necessary major and minor arc estimates specific to our problem and
only summarise the procedures from [9] we employ.

Our approach to the minor arc estimate is modelled on a strategy one
might choose in the classical setting: If 6 is a rational that belongs to a
suitably chosen notion of ‘minor arc’, then one obtains an upper bound for
the expression

1
En<nry(n)e(d Z e(0f(x,y)) =5 Z e(f(az®+bry+cy?))
f(z7y§J (wiﬁSN

by splitting into suitable summation ranges, fixing either z or y, and apply-
ing Weyl’s inequality @ Thus, in our case, we aim to employ the quadratic
structure of the form f by means of Weyl’s inequality in order to deduce
the estimate
En<nrp(n)F(g(n)I") = o(1)

for sufficiently equidistributed sequences (g(n)I")n<n. When working with
a sequence (F(g(n)I")),en) directly, Weyl’s differencing trick may only be
employed locally on so called generalised Bohr neighbourhoods, where one
can make the locally polynomial structure of a nilsequence explicit (cf. the
approach in [7]).

The crucial fact that makes Weyl’s differencing trick work for exponential
sums is that the exponential function is a group homomorphism. Since F
is a Lipschitz function, one expects it to have a good, i.e. short, Fourier
approximation. In general, elements of a Fourier basis in the non-abelian
case arise from characters, i.e. homomorphisms. Thus there is a good chance
that it is possible to employ Weyl’s inequality globally for elements of the
Fourier basis and hence for a short Fourier approximation of a Lipschitz
function.

In our case, the situation is considerably simplified by the availability
of a complete quantitative equidistribution theory for polynomial orbits on
nilmanifolds, which has been worked out by Green and Tao in |10]. In partic-

(%) See the next section for more details.
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ular, their generalisation of Leon Green’s theorem (‘Quantitative Leibman
theorem’ [10, Thm. 1.16]) asserts that any polynomial sequences on a nil-
manifold G/I" is §-equidistributed @ if and only if its projection on the
horizontal torus is §’-equidistributed, where the dependence is polynomial.
The horizontal torus bears the advantage of being isomorphic to an ordinary
torus R%» /Zdv . Consequently, we need not consider the representation the-
ory on nilpotent Lie groups and their homogeneous spaces; analysing the
projected sequence on the horizontal torus by standard Fourier analysis,
or even the quantitative version of Weyl’s equidistribution theory, is suffi-
cient. (The latter theory will actually reduce matters to looking at sequences
Z — R/Z arising from horizontal characters.)

Our strategy, after reducing to the equidistributed case, is the following;:
Let P denote a polynomial of degree d. Then equidistribution of (g(n)I")p<n
on G/I' implies that (7o g(n)),<y is equidistributed on the horizontal
torus, which implies, as a consequence of Weyl’s equidistribution theory,
that (mo g(P(n))), <14 is equidistributed on the horizontal torus, which
implies that (g(P(n))I"), < ni/4 is equidistributed on G/T". The distribution
of polynomial subsequences was not considered in [10], but will follow from
results of that paper. These results will be proved in Sections [14] and

For the above strategy to work, a strong major arc analysis is required,
because the W-trick introduces very large coefficients into the quadratic
forms under consideration. For the major arc analysis, we rely on the obser-
vation that all of these large coefficients turn out to be entirely composed of
small prime factors. We briefly describe in the next section how this infor-
mation is used to choose major and minor arcs in the classical setting. The
general case will be carried out in Section [15| (especially Corollary and
Proposition which deal with polynomial subsequences that have large
but smooth coefficients) and Section which provides a factorisation of
polynomial sequences into major and minor arcs.

12. A special choice of major and minor arcs is necessary. In
this section we describe briefly and solely for motivational purposes how the
major and minor arcs are chosen in the model case of correlation with linear
phase functions e(fn) instead of general nilsequences. Here the task is to
show that

EnSN(r}ﬁ(n) —1)e(On) = o(1).
In Section [7.1} we saw that r’, , — 1 does not correlate with any ¢-periodic
function of w(N)-smooth period ¢, provided N /q is still quite large. It is
therefore possible to choose the major arcs to consist of all rationals 6 € [0, 1)
that are close to a rational with w(V)-smooth denominator: in that case

(*) The quantitative notion of equidistribution is recalled in Section
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e(nd) is close to a periodic function with w(N)-smooth period. The minor
arcs then comprise all 6 that are not close to rationals with w(N)-smooth
denominators. For such a ‘minor arc’ 6, we automatically have E,<xye(6n)
= o(1).

Thus, we define the major arcs to be

m:= Jm,
qeN
where £ is the following set of all not too large w(N)-smooth denominators:
Q:={1<¢g<N°:plg=p<w(N)}

and where 9, is the set of real numbers that are well approximated by some
rational with w(V)-smooth denominator:
o2 <

1
M, = {0 : | S N

The reason behind this choice of major arc is the following. When we
pass to W-tricked versions of the representation function, which are up to
normalisation of the form n — ry(Wn+ 3), then this restriction to a linear
substructure cannot directly be expressed by the quadratic form f. For the
minor arcs treatment, we, however, hope to work with the quadratic form
directly. We will therefore consider all choices (z/,3') € [W]? such that
f(@',y) = B (mod W) and consider for each choice the quadratic form
f(Wz +2', Wy + ') in z,y. Fixing either z or y, we hope to apply Weyl’s
inequality when 6 & 9 to estimate

Z r(Wn + B)e(6n)

n<(N-B)/W

_ 3 3 e<9(f(W=’E+5C'7W‘j/y+y/)—5)>_

1ol (AT Zz,
f(:v’,;')yi;E;V(})dW) f(W:c—‘,—x’,Wyy—&—y’)SN

Here we obtain for fixed 2,3’ and either fixed x or fixed y a quadratic
inside the exponential with leading coefficient Wa or §W ¢ where a and ¢
are coefficients of f. For the application of Weyl’s inequality, we require that
this leading coefficient is close to a rational with large denominator.

Since acW < N°W) | the choice of major and minor arcs guarantees that,
when 6 & M, i.e.

for some («, q) = 1}.

o 1
0——| <

q qu—a
for some ¢ that has a prime factor > w(N), or satisfies ¢ > N¢, then
o 1

[ —

= gN1——o(1)’

CLWO— -
q
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where ¢’ has a prime factor > w(N), or satisfies ¢ > N*~°(1), Thus, aW6
can still be thought of as minor arc, when replacing N by N1—o().

13. A brief overview of the concepts around nilsequences. Let
G be a connected, simply connected, k-step nilpotent Lie group, and let I"
be a discrete co-compact subgroup. Then G/I is called a k-step nilmanifold.
A filtration G4 of G is a sequence of subgroups

G=Gy=G1>Gy> - >Gq>Ggy1 = {idg}

such that for any d > 4,5 > 0 the commutator group [G;, G;] is a subgroup
of Giyj. The filtration is said to have degree d if G4y is the first element
in the sequence that is trivial. By definition, a nilpotent group always has a
filtration.

The quantitative analysis carried out in [10] relies on the existence of a
certain type of basis, a Mal’cev basis, for the Lie algebra g of G. Adapted
to any filtration, there exists a Mal’cev basis for g that parametrises via the
exponential map both the groups in the filtration and the uniform subgroup
I' in a very natural way. For each such basis A, Green and Tao introduce
a metric dy for G and its quotient G/I" in [10, Def. 2.2], which then allows
them to define Lipschitz functions on G/I", and also to introduce a notion
of slowly varying (or smooth) sequences (¢(n)),ez that take values in G.
Despite the fact that any of the statements on nilsequences require a fixed
choice of Mal’cev basis X and corresponding metric dy, we will not need to
directly work with any of the specific properties of either of these objects:
they will only implicitly be present through the results from [10] we build on.
For this reason, we content ourselves with referring to [10, §2 and App. A]
for background and exact definitions.

DEFINITION 13.1 (Polynomial sequence; [10, Def. 1.8]). Let g : Z — G
be a G-valued sequence, and define the discrete derivative

Ohg(n) == g(n+ h)g(n)~' for each h € Z.

Then ¢ is a polynomial sequence with coefficients in GG, when for every
i €{0,...,d+ 1}, and every choice of hy,...,h; € Z all ith derivatives sat-
isfy Oh, ...0n,9(n) € G;. We write poly(Z, G,) for all polynomial sequences
adapted to Go and say they are of degree d, where d is the degree of the
filtration.

Two facts about polynomial sequences are of particular importance. The
first is a theorem of Lazard: poly(Z,G.) forms a group; see [10, §6] for a
proof and the reference to the original work. The second important property
is a more explicit description of polynomial sequences. It is shown in [10, §6

and the remarks following Def. 1.8] that every polynomial sequence can

be written in the form g(n) = alfl(n) . ..aik(n), where k is some integer,
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a1,...,ar € G, and p1,...,pr : Z — 7Z are polynomials. Observe that, if
the sequence g; defined by g;(n) = afi(n) belongs to poly(Z, G.), then the
assertion that the discrete derivatives of order d 4+ 1 all equal idg directly
translates to deg(p;) < d. In general the degree of the polynomial sequence
g is much larger than the degrees of the polynomial exponents pi,...,pg
that appear in the above mentioned representation.

DEFINITION 13.2 (Horizontal torus). Write 7 : G — (G/I')ap =
G/([G,G]I) for the canonical projection of G on the abelianisation of G/I".
(G/I)ap is called the horizontal torus of G.

We will extensively work with horizontal characters n : G — R/Z. These
are additive homomorphisms that annihilate I". Note that when g has de-
gree d, that is, when g has coefficients in a filtration of degree d, then the
projection no g can be written as an ordinary polynomial of degree at most
d taking values in R/Z.

[10, Def. 2.6] defines the notion of the modulus || of a horizontal char-
acter. All that is important to us is that ||7||Lip < |7].

14. Reduction from nilmanifolds to the abelian setting. In this
section we provide the tool for passing from a general nilmanifold to the
abelian setting of the horizontal torus. We caution, however, that by far
the largest amount of the real work behind these results is hidden in the
application of |10, Thm. 1.16], while the converse statements we prove are
fairly straightforward.

Integral to all what follows are the two quantitative notions of equidis-
tribution that were introduced in |10, Def. 1.2]:

DEFINITION 14.1 (Quantitative equidistribution, [10]). Let G/I" be a
nilmanifold endowed with Haar measure and let 01, 62 € (0, 1) be parameters.
A finite sequence (g(n)I"),<n is said to be d;-equidistributed if

EnepnFlom)0) = | F| < ailFlluip
G/Tr
for all Lipschitz functions F': G/I" — C with
|F(x) — F(y)|
1F(|Lip == 1 Floc + sup d .
z,yeG/I, x#y G’/F(xay)
(9(n)I")p<n is said to be totally d2-equidistributed if
EnepF(g(n)T) - | F‘ < 62| FllLip
a/r

for all Lipschitz functions F' as above and all arithmetic progressions P C
[N] of length |P| > §2N.
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For polynomial sequences these two notions of equidistribution are equiv-
alent in the sense that every totally ds-equidistributed sequence is do-equi-
distributed, and every dj-equidistributed sequence is totally d2(d1)-equi-
distributed, where 6{* < 85(6;) < 07 for some A only depending on the
degree of the sequence, and the dimension and step of the nilmanifold. (As
this observation will not be used later on, a proof is omitted.)

We set out by recalling the quantitative version of Weyl’s inequality from
[10], and the notion of smoothness norms in terms of which this inequality
is phrased.

Any polynomial g : Z — R/Z of degree < d has an expansion of the form

g(n):a0+a1<7;) +---+ad(g>.

The smoothness norm of g is defined by
glloeny == sup N7||el[r/z-
1<j<d

This norm was introduced in [10, Def. 2.7] as a measure of slow variation of
polynomial sequences on tori. Indeed,

(14.1) lg(n) — g(n — 1)|lr/z <a llgllcee(n)/N-

For us it will be more convenient to work with the coefficients of the ordinary
representation of g. When g(n) = B4n? + Bq_1n®' + - 4 By, then (cf. |9,
Lemma 3.2]) there is ¢ > 1 with ¢ = Og4(1) such that

(14.2) laBjllr/z < N77|Igllcoeny

for j = 1,...,d. This follows by expressing each 3; as a linear combination
of «;. The coefficients appearing are bounded by Og4(1).
In the other direction we can show

(14.3) Igllosen) < sup N7||318; g z-
1<j<d

Indeed, j!B; is a linear combination of «;, i > j, where the coefficient of o
is 1 and all other coefficients are Oy4(1). Let jo be the maximal index for
which ||g||cee(n) = N? ||, || Then N¥|ja;|| < NP ||ayj, || for all i > jo. Thus
lleeil| < N7o=*|evjo [l Then [l0!Bjo | = llejo (1 + O4(N ")), which proves the
result.

Part (a) of the following is Green and Tao’s Proposition 4.3 from [10].
While the latter is quite a deep result, its converse, which we prove as
part (b), is rather straightforward.

PROPOSITION 14.2 (Weyl).

(a) Suppose that g : Z — R is a polynomial of degree d, and let 0 < &
< 1/2. If (9(n) (mod Z)),en) is not d-equidistributed in R/Z, then
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there is an integer k with 1 < k < §= 941 such that kgl coony <

§—0a(1)
(b) Suppose that the parameter § = 6(N) € (0,1) satisfies 6~ <4 N
for all t € N. Further, suppose there are positive integers ki, ..., kq

satisfying k;j < 5727 such that
_9d—i i
Ikjerjllmyz < 67277 /NY.

Then, provided N is large enough, there is some positive integer A =
O4(1) such that (g(n) (mod Z)),e|n is not totally 64 -equidistributed
in R/Z.

REMARKS. (1) The precise choice of exponents in the bounds 672" is
not important to this result, but we will later make use of the fact that this
way kqgkq_1 .. .kd_j < 52T

(2) In part (b), the conditions ||kja;llr/z < 52 /N7 can be replaced
by [|k;B)llr/z < 672 /N as they imply ||k;j!8)llg/z < 62" /N7.

Proof. To prove (b), put k = lem(ky,...,kq). Then, by the assumption
on 9,

Ikayllg/z < 6~ /N7 = o1)
for some A" = Oy4(1) for each j € [d]. Consider the sequence
(k1)) ney(v/my5241-

By (14.1)), each g(kn) in the range satisfies ||g(k) — g(kn)|| < 04'. Thus
eo g = exp(2mig(-)) is almost constant on this range and we obtain, for N
sufficiently large,

2m6 A §2A' N

2
) > 6 lelin

E,civmseae(g(kn) = | e(x) dm) >1- (
R/Z

that is, (g(n) (mod Z))u<n is not totally 624" /k = §94(M)_equidistributed.

The equidistribution of nilsequences is related to the equidistribution of
certain polynomial sequences via the following projection theorem.

PROPOSITION 14.3 (Green-Tao ‘Quantitative Leibman theorem’). Let
m, d, N be positive integers, and let 6 € (0,1/2) be a parameter. Let G/T
be an m-dimensional nilmanifold together with a filtration Go of degree d
and a 6~ -rational Mal’cev basis adapted to this filtration. Suppose that g €
poly(Z,G,). Then there are positive constants B and B’, only depending
on m and d, such that the following holds. If (g(n)I")n<n is not totally
d-equidistributed in G/I", then there is a non-trivial horizontal character
n of modulus |n| < 6~ 9ma) such that (n o g(n))n<n is not totally 65-
equidistributed in R/Z.
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Conversely, if there is a non-trivial horizontal character n of modulus
In| < 671 such that (n o g(n))n<n fails to be totally §-equidistributed in
R/Z, then (g(n)I)n<n is not totally 6% -equidistributed in G/T.

Proof. If (g(n)I")n<n is not totally d-equidistributed, then there is a
progression P = {pg,po+¢,...,po + £q} of length at least 0N such that the
sequence (g(n)I),cp fails to be J-equidistributed. Define ¢’ € poly(Z, G,)
by ¢'(n) := g(gn + pp). Then [10, Thm. 2.9] implies that there is a non-
trivial horizontal character 7 : G — R/Z of modulus || < §=9m4(1) such
that |[n o ¢'[|lcesn < 6~9m.a(1) By Proposition (b), this implies that
n o g fails to be totally 65-equidistributed for some B = Om.a(1).

In the other direction, if there is a non-trivial horizontal n of modulus
bounded by 6! such that (nog(n)),<x fails to be totally d-equidistributed,
then we again find a progression P = {po,po + ¢, ...,po + ¢q} of length at
least 6V such that the sequence (nog(n)I"),ep fails to be §-equidistributed.

By Proposition [14.2(a) we have
(14.4) In© g(po + ja) = no g(po + (j = Da)llg/z < 5~ OmiD/N

for all j € {1,...,¢}. Since 7 is an additive character on a compact group,
we have S(G IT)a e(n(x)) dx = 0. Consider the subprogression

P'={po,po+¢:-..,po+q} C P,
where ¢/ = 65N, with B’ = Op,d(1) large enough so that (14.4) guarantees
j <P 1
Im o g(po) —nog(po+ ja)llr/z < NOma) = 4

for all 7,0 < j < /. This implies

1
Enepre(nogn) = | e(n(x)) dz| = [Eucp e(ne g(n))| > 3,
G/r
using the fact that R(e(z)) = cos(27z) > 1 — (27x)? > 1/2 for z < 1/4.
Since |le o nllLipa/r) < llellLip@/z) 1MllLipe/ry < 6941, where the
bound on the Lipschitz constant of 7 comes from the bound on the modulus
(cf. [10, Def. 2.6]) of the character, we may in fact choose B’ = Oy, q(1)
large enough to ensure that also

1/2 > 6%'(|e o || Lip-
Thus, (9(n))n<n is not totally 6% -equidistributed in G/I". u

15. Equidistribution of polynomial subsequences via Weyl’s in-
equality. With the help of the quantitative Leibman theorem (Proposi-
tion, which reduces questions about the equidistribution of polynomial
nilsequences to questions about the equidistribution of polynomials taking
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values in R/Z, we analyse in this section the distribution of polynomial
subsequences of polynomial orbits.

The first result states that on the torus, polynomial subsequences of §-
equidistributed sequences are equidistributed too. Before stating this propo-
sition properly we give an informal description of its contents here. A poly-
nomial g : Z — R/Z is equidistributed if and only if one of its coefficients is
irrational. Quantitative equidistribution is an assertion on whether or not
there is a Lipschitz function F' : R/Z — C for which |E,<nF(g(n))— SR/Z F|
fails to be small. Approximating the Lipschitz function F' by a Fourier se-
ries, one sees that studying this quantity is equivalent to studying the ex-
ponential sums E, <ye(wg(n)) for certain rational w. The latter is naturally
approached by Weyl’s inequality which then shows that the quantitative
equidistribution of g is an assertion about whether or not there is a co-
efficient of ¢ that is not close to a rational with small denominator. This
rational approximation property is preserved when we consider composi-
tions g o P of g with an integral polynomial P whose leading coefficient is
not too large. To see this we only need to consider the case where g has a
‘highly irrational’ coefficient. Take the largest-index coefficient of g which is
‘highly irrational” and call it 3;,. Then we may check that the largest-index
coefficient of g o P which arises from the highly irrational coefficient 3;, of
g is still considerably irrational. (Some bounds on the lower coefficients of
P are needed in order to avoid cancellation.)

PRrOPOSITION 15.1 (Equidistribution of polynomial subsequences: abel-
ian case). Suppose that g : 7Z — R is a polynomial of degree d and that
P(n) = zglzo ~vint is a polynomial with integer coefficients of degree d' such
that the leading coefficient g is bounded by Lo, while all other coefficients
satisfy the inequality v < N@=D/4 Let 0 < § < 1/2 and suppose ¢ <
N for all t € N. Then there is some integer A = O4(1) such that when
(g(n) (mod Z)),e(n is totally 6-equidistributed and when Lo < 6~VA then

o P(n) (mod Z a1 18 totall 61/ 0a.a (V) _equidistributed.
(9 ne[N1/d] Y q

Proof. Since g is totally d-equidistributed, Proposition M(b) implies
that there is an integer A = Og4(1) such that no d-tuple of positive in-
tegers ki,...,kq satisfies simultaneously k; < §7277/A and k551 <
5‘2d7j/A,/Nj for all 7 = 1,...,d. We deduce that there is some index g
among them such that |k, G| < §=2'7°/A"N~io does not hold for any
ki, < g2/ Suppose ig is maximal with this property. Then for all £
with g < £ < d we find r, < 62" /4" such that

(15.1) reBe|| < 672 /AN
For any j € {1,...,d}, considering the jth term of
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Bi(P(n)) = go P(n)

o,
I Mg
(e}

we have
Bi(P(n)Y = Bi(var)’n® + 8;Q;(n),

where @Q;(n) is a polynomial of degree < jd' — 1 such that the coefficient of
n' for any i is bounded by Og g (N7 N~ §=3/4) since

d’ .
; J
(Pn)) = (Z %nt> - } : Yy -yt
t=1

(tl,...,tj)e[d/]j
and
Vig oo Vs S L%Nj*(tlJr---thj)/d/.
TS
Define o;, 1 =0, ...,dd’, to be the following coefficients
dd’

d
> ain' =goP(n)=Y_ Bi(P(n)).
i=0 Jj=0

Comparing coefficients, each o; may be written as a linear combination of 3;
with j > i/d'; ojq is the o-coefficient of largest index whose representation
in terms of (’s contains f;, which appears with coefficient (y4)’ in the
representation.

Next, we aim to show that there is A” = O4 (1) such that every choice
of ki, ..., kqa with k; < 52" 7/A" for each j € {1,...,dd'} contains some
kj, such that

_2dd’—j0 A —io/d
[kjo0joll >0 I NIl

This, when applied with k; = ¢k for any k£ < YA would in view of
(14.2) imply [|kjg o Pl e (N > 6~ 1/A4" from which the result follows by

Proposition [14.2{(a).

We will show that we can pick jo = igd’. Thus, suppose for contradiction
that

15.2 kioaroioa |l < 572dd/7i0d//AHNfio
0 0
holds for some k; ¢ < 52170 /A" Note that

Kiod Cigar = Kigar (Yar)" Bio + Y _ Kigar CeBe,

0>1ig

where the Cy are integers of order Oy 4 (N {=i0§=d/4) a5 can be deduced from



Linear correlations amongst numbers weighted by Ry 291

the equation

CZ: Z Yty - V-

tl,...,tge[d/]
t1+-~~+tg:i0d,

We wish to discard all the terms with ¢ > 4y in the above expression for
kiyar0ioq in order to deduce that 3;, is well approximable by rationals, which
will hopefully lead us to the sought-for contradiction. Thus, in view of ,
we multiply the above expression for k; g0 a by K := H£>z‘o K¢. Inequality

((5:2) yields

[Kkigd Oigar || < 67
520l A (210 ) A i

2dd/7iod’/A//(S_(20+.,,+2d—io—1)/A/N_Z~O

Writing k = kigar (va)% [1¢si, we, we have
kioarTigar | [ e = kBig + kigar Y KCiBy,

>0 >0
where in view of ([15.1)) and the bound on the Cy,
[ ksoa iClofBe|| < 5210 0 JAT o (20442070~ 1) JAY Nl N rh—ig 5—d /A
_ 5_2dd’—i0d//A//5_(2d—i0_1)/A/5_d/AN_iO ‘
Recalling that 67! <; N for all ¢+ € N, this upper bound is seen to be
o(1). Together with the bound on ||kk;,q 04,4 | this allows us to employ the

triangle inequality provided N is large enough that no wrap-around issues
can occur. In particular, this allows us to deduce that

1B || < 621107 /A" 5=/ A 5=d/A N —io,

When we choose A” = 294+1 4" and A = 2dA’ (to ensure that L) < 644 <
6~1/RA)  this translates to

- d—1, / :
kB, || < 6720/ N0,
while we obtain the following bound on k:
]—C < 5_2dd’—i0d’/A//L606_2d—i0—1/A/ < 5_201—1'0/14,.
Hence, we obtained a contradiction to the rational non-approximability
properties of 3;,. =

Next, we slightly extend this result. Consider the binary quadratic form
f(z,y) for fixed y and its restriction to subprogressions modulo ¢ in the z
variable:

flgz +1r,y) = ag’=® + z(2aqr + bgy) + (ar® + bry + cy®).
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This defines a quadratic polynomial P(z) := vo2? 4+ y12 +70 := f(qz +7,9)
in x. Being interested in (x,y) such that f(z,y) < N, we may suppose
that y < N'/2. Further assume that ¢ is k-smooth (we will be interested
in the case ¢ = W) and satisfies ¢ < N°U. Then the coefficients of this
quadratic polynomial in z have the following properties: s is k-smooth, and
Ny < @PNCD/2 1« INC-D/2 o « gON(2-0)/2,

The proposition below is tailored to address polynomials with these spe-
cific properties.

PROPOSITION 15.2. Let 0 < & < 1/2 and suppose 6~¢ <; N for all
t € N. Let k be a positive integer and suppose that the polynomial sequence
g:7Z — R, g(n) = Z;‘l:o Bin?, has the property that for every k-smooth
integer q with ¢ < N°Y | for every choice of ku, ..., kg with 0 < k; < 52
for g =1,...,d, and for every sufficiently large N, we have

. d—ij .
sup lg’k;3;16%° 7 (N/q)? > 1.
1<j<d

If P(n) = Z?/:o win' is an integer-coefficient polynomial of degree d' whose
leading coefficient is a k-smooth integer satisfying vo < N°WU), while all
other coefficients satisfy v; < N@=D/d'~,i/d" e obtain a conclusion similar
to the one in the previous proposition:

There is a k-smooth number § with § < N°Y) such that each of the se-
quences (go P(gn+r)(mod Z))ne[(N/wd/qd’)l/d’] forr € [q) is totally 6/ Ca.ar ()
equidistributed, provided N is large enough.

REMARK. The unconventional form of the inapproximability conditions
imposed on the f; comes from our choice of major and minor arcs (cf.
Proposition below and the next section).

Proof. Consider g := ~4, and let, as in the previous proof, ¢y be the
maximal index for which

. d—i .
1" kio Bio 6% (N/q)" > 1
for all k;, < 524700, Thus, for £ > iy there are xy < 572" such that

(15.3) g’ reBe] < 52 (N/g)~".

We wish to employ this information to proceed as in the previous proof,
that is, we wish to assume for contradiction that all coefficients of go P are
close to rationals. In particular this would apply to the (igd’)th coefficient.
Writing that coefficient as a linear combination of 8’s we would then like
to deduce that 3;, has to be close to a rational, which produces a contra-
diction. Unfortunately, the above information is not quite sufficient for our
purposes yet: we require similar bounds on ||s¢3¢| instead of on ||¢‘keSBe||.
To work around this, we pass to higher powers ¢' of ¢, aiming to find a
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small ¢ and an index iy such that ||¢k;, By, | > 62" " (N/q%)~%, while
lq®keBe|| < 6727 (N/qt)~* for £ > . The gap between ¢'%* and ¢' (for
¢ > i) introduced by the extra factor d will be sufficient to analyse go P on
subprogressions modulo gt/ @
Returning to the proof, note that implies
la"kefell < "D lg keBell < 67 (N/g!)~*

for ¢ > iy and for all positive integers ¢t. By assumption on the rationality
properties of the 3;, j = 1,...,d, there is an index 41, which by the previous
observation necessarily satisfies i1 < ig, such that

. d—i .
g™ iy B 1677 (N /)" > 1

for all k;, < 627",

Proceeding like this, we obtain a decreasing sequence ig > i1 > g
> -+ of positive integers such that for every j the following two families of
inequalities hold:

. . od—ij . s
Hq(]—i-l)z]kijﬂiju >0 2 J(N/q]-H) ij
for all k:ij < 5_2d7ij, and for every ¢ with d > ¢ > i, there is ky < 52"
such that
. _od—¢ . _
gV kBl < 672 (N /g7 )"

By positivity of the indices i;, there is t = Og ¢ (1) such that i;—1 =i = iy
for all t < t’ < tdd'. Setting 7 = tdd’, we therefore have

(15.4) g ks, By, (1627 (N 7Y > 1

for all k;, < 5_2‘17”, while we find for every ¢ > i; a positive integer x, <
572" such that

(15.5) lq" keBell < 672 (N/q") ™"

Now recall that d’ = deg(P) and consider the sequence

2d*l

g(P(qT/d’n + r))ne[(N/qT“'l)l/d,]

for an arbitrary r € [qT/ d/]. Defining coefficients o; by

dd’ d
Z oin' = g(P(g"/ n + 1)) = Z Bj(P(qT/d,n +1)),
i=0 J=0

we have

(15.6) i = Bis (V") + Y B Co,

0>y
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with integer coefficients Cy. We need a bound on Cp and proceed to show
that Cy, = O(N*"¢'). Expanding out products yields

d/
(P 7))’ = (Yl + 1)
j=1

= D e Y (jl)"'(ii)<QT/d/n)“1+'"+“é7"(jl_“1)+"’+(”_“‘)-
)

. . U1
(150570 (u1,ee5ug) <

eld’)* (J1,-0de)
Consider any term involving (¢7/% n)id = ¢Titpitd’,

If j1+---+jy=wuy + -+ uy = ixd’, then the coefficient of qTifnitd/ is
Vi Ve < Niegie If jy+- -+ > up +- - - +ug = ird’, then the coefficient
of (¢'n)*? is bounded by Oga (7, - .. vj,r*) = Oga (N0 glptd'y =
O(N**), since r < ¢/ <« N°(). Thus in total, Cp = O(N* ¥ gt).

We return to analysing the rational approximations of the individual
terms of ([15.6). Notice that 7 > ¢£ for all ¢ € [d]. Thus guarantees
for ¢ > 1; the existence of ky < 527" such that

(157) H/Bfﬁfq‘ritCZH < (572d74N76qﬂtC£ < 5*2d72N*it (qT+1)it_
We are finally in a position to show that there is A = Og 4 (1) such that

d/
g(P(qT/ n + r))ne[(N/q7—+1)l/dl]
is totally 6'/4-equidistributed. More precisely, we show that there is A’ =
Og,a(1) such that for every k; o < g2 jar
Hkitd/o—itd’” > (N/q‘r-‘rl)—z‘t(s_gd (dfit)/A/.

Hence the result follows from Proposition [14.2|(a). Suppose for contradiction
that
i _od (d—ig) /A’
ksarosarll < (N/q ) a2 0/A
for some k;,¢ < 52 THA et g o= Kd-..kKij+1 (or K = 1 when the

. . _o9d—¢
product is empty), then, since xy < 572",

||K'kitd,0-itd/ H << (N/q7'+1)7lt 57211 (d—it)/A/67(2d—it71)‘
Considering the summands in ([15.6]), the bounds ([15.7]) imply
e Cull < 5~ -0g=2 0 14 (g

Appealing to the assumptions that both ¢ and 6! are bounded by N o(1),
the above is seen to equal O(N 1o = o(1) since i; > 1. Thus, provided
N is large enough, no wrap-around issues appear when examining the cir-
cle norm ||k;, k0,4 and we obtain the following statement on rational
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approximation of f;,:

B ()| = i (a7 = |

Kid Kiyar — Y 5@5(17“02”
0>y
< ki koia + Y |Berg™ Col
0>t

52T g2 T A iy (i

Choosing A" = 2dv/(d_if), this shows that there is k, namely k = k;, g ka®,
bounded by 627" such that

IkBi,a™ | <67 " (N/g™H) ™,
contradicting (15.4]). m

Combining either of the previous two results with the quantitative Leib-
man theorem yields the general case of the equidistribution theorem for
subsequences.

PROPOSITION 15.3 (Equidistribution of polynomial subsequences). Let
N, d, d' be positive integers, let Ly and 6 € (0,1/2) be parameters, and
suppose that 57t <4 N for all t € N. Let g € poly(Z,G,s) be a polynomial
sequence of degree d and suppose that the finite orbit (g(n)I"),e[n) is totally
d-equidistributed in G/I". Let P : Z — Z be an integer-coefficient polynomial
of degree d' whose coefficients are bounded by L.

Then there is some A = Ogq4/(1) such that whenever Ly < &, then the

polynomial subsequence ((g o P)(n))ne[(N/wd/)l/d’} is totally 6'/Ca.aM) _equi-
distributed on G/I".

Proof. We first pass to the abelian setting: by Proposition[I4.3] there are
constants A, A" = Op, 4(1) such that every sequence (n0g(n)),e[n for a hor-
izontal character n of modulus at most §~4 is totally 6%/4"-equidistributed.
Applying Proposition [15.1) we deduce that for each such character 7 the
sequence (nogo P(n))ne[(N/vd/)l/d’] is totally 6/Pa.a'.m(M)_equidistributed in
R/Z. An application of the other direction of Proposition then allows
us to return to G/I" and deduce the stated equidistribution property of
(go P(n))ne[(N/'yd/)l/d’] inG/I' =

Similarly, Proposition [I5.2] results in an assertion for polynomial orbits
on general nilsequences:

PROPOSITION 15.4. Let N, d, d', k be positive integers, and let § €
(0,1/2) be such that 6=t <4 N for allt € N. Let g € poly(Z,Gs) be a
polynomial sequence of degree d and suppose that for every k-smooth number
q with ¢ < N°D), the sequence (9(qn))nein/q i totally 6-equidistributed
in G/I.
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Suppose further that P : Z — 7 15 an integer- coeﬂiczent polynomml of
degree d' as in Proposition That is, if P(n) = Zl 0yin', then ygr is
a k-smooth integer with vg < N"( ), while all other coeﬁ?czents satisfy the
mequality v; < N(d/_i)/d,'yzl{d/.

Then there is a k-smooth number § with § < N°Y such that each of the
sequences (g o P(gn + ?")F)ne[(N/7 gty Jor € [G] is totally &6'/Cua(M).
equidistributed in G/I', provided N is large enough.

Proof. Letn: G/I' — R/Z be an arbitrary non-trivial horizontal charac-
ter of modulus bounded by §~9m.4(1) and suppose that no g has the polyno-
mial representation nog(n) = Z?:o Bin? in R/Z. Let ¢ < N°() be k-smooth
and consider the sequence

(o g(qn)I)nen/q-
By the equidistribution assumption on the subsequences of g, and by Propo-
sitions and [14.2(b), there is an integer B = Og4(1) such that for every
choice of ki,..., kg with 0 < k; < §27/B for j = 1,...,d, and for every
sufficiently large N, we have

. . A
sup |7 k;B;[10% /B(N/q)? > 1.
1<j<d

Thus, with 6'/Z in place of §, the conditions of Proposition are satisfied
and hence there is § < N°1) such that for every r € [§] the sequence

(negoP(gn+r) (mod Z))ne[(]v/'yd,q)l/dl]

is totally 5t/ Od@’(l)-equidistributed in R/Z, provided N is large enough. An
application of Proposition to get back to G/I" gives the result. =

16. The factorisation into minor and major arcs. In view of the
previous section, a ‘minor arc sequence’ g € poly(Z,G,) should satisfy the
conditions of Proposition in order to guarantee its applicability. That
is, given k € N, § = §(N) € (0,1/2), and R < N°V, the sequence g should
have the property that for every k-smooth number ¢ < R the finite sequence
(9(qn))ne(n/q is d-equidistributed in G/ I

In this section we will achieve a factorisation of an arbitrary polynomial
sequence ¢ into a product eg’y, where ¢ is slowly varying (‘smooth’),
is periodic with a k-smooth common difference, and ¢’ has the ‘minor arc
property’ described above. We will ensure that ¢’ satisfies a slightly stronger
version of this: when we restrict ¢’ to subprogressions on which 7 is constant
and on which ¢ is almost constant, then the restricted sequence still enjoys
the ‘minor arc property’.

This factorisation will be obtained by iteration of the Green—Tao fac-
torisation theorem [10, Thm. 1.19] employing its dimension reduction as a
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guarantee for termination of the iteration. Before we state the factorisation
theorem, we recall the notion of smoothness of sequences.

DEFINITION 16.1 ((M, N)-smooth sequence, |10, Def. 1.18]). Let G/I"
be a nilmanifold together with a @-rational Mal’cev basis X and metric
d = dy. Let (¢(n))nez be a sequence in G, and let M, N > 1. Then ¢ is said
to be (M, N)-smooth if both d(e(n),idg) < M and d(e(n),e(n—1)) < M/N
are satisfied for all n € [N].

In the later iteration of the Green—Tao factorisation theorem we will
encounter a product of smooth sequences, which needs to be shown to be
smooth itself. Notice therefore that, when (¢(n))nez is (M, N)-smooth and
when (¢'(n))nez is (M, N/q)-smooth, then the triangle inequality and right-
invariance of the metric d yield

d(e(gn + j)€'(n),idg) < d(e(gn + j),idg) + d(e'(n),idg) < 2M

for all n € [N/q|. Employing also the approximate left-invariance of d (see
[10, Lemma A.5]), we obtain

d(e(qn + j)'(n), e(a(n — 1) + j)e'(n — 1)) < 24Q°WM/N.

Thus, (£(gn + 5)e'(n))nez is (2Q°M M, N/q)-smooth.
The tool to split into major and minor arcs is the following Green—Tao
factorisation theorem.

THEOREM 16.2 (Green-Tao, [10, Thm. 1.198]). Let m,d > 0, and let
Qo, N > 1 and A > 0 be real numbers. Suppose that G/I" is an m-dimensio-
nal nilmanifold together with a filtration G of degree d. Suppose that X is a
Qo-rational Mal’cev basis X adapted to Go and that g € poly(Z,Gs). Then

there is an integer Q with Qp < Q K QOOA’m’d(l), a rational subgroup G' C G,
a Mal’cev basis X' for G'/T" in which each element is a Q-rational combi-
nation of the elements of X, and a decomposition g = g’y into polynomial
sequences €,¢',y € poly(Z,Ge) with the following properties:

(1) e:Z — G is (Q, N)-smooth;

(2) ¢’ : Z — G' takes values in G', and the finite sequence (g'(n)I")pen)
is 1/Q4-equidistributed in G'/I", using the metric dyr on G'/T";

(3) v:Z — G is Q-rational, and (y(n)I")nez is periodic with period at
most Q).

The proof of our modified factorisation theorem will proceed via an iter-
ative application of the theorem stated above. Our next aim is to prove an
auxiliary lemma which will guarantee that the iteration process stops after
finitely many steps. The way this goal is attained is to ensure that every time
we refine our splitting of [N] into subprogressions, the polynomial sequence
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g we try to factorise fails to be totally equidistributed (with some param-
eter) on each of the new subprogressions. This way an application of the
factorisation theorem on any new subprogression yields a lower dimensional
rational subgroup.

LEMMA 16.3. Let G/I" be an m-dimensional nilmanifold and let g €
poly(Ge,Z) be a polynomial sequence of degree d. Let 6 € (0,1/2) be such
that 67t <4 N for all t € N. Further let a < §~1 be an integer, and b € [a).
Suppose that (g(q(an + b)) ,ein/q fails to be §-equidistributed in G/I" for
some ¢ < N°Y) . Then there is some B = O, d(1) such that each of the se-
quences (g(n(aq)d—H“)F)ne (/g4 form € [(a q)?] fails to be 6 -equidistributed
in G/I.

Proof. By Propositions and [14.2{(a), there is a non-trivial horizontal
character 1 of modulus bounded by §~9m.¢(1) such that the function h : Z —
R/Z defined by h(n) := no g(q(an + b)) satisfies ||h|coon/aq < 6= Om.al),
Let nog(n) = ZJ o Bin? and no g(g(an + b)) = Z?:o ojn’ be polynomial
representations in R/Z. Then

sup [|o;]|(N/ag)) < 6= OmaD),
1<j<d

Since

(16.1) = B;(aq) +Z( )Be aq)’ (bg)"

>3

we find, using a downward induction starting with j = d, that
18(aq)?|| < 6= N " (ag)* = o(1).
Indeed, for j = d the assertion is immediate. Suppose now it holds for
Jj € {jo+1,...,d} for some jo > 1. We proceed to check the case where
s . . . . . . _ d_‘]o
j = jo by analysing ([16.1]) for j = jp, multiplied through by ¢ = (aq) .
Observe that for all positive integers t and for all i € {1,...,d},
oit|| < tljoi]| < tN " (ag)’s~Omall),
By the assumptions on §,a and ¢, this bound is o(1) when t = (aq)?/

and ¢ = jo. Similarly, the induction hypothesis implies that for every ¢ €
{jo+1,...,d} and all ¢ we have

18e(aq)"tl| < tl|Be(aq)]| < tN~"(aq)?s~Oam (D),

which certainly is o( N 70 (aq)?6~C4m() if we set t = (qb)g_jo. This allows
us to apply the triangle inequality to split up ||0j0(aq)d_90 || in the manner
of (16.1)) to deduce the assertion for jo.
Next, pick r € [(aq)?] and define &y, ..., &4 such that no g((aq)®n +r) =
PR
>_j—00;n’; then
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d

7, =3 () a5

=
Since jd > d for all j € {1,...,d}, we have

(‘f)rwaq)jdm < (f)r“(aq)u”duwdmu

J
<a 17 (ag)! Nt 5701V <y (ag) N5 Om ),

By the assumptions on ¢ and ¢, this bound equals o(1) and hence we can
apply the triangle inequality to split up |||/

d
16511 < D (a) N 46704mV <y (N (aq)y35~Cam D,
t=j

By Propositions [14.2(b) and this implies the result. m

Now we finally turn to the modified factorisation theorem which gives
the correct type of minor arcs.

THEOREM 16.4 (Modified factorisation theorem). Let m,d,N,A > 1
be integers, and let k,Qo, R > 1 be integer parameters. Suppose that G/I’
is a m-dimensional nilmanifold together with a filtration Go of degree d.
Suppose that X is a Qo-rational Mal’cev basis X adapted to Go and that
g € poly(Z,G,). Suppose further that Qo < logk and k,R = O(N°().
Then there is an integer @ with Qy < @ <K Q(?A’m’d(l), and a partition
of [N] into at most R™ disjoint subprogressions P, each of length at least
N/R¥™ and each of k-smooth common difference bounded by R™™ such that
the restriction of (g(n))nep to any of the progression P can be factorised as
follows.

There is a rational subgroup G' < G, depending on P, and a Mal’cev
basis X' for G' /I such that every element of X' is a Q-rational combination
of elements from X (that is, each coefficient is rational of height bounded
by Q). Suppose P ={n =r (mod q)}. Then we have a factorisation

g(gn +7) = ep(n)gp(n)yr(n),

where ep, g, vp are polynomial sequences from poly(Z,Gs) with the prop-
erties

(1) ep: Z — G is (Q, N/q)-smooth;

(2) gp : Z — G’ takes values in G’ and for each k-smooth number § < R
the finite sequence (gp(qn)I" )n<ny(qq) i totally QA -equidistributed
in G'/T7;

(3) vp : Z — G is Q-rational and (v;(n)I")nez is periodic with a k-
smooth period which is bounded by R™4Q).
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Proof. We may suppose that g does not satisfy (2), that is, there is
some k-smooth integer q1 < R and b; < a; < QS‘ such that (g(q1(ain +
b1))1")n<n/q, fails to be Qy “-equidistributed. Writing 21 := (a1¢;)?, Lemma
16.3| implies that each of the sequences (g(z1n + Tl)F)ngN/zl with r; €
[21] fails to be Q AN _equidistributed for some A’ = Om.a(1). Now, we run
through all r; € [z1] in turn.

Applying the factorisation theorem in its original form to any of these
sequences yields some )1 < Q(? (A’m’d), a proper (Q1-rational subgroup G; <
G of dimension strictly smaller than m, and a factorisation

g(zln + Tl) =¢&r (n)g;j (n)7T1 (n)
where the finite sequence (g;., (n)I'1)n<ny-, is totally Q7 “-equidistributed in
Gl/Fl = Gl/(Fﬂ Gl)

If g, is Q7 “-equidistributed on every subprogression {n=by (mod azqs)}
of k-smooth common difference asqgs, where by < ao < Q’f‘ and ¢ < R, then
we stop (and turn to the next choice of r1). Otherwise, invoking Lemma[16.3
again, there is a k-smooth integer asge as above such that with zo := (a2¢2)“
the finite sequence (gry 1, (1))n<N/(z12,) defined by gr, r,(n) = g7, (zon +12)
is not Ql_A—equidistributed for any ry € [22]. We proceed as before.

This process yields a tree of operations which has height at most m =
dim G, since each time the factorisation theorem is applied a new sequence
9y, is found that takes values in some strictly lower dimensional sub-
manifold G; = G;(r1,...,r;) of Gi—1(r1,...,7ri—1). Thus, we can apply the
factorisation theorem at most m times in a row before the manifold involved
has dimension 0.

The tree we run through starts with g, which has z; neighbours g,,, one
for each r; € [z1]. Each g,, has zo = 2(71,72) neighbours gy, ,,, one for each
ro € [22], etc.

As a result, we obtain a decomposition of the range [N] into at most
R?¥™ subprogressions of the form

P={z1(z2(...(zem+1ry)...)+re)+r1 :m<N/(z1...2)}
={z...zem+r:m<N/(z1...2)},

for some r, and where each z; depends on rq,...,7;_1. The common differ-
ence of such a progression P is k-smooth and bounded by R?¥™. Thus, P
has length at least N/R?¥™ = N1=om(1) The iteration process furthermore
yields a factorisation of g, .. ,,, which is the restriction of g to P:
Iripre(m) = g(21..am + 1) = Er L p (M) gL (M) Ty ir (M),

where

5T1,~~-,?"t (m) =¢&r (22 coZm ot 7:2) R ST (Ztm + ft)erh-nﬂ“t (m)
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for certain integers 7o, ..., 7, and

’3/7‘17---77’1& (m) = Vri,ore (m)%”hu-ﬂ”t—l (Ztm + ft) <y (ZQ S Zm + 7:2)'

In view of the remarks following the definition of smoothness of sequences,

the factor &, . (m) is a ( OOA’d’m(l),N/(zl ... 2))-smooth sequence. Fur-

o - . m(1
ther, the periodic sequences 4, .., (m) are easily seen to have a Q(? Adm(1)_

smooth, i.e. k-smooth, period. =

17. Reduction to the case of minor arc nilsequences. With the
help of the modified factorisation theorem (Theorem , we will show
that the general non-correlation estimate follows from the special case of
non-correlation with ‘minor arc nilsequences’ that enjoy property (ii) of the
modified factorisation theorem.

The general case is the following proposition.

PROPOSITION 17.1. Let G/I' be a nilmanifold of dimension m > 1,
let Go be a filtration of G of degree d > 1, and let g € poly(Z,Gs) be a
polynomial sequence. Suppose that G/I" has a Q-rational Mal’cev basis X for
some Q > 2, defining a metric dy on G/I'. Suppose that F': G/I" — [—1,1]
is a Lipschitz function, and let My = logloglog N and N’ = | N/W|. Then

Brei (r 5(n) = DF(g(n)T] K ay,a @Fmtr AW (1 || FI) My
for any A >0 and N > 2.

As in §2 of 9], we will deduce this result from the following special case
involving only ‘minor arc nilsequences’.

PROPOSITION 17.2 (Non-correlation, equidistributed case). Let N > 0
be a large integer and let 0, k and R be parameters such that § € (0,1/2),
0t <y N' forallt e N, R < N°Y and k = w(N). Suppose that (G/T,dx)
is an m-dimensional nilmanifold with some filtration Go of degree d and
suppose that g € poly(Z,Gs). Suppose further that for every k-smooth num-
ber ¢ < R the finite sequence (g(qn)I")nen/q is O-equidistributed in G /T
Then for every Lipschitz function F : G/I" — R satisfying SG/F F =0 and

for every k-smooth number ¢ < N°Y and every r € lq], we have
Epen(ryglan +1) — D) F(g(n)I")] < 6| F||
for some ¢ such that ¢t = Oy, 4(1).

Proof of Proposition assuming Proposition[17.3, Observe that N’ =
N1 We may assume that Q < My, thus Q < My = log w(N). The mod-
ified factorisation theorem can now be applied to the sequence (g(n)I")n<n
with the following parameters: k = w(N), Qo = logw(N), R = N°(1). This
yields a partition of [N’] into at most R?>™¢ progressions of w(N)-smooth
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common differences. By the triangle inequality, it suffices to show that

[Enep(rh5(n) = DF(g(n)1)| €man,a QO AW (14 || F||) My A
for every progression P in the partition.

For each of these progressions P =: {gpn+rp}, the modified factorisation
theorem provides us with a factorisation of the restriction of g to P:

glapn +rp) =: gp(n) = ep(n)gp(n)yp(n),
where ep, g, 7p satisfy (i)—(iii) from Theorem [16.4] Proceeding as in [9} §2]
(see loc. cit. for full details), we split each P into subprogressions P =
Py U---UP, in such a way that

e 7p(n) is constant on each progression, say yp(n) = v; for n € P;, and

e =p(n) is almost constant: to be precise, [n —n/| < N’ /(qQB for some
B = O(1) and all n,n’ € P;, which implies d(ep(n),ep(n’)) < Q= B+!
by smoothness of ep.

From each P;, we choose a fixed element, say n;. Then the Lipschitz property
of F', right-invariance of the metric, and smoothness of ep imply that for
every n € Pj,

|F(ep(n)gp(n)y(n)I') = F(ep(nj)gp(n)y; )] < QP2
provided B was chosen large enough. Hence it suffices to show that

[Enep, (1} 5(n) — D) F(ep(ng);(v; ' gp(n)y) )]
Cmydiy,a QO a1 4 || F|) My A,
The aim is now to apply Proposition to gj : Z — fyj_leyj =: Hj,

gi(n) :==; 'gpap,n + 7P,

Property (ii) of the modified factorisation theorem was set up so as to en-
sure that g; still enjoys the ‘minor arc property’ (on H;/(I' N Hj) rather
than G/I" of course). Note that the Lipschitz constant of F; : H; /(1" N H;)
— C, Fj(z(I'NHj)) := F(ep(n;)y;I") is bounded by M ||F|| by |10, Lemma
A.16]. Since P; has a w(N)-smooth common difference and length at least
N1=°() Proposition implies that ry s — 1 does not correlate with any
function n + clp,(n), where c is a constant. Hence we can subtract off the
mean value of F} and reduce to the assumption A, T = =0.

All remaining technical details work exactly as in [9 §2 and App. B], so
we have chosen, given their technical complexity, to omit them here. m

18. Completion of the non-correlation estimate. We complete the
proof of Proposition and therefore the analysis of correlation of r}7 s with
nilsequences. Recalling the conditions of Proposition [17.2] we are given a
polynomial sequence (g(n)I"),¢[n such that for every w(N)-smooth number
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¢ < R the finite sequence (g(qgn)I") e /q is 0-equidistributed in G//I". The
parameter § satisfies the condition §—¢ <; N’, which will allow us later to
apply Proposition We are required to show that for every Lipschitz
function F : G/I' — R satisfying SG/FF = 0, for every w(N)-smooth

number ¢ < N°M| and for every r € [g], we have
[Eneineq)(ry,alan +r) = D F(g(n)I)] < §Y/Oma||FY|.
By é-equidistribution of (g(n)I"),en) and since { F' = 0, it suffices to show
that
[Enein/qry plan +r)F(gm)I)] < §/0maW | F|.

We may suppose that f = (a, b, ¢) has reduced form, that is, |b| < a < c.
Write X (f, N) := {(z,y) : f(z,y) < N}; our aim is to decompose the binary
sequence

{g<(ax2 + bxy + Cy2)F)}(z,y)€X(f,N)

into a sum of polynomial subsequences (¢'(P(n)l’ ))n<(Ny1/ des(p) Of some
equidistributed sequence (¢'(n)I"),<n. In order to do so, let (zq,y0) € R?
be the point on the ellipse f(x,y) = ax? + bxy + cy?> = N that satisfies
zo = yo ~ NY2. Since f has reduced form, we have both aa:% < N and
cy? < N. With respect to (x9,%0), the summation over (x,y) € X(f, N)
now splits into three parts (cf. Figure [1|) such that on each part one of the
variables x and y may be fixed, while the free variable will range over an
interval of length at least zg ~ N'/2. This decomposition yields

2
(18.1) > rhalan+r)F(g(m))
75l e |
T\ —1
< (ﬁ’fﬁ(W)>
w
f($, y) — /3 - W"”
AT S s g (o L2
y<yo ' z:f(z,y)<N
f(ill’, y) - B - W’I“
+ Z Z 1f(1’7y)EWr+ﬁ (mod Wq)F <g< Wq )F
z<zo 'y f(z,y)<N
f(xa y) - /8 - W’I“
* Z Z 1f($,y)EWr+5 (mod Wq)F<g< W F) .
y<yo ' z<zo q

To remove the congruence condition f(z,y) = Wr+ 3 (mod Wyq) in this
explicit form, we consider the set S(¢W, Wr + ) of all solutions (z',y') €
[¢qW]? to the congruence f(2',y') = Wr + 3 (mod ¢W). By Corollary

the density of these solutions for a w(NN)-smooth integer ¢, any r € [g] and
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M~ (%0, %0)

Fig. 1. Scheme of how the summation is split: we sum along horizontal lines (y fixed),
along vertical lines (x fixed), and another time over the segments of the horizontal lines
that are contained in the ‘box’, that is, over the double-counted segments.

8 € A satisfies

Prwres@W) _ prs(W)

qW w

To simplify the notation, define 8’ := Wr + 8 and ¢’ := Wq. Considering
any of the three parts of our summation above, we may continue this as

follows:
f((L’, y) B /6/
Z lf(x,y)Eﬁ’ (modq/)F(g(q, r

z: f(z,y)<N

3 F(g(f(Q’ﬂf+x’,Q’ly+y’)—B’>F>"

q

() %

y<yo

= qW E( yyes@ 5

>

y:q'y+y' <yo ' z: f(¢'z+2' ,q'y+y’)
<N

Observe that

fWaz+2' Way+y)—Wr—§

—— = Wqaz® + bz + ¢,
aW !

for some ¥, ¢/ depending on v, 1/, 2, b, ¢, ¢ and W, is a polynomial that satis-
fies the conditions of Proposition Thus, setting P(x) := Wqax?® +b'z +
¢/, we are considering the polynomial subsequence (g o P(n)I"),<(n//qq)1/2
of (9(n)I")p<n'/q- By Proposition there is for each P a w(N)-smooth

integer § < N°M) such that for every 7 € [G] the sequence
9(P(qx + 7))y n1/2 ) (Waa)

is totally 61/9¢(M)_equidistributed. Splitting the summation into subprogres-
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sions modulo ¢, we have via the triangle inequality

W Ewyesws) D \ > F(go P(:c)F)(
y:d'y+y'<yo x: f(¢'z+2',q'y+y’)
<N
<WEwyyesws) D, D ’ > F(go P(qz +7)I)

yiq'y+y'<yo T x: f(¢'(qz+7)+2’,q'y+y)
<N

o ~ N1/2
L GW E@ yyes(q ) Z G =—0Y94W|| F||L;p
y:q'y+y' <yo 19

N/
< §Y/0a(1) ?HFHLip.

As these arguments also apply to the remaining two parts of the sum ((18.1]),
this completes the proof of Proposition and also the proof of the main
theorem.
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