On a divisor problem related to the Epstein zeta-function, IV

by
Guangshi Lü (Jinan), Jie Wu (Jinan and Nancy) and Wenguang Zhai (Beijing)

1. Introduction. In this paper, we continue our study of divisor problems related to the Epstein zeta-function [12-14]. Let $\ell \geq 2, \mathbf{y}:=\left(y_{1}, \ldots, y_{\ell}\right)$ $\in \mathbb{Z}^{\ell}$ and $\mathbf{A}=\left(a_{i j}\right)$ be an integral matrix such that $a_{i i} \equiv 0(\bmod 2)$ for $1 \leq i \leq \ell$. Then a positive definite quadratic form $Q(\mathbf{y})$ can be written as

$$
Q(\mathbf{y})=\frac{1}{2} \mathbf{y}^{\mathrm{t}} \mathbf{A} \mathbf{y}=\frac{1}{2} \sum_{1 \leq i \leq \ell} a_{i i} y_{i}^{2}+\sum_{1 \leq i<j \leq \ell} a_{i j} y_{i} y_{j}
$$

where \mathbf{y}^{t} is the transpose of \mathbf{y}. The corresponding Epstein zeta-function is initially defined by the Dirichlet series

$$
\begin{equation*}
Z_{Q}(s):=\sum_{\mathbf{y} \in \mathbb{Z}^{\ell} \backslash\{\mathbf{0}\}} \frac{1}{Q(\mathbf{y})^{s}}=\sum_{n \geq 1} \frac{r(n, Q)}{n^{s}} \tag{1.1}
\end{equation*}
$$

for $\Re e s>\ell / 2$, where

$$
r(n, Q):=\left|\left\{\mathbf{y} \in \mathbb{Z}^{\ell}: Q(\mathbf{y})=n\right\}\right|
$$

According to [21], $Z_{Q}(s)$ has an analytic continuation to the whole complex plane \mathbb{C} with only a simple pole at $s=\ell / 2$, and satisfies a functional equation of Riemann type.

For each integer $k \geq 1$, we are interested in the mean value of the k-fold Dirichlet convolution of $r(n, Q)$ defined by

$$
\begin{equation*}
r_{k}(n, Q):=\sum_{n_{1} \cdots n_{k}=n} r\left(n_{1}, Q\right) \cdots r\left(n_{k}, Q\right) \tag{1.2}
\end{equation*}
$$

The asymptotic behavior of the error term

$$
\begin{equation*}
\Delta_{k}^{*}(x, Q):=\sum_{n \leq x} r_{k}(n, Q)-\operatorname{Res}_{s=\ell / 2}\left(Z_{Q}(s)^{k} x^{s} s^{-1}\right) \tag{1.3}
\end{equation*}
$$

[^0]Key words and phrases: Epstein zeta-function, divisor problem, modular form.
has received much attention [11, 3, 21]. In particular Sankaranarayanan [21] showed, by the complex integration method, that for $k \geq 2$ and $\ell \geq 3$,

$$
\begin{equation*}
\Delta_{k}^{*}(x, Q) \ll x^{\ell / 2-1 / k+\varepsilon} \tag{1.4}
\end{equation*}
$$

here and throughout this paper, ε denotes an arbitrarily small positive constant.

Recently, inspired by Iwaniec's book [8, Chapter 11], Lü [12] noted that (1.4) can be improved for quadratic forms of level one. These quadratic forms satisfy the following supplementary conditions:

$$
\ell \equiv 0(\bmod 8), \quad \mathbf{A} \text { is equivalent to } \mathbf{A}^{-1}, \quad|\mathbf{A}|=1
$$

For such forms, we have [8, (11.32)]

$$
\begin{equation*}
r(n, Q)=\frac{(2 \pi)^{\ell / 2}}{\zeta(\ell / 2) \Gamma(\ell / 2)} \sigma_{\ell / 2-1}(n)+a_{f}(n, Q) \quad(n \geq 1) \tag{1.5}
\end{equation*}
$$

where $\sigma_{\alpha}(n)=\sum_{d \mid n} d^{\alpha}, \zeta(s)$ is the Riemann zeta-function, $\Gamma(s)$ is the Gamma function and $a_{f}(n, Q)$ is the nth Fourier coefficient of a cusp form $f(z, Q)$ of weight $\ell / 2$ with respect to the full modular group $\mathrm{SL}(2, \mathbb{Z})$, satisfying Deligne's bound [4]

$$
\begin{equation*}
\left|a_{f}(n, Q)\right| \leq n^{(\ell / 2-1) / 2} \sigma_{0}(n) \quad(n \geq 1) \tag{1.6}
\end{equation*}
$$

Thus

$$
\begin{equation*}
Z_{Q}(s)=\frac{(2 \pi)^{\ell / 2}}{\zeta(\ell / 2) \Gamma(\ell / 2)} \zeta(s) \zeta(s-\ell / 2+1)+L(s, f) \tag{1.7}
\end{equation*}
$$

for $s \in \mathbb{C} \backslash\{\ell / 2\}$, where $L(s, f)$ is the Hecke L-function associated with $f(z, Q)$. In view of basic properties of $\zeta(s)$ and $L(s, f)$, it is not difficult to see that $\zeta(s-\ell / 2+1)$ is more dominant and we may view $\Delta_{k}^{*}(Q ; x)$ as the classical k-dimensional divisor problem associated to the Riemann zeta-function. With the help of these ideas, Lü, Wu \& Zhai [13] obtained, via a simple convolution argument,

$$
\begin{equation*}
\Delta_{k}^{*}(x, Q) \ll x^{\ell / 2-1+\theta_{k}+\varepsilon} \quad(x \geq 2) \tag{1.8}
\end{equation*}
$$

for $k=2,3\left({ }^{1}\right)$, where θ_{k} is the exponent in the classical k-dimension divisor problem

$$
\begin{equation*}
\sum_{n \leq x} \tau_{k}(n)=\operatorname{Res}_{s=1}\left(\zeta(s)^{k} x^{s} s^{-1}\right)+O\left(x^{\theta_{k}+\varepsilon}\right) \quad(x \geq 2) \tag{1.9}
\end{equation*}
$$

Moreover, an Ω-result for $k=2,3$ and a mean value theorem for $\Delta_{2}^{*}(x, Q)$ have been established in [13] and [14], respectively.

In this paper we shall refine Sankaranarayanan's result (1.4) for general positive definite quadratic forms Q. In this case, it is known that [8, Theorem 11.2]

[^1]\[

$$
\begin{equation*}
r(n, Q)=\frac{(2 \pi)^{\ell / 2}}{\Gamma(\ell / 2) \sqrt{|\mathbf{A}|}} n^{\ell / 2-1} \sigma(n, Q)+O\left(n^{\ell / 4-\delta_{\ell}+\varepsilon}\right) \tag{1.10}
\end{equation*}
$$

\]

for $\ell \geq 4$, where with $\mathrm{e}(t):=\mathrm{e}^{2 \pi \mathrm{i} t}(t \in \mathbb{R})$,

$$
\begin{aligned}
S(Q) & :=\sum_{0 \leq y_{1}, \ldots, y_{\ell} \leq q-1} \mathrm{e}(Q(\mathbf{y})), \\
\sigma(n, Q) & :=\sum_{q=1}^{\infty} \frac{1}{q^{\ell}} \sum_{h=1}^{q} S\left(\frac{h Q}{q}\right) \mathrm{e}\left(-\frac{h n}{q}\right), \\
\delta_{\ell} & := \begin{cases}1 / 4 & \text { if } \ell \text { is odd } \\
1 / 2 & \text { if } \ell \text { is even. }\end{cases}
\end{aligned}
$$

Here and below, the symbol \sum^{*} means $\sum_{(h, q)=1}$. We propose two methods to bound $\Delta_{k}^{*}(x, Q)$: the complex integration method and the convolution method. The former allows us to establish nontrivial estimates for $\Delta_{k}^{*}(x, Q)$ for all $k \geq 1$ and $\ell \geq 4$. But the convolution argument is more powerful for $k=1,2,3$ when $\ell \geq 6$.

Let

$$
\begin{equation*}
L_{Q}(s):=\sum_{n=1}^{\infty} \frac{\sigma(n, Q)}{n^{s}} \quad(\Re e s>1) \tag{1.11}
\end{equation*}
$$

In view of the bound (cf. [8, Lemma 10.5])

$$
\begin{equation*}
S(h Q / q) \ll q^{\ell / 2} \quad((h, q)=1) \tag{1.12}
\end{equation*}
$$

the Dirichlet series $L_{Q}(s)$ is absolutely convergent for $\Re e s>1$ provided $\ell \geq 5$. In Section 2 we shall prove that $L_{Q}(s)$ can be analytically continued to a meromorphic function on the half-plane $\Re e s>0$, which has a simple pole at $s=1$ with residue 1 (see Lemma 2.1 below), and establish some individual and average subconvexity bounds for $L_{Q}(s)$ similar to $\zeta(s)$ (see Lemmas 2.2 and 2.3 . With the help of these new tools, the standard complex integration method allows us to deduce the following result, which improves Sankaranarayanan's (1.4) when $k \geq 3$.

Theorem 1. Let $\ell \geq 4$ and $k \geq 1$. We have

$$
\begin{equation*}
\Delta_{k}^{*}(x, Q) \ll x^{\ell / 2-1+\vartheta_{k, \ell}+\varepsilon} \quad(x \geq 2) \tag{1.13}
\end{equation*}
$$

where

$$
\vartheta_{k, \ell}= \begin{cases}1 / 2 & \text { if } 1 \leq k \leq 4 \text { and } \ell \geq 4 \\ k /(k+4) & \text { if } 5 \leq k \leq 12 \text { and } \ell=4 \text { or } \ell \geq 6 \\ (13 k-4) /(13 k+44) & \text { if } 5 \leq k \leq 12 \text { and } \ell=5 \\ (k-3) / k & \text { if } 13 \leq k \leq 49 \text { and } \ell=4 \text { or } \ell \geq 6 \\ (4 k-11) /(4 k+1) & \text { if } 13 \leq k \leq 49 \text { and } \ell=5 \\ 1-\left(2738 k^{2}\right)^{-1 / 3} & \text { if } k \geq 50 \text { and } \ell \geq 4\end{cases}
$$

The convolution argument of [13] can also be generalized to estimate $\Delta_{k}^{*}(x, Q)$. Though 1.10 is more complicated than 1.5 , we can use it to establish a connection between $\Delta_{k}^{*}(x, Q)$ and the divisor problem with congruence conditions. We will discuss this in Section 4. For $\mathbf{q}:=\left(q_{1}, \ldots, q_{k}\right) \in \mathbb{N}^{k}$ and $\mathbf{r}:=\left(r_{1}, \ldots, r_{r}\right) \in \mathbb{N}^{k}$ such that $r_{i} \leq q_{i}(1 \leq i \leq k)$, define

$$
\tau_{k}(n ; \mathbf{q}, \mathbf{r}):=\sum_{\substack{n_{1} \cdots n_{k}=n \\ n_{i} \equiv r_{i}\left(\bmod q_{i}\right)(1 \leq i \leq k)}} 1, \quad D_{k}(x ; \mathbf{q}, \mathbf{r}):=\sum_{n \leq x} \tau_{k}(n ; \mathbf{q}, \mathbf{r})
$$

The divisor problem with congruence conditions aims to bound the error term

$$
\begin{equation*}
\Delta_{k}(x ; \mathbf{q}, \mathbf{r}):=D_{k}(x ; \mathbf{q}, \mathbf{r})-\operatorname{Res}_{s=1}\left(\zeta\left(s, r_{1} / q_{1}\right) \cdots \zeta\left(s, r_{k} / q_{k}\right) x^{s} s^{-1}\right) \tag{1.14}
\end{equation*}
$$

where $\zeta(s, \alpha)$ is the Hurwitz zeta-function defined by

$$
\begin{equation*}
\zeta(s, \alpha):=\sum_{n=0}^{\infty} \frac{1}{(n+\alpha)^{s}} \quad(0<\alpha \leq 1, \sigma>1) \tag{1.15}
\end{equation*}
$$

With the help of a convolution argument, we can prove the following result, which offers better exponents than (1.4) for $k=1,2,3$ when $\ell \geq 6$.

TheOrem 2. Let $\ell \geq 6$ and $k=1,2,3$. Assume that there is some $\vartheta_{k} \in(0,1)$ such that

$$
\Delta_{k}(x ; \mathbf{q}, \mathbf{r}) \ll_{k, \ell, \varepsilon}\left(x /\left(q_{1} \cdots q_{k}\right)\right)^{\vartheta_{k}+\varepsilon}
$$

uniformly for $1 \leq r_{i} \leq q_{i}(1 \leq i \leq k)$ and $q_{1} \cdots q_{k} \leq x$. Then

$$
\Delta_{k}^{*}(x, Q) \ll_{k, \ell, \varepsilon} x^{\ell / 2-1+\vartheta_{k}+\varepsilon}
$$

In particular we can take

$$
\vartheta_{k}= \begin{cases}0 & \text { if } k=1 \tag{1.16}\\ 131 / 416 & \text { if } k=2 \\ 43 / 96 & \text { if } k=3\end{cases}
$$

Another interesting problem related to $r(n, Q)$ is to evaluate its k th power sum. In this direction, Landau [11] first showed that

$$
\begin{equation*}
\sum_{n \leq x} r(n, Q)=\frac{(2 \pi)^{\ell / 2}}{\Gamma(\ell / 2+1) \sqrt{|\operatorname{det} Q|}} x^{\ell / 2}+O\left(x^{\ell / 2-\ell /(\ell+1)}\right) \tag{1.17}
\end{equation*}
$$

For $k=2$, Müller 16] proved that

$$
\sum_{n \leq x} r(n, Q)^{2}= \begin{cases}A_{Q} x \log x+B_{Q} x+O\left(x^{3 / 5} \log x\right) & \text { if } \ell=2 \tag{1.18}\\ C_{Q} x^{\ell-1}+O\left(x^{\ell-1-2(\ell-1) /(4 \ell-3)}\right) & \text { if } \ell \geq 3\end{cases}
$$

where A_{Q}, B_{Q} and C_{Q} are some constants depending on Q. In this paper we study a more general correlated sum of $r(n, Q)$, which contains the k th power sum as a special case.

Theorem 3. Let $\ell \geq 5, k \geq 1$ and a_{1}, \ldots, a_{k} be fixed nonnegative integers. Then

$$
\begin{aligned}
\sum_{n \leq x} \prod_{1 \leq i \leq k} r\left(n+a_{i}, Q\right)= & C_{Q}\left(a_{1}, \ldots, a_{k}\right) x^{(\ell / 2-1) k+1} \\
& +O_{a_{1}, \ldots, a_{k}}\left(x^{(\ell / 2-1) k+\eta_{\ell}(\varepsilon)}\right)
\end{aligned}
$$

where $C_{Q}\left(a_{1}, \ldots, a_{k}\right)$ is a constant depending on Q and $\left(a_{1}, \ldots, a_{k}\right)$, and

$$
\eta_{\ell}(\varepsilon):= \begin{cases}1 / 2+\varepsilon & \text { if } \ell=5 \\ \varepsilon & \text { if } \ell=6,7 \\ 0 & \text { if } \ell \geq 8\end{cases}
$$

Obviously the two particular cases of Theorem 3.

$$
" k=1, a_{1}=0 " \quad \text { and } \quad " k=2, a_{1}=a_{2}=0 "
$$

improve 1.17 for $\ell \geq 6$ and 1.18 for $\ell \geq 5$, respectively. It is worth indicating that our method is different from Müller's [16] and simpler.

As an application of Theorem 3, we give the following asymptotic formula for the correlated sum involving the divisor sum function $\sigma_{\ell / 2-1}(n)$.

Corollary 1.1. Let $8 \mid \ell, k \geq 2$ and a_{1}, \ldots, a_{k} be fixed nonnegative integers. Then

$$
\sum_{n \leq x} \prod_{1 \leq i \leq k} \sigma_{\ell / 2-1}\left(n+a_{i}\right)=D_{\ell}\left(a_{1}, \ldots, a_{k}\right) x^{(\ell / 2-1) k+1}+O_{a_{1}, \ldots, a_{k}}\left(x^{(\ell / 2-1) k}\right)
$$

where $D_{\ell}\left(a_{1}, \ldots, a_{k}\right)$ is a constant depending on ℓ and a_{1}, \ldots, a_{k}.
2. Study of $L_{Q}(s)$. This section is devoted to $L_{Q}(s)$, which is important in the proof of Theorem 1 .

LEMMA 2.1. If $\ell \geq 5$, then $L_{Q}(s)$ can be analytically continued to a meromorphic function on the half-plane $\Re e s>0$, which has a simple pole at $s=1$ with residue 1 .

Proof. By using the definition of $\sigma(n, Q)$, a simple calculation shows that

$$
\begin{align*}
L_{Q}(s) & =\sum_{q=1}^{\infty} \frac{1}{q^{\ell}} \sum_{h=1}^{q} S(h Q / q) F(s,-h / q) \tag{2.1}\\
& =\zeta(s)+\sum_{q=2}^{\infty} \frac{1}{q^{\ell}} \sum_{h=1}^{q}{ }^{*} S(h Q / q) F(s,-h / q)
\end{align*}
$$

for $\Re e s>1$, where $F(s, a)$ is the periodic zeta-function defined by

$$
F(s, a):=\sum_{n=1}^{\infty} \frac{\mathrm{e}(a n)}{n^{s}} \quad(\Re s>1)
$$

In view of well-known proprieties of $\zeta(s)$, it suffices to prove that the last double series in (2.1) can be continued analytically to the half-plane $\Re e s>0$.

Introducing the notation

$$
\begin{equation*}
M(u, \alpha):=\sum_{n \leq u} \mathrm{e}(n \alpha) \ll \min \left\{u,\|\alpha\|^{-1}\right\} \tag{2.2}
\end{equation*}
$$

where $\|\alpha\|:=\min _{t \in \mathbb{Z}}|\alpha-t|$, a simple integration by parts allows us to write, for $\Re e s>1, q \geq 2$, and $(h, q)=1$, that

$$
F(s, h / q)=\sum_{n \leq|t|+1} \frac{\mathrm{e}(h n / q)}{n^{s}}-\frac{M(|t|+1, h / q)}{(|t|+1)^{s}}+s \int_{|t|+1}^{\infty} \frac{M(u, h / q)}{u^{s+1}} d u
$$

This formula and (2.2) give an analytic continuation of $F(s, h / q)$ to the region $\Re e s>0$, and the estimate

$$
F(s, h / q) \ll \frac{|t|+1}{\|h / q\|}
$$

holds uniformly for $\Re e s>0$. From this and 1.12 , we deduce that

$$
\begin{aligned}
\sum_{q=2}^{\infty} \frac{1}{q^{\ell}} \sum_{h=1}^{q}|S(h Q / q) F(s,-h / q)| & \ll \sum_{q=2}^{\infty} \frac{|t|+1}{q^{\ell / 2}} \sum_{h=1}^{q / 2} \frac{q}{h} \\
& \ll(|t|+1) \sum_{q=2}^{\infty} \frac{\log q}{q^{\ell / 2-1}},
\end{aligned}
$$

which converges absolutely for $\Re e s>0$ since $\ell \geq 5$.
The next two lemmas give individual and average subconvexity bounds for $L_{Q}(s)$.

Lemma 2.2. Let $\ell \geq 5$ and $\varepsilon>0$. Then

$$
\begin{equation*}
L_{Q}(\sigma+\mathrm{i} t) \ll \min \left\{|t|^{(1-\sigma) / 3+\varepsilon},|t|^{18.4974(1-\sigma)^{3 / 2}}(\log |t|)^{2 / 3}\right\} \tag{2.3}
\end{equation*}
$$

uniformly for $1 / 2 \leq \sigma \leq 1$ and $|t| \geq 2$.
Proof. According to [20, p. 127], we have, for $0<\alpha \leq 1$,

$$
\begin{align*}
F(s, \alpha)= & \frac{\Gamma(1-s)}{(2 \pi)^{1-s}}\left\{\mathrm{e}^{\frac{\pi \mathrm{i}}{2}(1-s)} \zeta^{*}(1-s, \alpha)+\mathrm{e}^{\frac{\pi \mathrm{i}}{2}(1-s)} \alpha^{-(1-s)}\right. \tag{2.4}\\
& \left.+\mathrm{e}^{-\frac{\pi \mathrm{i}}{2}(1-s)} \zeta^{*}(1-s, 1-\alpha)+\mathrm{e}^{\frac{\pi \mathrm{i}}{2}(1-s)}(1-\alpha)^{-(1-s)}\right\}
\end{align*}
$$

where $\zeta^{*}(s, \alpha):=\zeta(s, \alpha)-\alpha^{-s}$ and $\zeta(s, \alpha)$ is the Hurwitz zeta-function defined by 1.15 . By combining (2.4) with Stirling's formula, we have, for $s=1 / 2+\mathrm{i} t$ and $(h, q)=1$ with $q \geq 2$,

$$
\begin{align*}
F(s, h / q) \ll & \zeta^{*}(1 / 2-\mathrm{i} t, h / q)+\zeta^{*}(1 / 2-\mathrm{i} t, 1-h / q) \tag{2.5}\\
& +q^{1 / 2} h^{-1 / 2}+q^{1 / 2}(q-h)^{-1 / 2}
\end{align*}
$$

Similar to the Riemann zeta-function, it is known that [2, Theorem]

$$
\begin{equation*}
\zeta^{*}(s, \alpha) \ll(|t|+1)^{(1-\sigma) / 3+\varepsilon} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\zeta^{*}(s, \alpha) \ll|t|^{18.4974(1-\sigma)^{3 / 2}}(\log |t|)^{2 / 3} \tag{2.7}
\end{equation*}
$$

uniformly for $0<\alpha \leq 1,1 / 2 \leq \sigma \leq 1$ and $|t| \geq 10$ (see e.g. [22] and [10, respectively). Now the required estimate (2.3) follows from 2.1 and (2.4)-(2.7), by noticing that

$$
\begin{align*}
\sum_{q \geq 2} \frac{1}{q^{\ell}} \sum_{h=1}^{q}|S(h Q / q)|\left(q^{1 / 2} h^{-1 / 2}+q^{1 / 2}(q-h)^{-1 / 2}\right) & \ll \sum_{q \geq 2} \frac{1}{q^{\ell / 2-1}} \tag{2.8}\\
& \ll 1
\end{align*}
$$

since $\ell \geq 5$.
Lemma 2.3. Let $\ell \geq 5$ and $k \geq 1$ be fixed integers. Then

$$
\begin{equation*}
\int_{1}^{T}\left|L_{Q}(1 / 2+\mathrm{i} t)\right|^{k} d t \ll T^{1+\beta_{k, \ell}+\varepsilon} \tag{2.9}
\end{equation*}
$$

where

$$
\beta_{k, \ell}:= \begin{cases}0 & \text { if } 1 \leq k \leq 4 \text { and } \ell \geq 5, \\ 13(k-4) / 96 & \text { if } 5 \leq k \leq 12 \text { and } \ell=5, \\ (k-4) / 8 & \text { if } 5 \leq k \leq 12 \text { and } \ell \geq 6, \\ k / 6-11 / 12 & \text { if } k>12 \text { and } \ell=5, \\ k / 6-1 & \text { if } k>12 \text { and } \ell \geq 6 .\end{cases}
$$

Proof. Write $s=1 / 2+\mathrm{i} t$. It suffices to prove that

$$
\begin{align*}
& \int_{1}^{T}\left|L_{Q}(s)\right|^{4} d t \ll T^{1+\varepsilon} \tag{2.10}\\
& \int_{1}^{T}\left|L_{Q}(s)\right|^{12} d t \ll T^{2+\max \{(16-3 \ell) / 12,0\}+\varepsilon} \tag{2.11}
\end{align*}
$$

Our key tools are the fourth mean value of Hurwitz' zeta-function [1, Theorem 4]

$$
\begin{equation*}
\int_{1}^{T}\left|\zeta^{*}(s, \alpha)\right|^{4} d t \ll T(\log T)^{10} \tag{2.12}
\end{equation*}
$$

which holds uniformly for $0<\alpha \leq 1, T \geq 2$, and the twelfth power moment
of the Dirichlet L-function (see [15])

$$
\begin{equation*}
\sum_{\chi(\bmod q)} \int_{1}^{T}|L(s, \chi)|^{12} d t \ll q^{3} T^{2+\varepsilon} \tag{2.13}
\end{equation*}
$$

which holds uniformly for $q \geq 1, T \geq 2$.
From (2.1), 2.5) and (2.8), we deduce that

$$
\begin{equation*}
\left|L_{Q}(s)\right| \ll|\zeta(s)|+\sum_{q \geq 2} \frac{1}{q^{\ell / 2}} \sum_{h \leq q / 2}\left|\zeta^{*}(1 / 2-\mathrm{i} t, h / q)\right|+1 \tag{2.14}
\end{equation*}
$$

So by Hölder's inequality we have

$$
\begin{align*}
\left|L_{Q}(s)\right|^{4} \ll & \left(\sum_{q \geq 2} \sum_{h \leq q / 2} \frac{1}{q^{5 / 2}}\right)^{3} \sum_{q \geq 2} \sum_{h \leq q / 2} \frac{\left|\zeta^{*}(1 / 2-\mathrm{i} t, h / q)\right|^{4}}{q^{(4 \ell-15) / 2}} \tag{2.15}\\
& +|\zeta(s)|^{4}+1
\end{align*}
$$

which combined with 2.12 leads to 2.10 since $\ell \geq 5$.
In order to prove 2.11), we write, by the orthogonality of Dirichlet characters,

$$
F(s, h / q)=\sum_{a=1}^{q} \mathrm{e}(a h / q) \sum_{n \equiv a(\bmod q)} \frac{1}{n^{s}}=\frac{1}{\varphi(q)} \sum_{\chi(\bmod q)} G(h, \bar{\chi}) L(s, \chi)
$$

where $\varphi(q)$ is the Euler function and $G(h, \chi)$ is the Gauss sum defined by

$$
G(h, \chi):=\sum_{a=1}^{q} \chi(a) \mathrm{e}(a h / q)
$$

By the well-known bound $|G(h, \chi)| \leq q^{1 / 2}((h, q)=1)$, it follows that

$$
\begin{equation*}
F(s, h / q) \ll \frac{q^{1 / 2}}{\varphi(q)} \sum_{\chi(\bmod q)}|L(s, \chi)| \tag{2.16}
\end{equation*}
$$

Let $\eta>0$ be a parameter to be chosen later. We split the sum over q in (2.1) into two parts according to $q \leq T^{\eta}$ or $q>T^{\eta}$. Using (2.16) for $q \leq T^{\eta}$ and (2.5), (2.8) for $q>T^{\eta}$, we deduce that

$$
\begin{equation*}
\left|L_{Q}(s)\right| \ll L_{Q, 1}(s)+L_{Q, 2}(s)+1 \tag{2.17}
\end{equation*}
$$

where

$$
\begin{aligned}
L_{Q, 1}(s) & :=\sum_{q \leq T^{\eta}} \frac{1}{q^{(\ell-1) / 2}} \sum_{\chi(\bmod q)}|L(s, \chi)| \\
L_{Q, 2}(s) & :=\sum_{q>T^{\eta}} \frac{1}{q^{\ell / 2}} \sum_{h \leq q / 2}\left|\zeta^{*}(1 / 2-\mathrm{i} t, h / q)\right|
\end{aligned}
$$

By Hölder's inequality again we have

$$
\begin{aligned}
\left|L_{Q, 1}(s)\right|^{12} & \ll\left(\sum_{q \leq T^{\eta}} \sum_{\chi(\bmod q)} \frac{1}{q^{2}}\right)^{11} \sum_{q \leq T^{\eta}} \sum_{\chi(\bmod q)} \frac{|L(s, \chi)|^{12}}{q^{6 \ell-28}} \\
& \ll(\log T)^{11} \sum_{q \leq T^{\eta}} \sum_{\chi(\bmod q)} \frac{|L(s, \chi)|^{12}}{q^{6 \ell-28}}
\end{aligned}
$$

which combined with 2.13 gives

$$
\begin{equation*}
\int_{1}^{T}\left|L_{Q, 1}(s)\right|^{12} d t \ll T^{2+\varepsilon} \sum_{q \leq T^{\eta}} q^{-6 \ell+31} \ll T^{2+\max \{\eta(32-6 \ell), 0\}+\varepsilon} \tag{2.18}
\end{equation*}
$$

The bound (2.6) implies trivially that

$$
\sum_{q>T^{\eta}} \frac{1}{q^{\ell / 2}} \sum_{h \leq q / 2}\left|\zeta^{*}(1 / 2-\mathrm{i} t, h / q)\right| \ll T^{1 / 6+\varepsilon} \sum_{q>T^{\eta}} \frac{1}{q^{\ell / 2-1}} \ll T^{1 / 6-\eta(\ell / 2-2)+\varepsilon}
$$

On the other hand, similarly to 2.15, we have
$\left(\sum_{q>T^{\eta}} \frac{1}{q^{\ell / 2}} \sum_{h \leq q / 2}\left|\zeta^{*}(1 / 2-\mathrm{i} t, h / q)\right|\right)^{4} \ll T^{-3 \eta / 2} \sum_{q>T^{\eta}} \sum_{h \leq q / 2} \frac{\left|\zeta^{*}(1 / 2-\mathrm{i} t, h / q)\right|^{4}}{q^{(4 \ell-15) / 2}}$.
Combining these with 2.12 yields

$$
\begin{align*}
\int_{1}^{T}\left|L_{Q, 2}(s)\right|^{12} d t & \ll T^{8\{1 / 6-\eta(\ell / 2-2)\}-3 \eta / 2-\eta(4 \ell-19) / 2+1+\varepsilon} \tag{2.19}\\
& \ll T^{7 / 3-(6 \ell-24) \eta+\varepsilon} .
\end{align*}
$$

Now (2.11) follows from (2.18 and 2.19 with the choice of $\eta=\frac{1}{24}$.

3. Proof of Theorem 1

3.1. The case $\ell \geq 5$ and $1 \leq k \leq 49$. By [21, Lemmas 3.1 and 3.2], it follows that

$$
\begin{equation*}
\sum_{n \leq x} r_{k}(n, Q)=\frac{1}{2 \pi \mathrm{i}} \int_{\ell / 2+\varepsilon-\mathrm{i} T}^{\ell / 2+\varepsilon+\mathrm{i} T} Z_{Q}(s)^{k} \frac{x^{s}}{s} d s+O\left(\frac{x^{\ell / 2+\varepsilon}}{T}+x^{\varepsilon}\right) \tag{3.1}
\end{equation*}
$$

In view of 1.10 and Lemma 2.1, we have

$$
\begin{equation*}
Z_{Q}(s) \ll\left|L_{Q}(s-\ell / 2+1)\right|+1 \tag{3.2}
\end{equation*}
$$

uniformly for $\Re e s \geq(\ell+3) / 4+\varepsilon$ and $t \neq 0$. By noticing that $(\ell+3) / 4 \leq$ $(\ell-1) / 2$ (since $\ell \geq 5$), we can move the integration in (3.1) to the parallel
segment with $\Re e s=(\ell-1) / 2+\varepsilon$. By Lemma 2.1 and the residue theorem,

$$
\begin{equation*}
\frac{1}{2 \pi \mathrm{i}} \int_{\ell / 2+\varepsilon-\mathrm{i} T}^{\ell / 2+\varepsilon+\mathrm{i} T} Z_{Q}(s)^{k} \frac{x^{s}}{s} d s=\operatorname{Res}_{s=\ell / 2}\left(Z_{Q}(s)^{k} x^{s} s^{-1}\right)-\int_{\mathscr{L}} Z_{Q}(s)^{k} \frac{x^{s}}{s} d s \tag{3.3}
\end{equation*}
$$

where \mathscr{L} is the contour joining $\ell / 2+\mathrm{i} T,(\ell-1) / 2+\varepsilon+\mathrm{i} T,(\ell-1) / 2+\varepsilon-\mathrm{i} T$, $\ell / 2-\mathrm{i} T$ with straight line segments. With the help of 3.2 and Lemmas $2.2 \pi 2.3$, the contribution of the horizontal segments to the last integral of (3.3) is

$$
\begin{equation*}
\ll x^{\ell / 2+\varepsilon} T^{-1} \tag{3.4}
\end{equation*}
$$

provided $T \leq x^{3 / k}(2 \leq k \leq 49)$, and the contribution of the vertical segment is

$$
\begin{equation*}
\ll x^{(\ell-1) / 2+\varepsilon} \int_{1}^{T} \frac{\left|L_{Q}(1 / 2+\varepsilon+\mathrm{i} t)\right|^{k}}{t} d t \ll x^{(\ell-1) / 2+\varepsilon} T^{\beta_{k, \ell}+\varepsilon} \tag{3.5}
\end{equation*}
$$

Combining (3.3)-(3.5) with (3.1) and taking $T=x^{1 /\left(2+2 \beta_{k, \ell}\right)}$, we obtain the required estimate for $\ell \geq 5$ and $k \leq 49$.
3.2. The case $\ell \geq 5$ and $k \geq 50$. In this case we apply Lemma 2.2 . After applying Perron's formula, we move the integration to the parallel segment with $\Re e s=\sigma_{0}=\ell / 2-2 A k^{-2 / 3}$ and choose $T=x^{A k^{-2 / 3}}$, where $A>0$ is an absolute constant which will be determined later. By applying (3.2) and Lemma 2.2, the contribution of the vertical segment is

$$
\begin{aligned}
& \ll x^{\ell / 2-2 A k^{-2 / 3}} T^{18.5 k\left\{\ell / 2-\left(\sigma_{0}-\ell / 2+1\right)\right\}^{3 / 2}}(\log x)^{2 k / 3+1} \\
& =x^{\ell / 2-\left(2 A-18.5 \times \sqrt{8} A^{5 / 2}\right) k^{-2 / 3}(\log x)^{2 k / 3+1},}
\end{aligned}
$$

and the contribution of the horizontal segments is

$$
\begin{aligned}
& \ll x^{\ell / 2+\varepsilon} T^{-1}(\log x)^{2 k / 3}+\max _{\sigma_{0} \leq \sigma \leq \ell / 2} x^{\sigma} T^{18.5 k\{1-(\sigma-\ell / 2+1)\}^{3 / 2}-1}(\log x)^{2 k / 3} \\
& \ll\left(x^{\ell / 2-(A-\varepsilon) k^{-2 / 3}}+x^{\ell / 2-\left(2 A-37 \sqrt{2} A^{5 / 2}\right) k^{-2 / 3}}\right)(\log x)^{2 k / 3+1}
\end{aligned}
$$

Now we choose A to satisfy $A=2 A-37 \sqrt{2} A^{5 / 2}$, which gives $A=2738^{-1 / 3}$. Therefore for $k \geq 50$ we have

$$
\Delta_{k}^{*}(x, Q) \ll x^{\ell / 2-\left(2738 k^{2}\right)^{-1 / 3}}(\log x)^{2 k / 3+1}
$$

3.3. The case $\ell=4$. It is known that in this case

$$
\theta(z, Q):=\sum_{n=0}^{\infty} r(n, Q) \mathrm{e}(n z)
$$

is a modular form of weight 2 and level $N\left(N\right.$ is an integer such that $N \mathbf{A}^{-1}$ is also an integral matrix; see [8, Theorem 10.9]). Then by the standard
theory of modular forms, $Z_{Q}(s)$ can be written as

$$
Z_{Q}(s)=L_{Q}(s)+L(s, f)
$$

where $L_{Q}(s)$ is a linear combination of series of the form

$$
\left(t_{1} t_{2}\right)^{-s} L\left(s, \chi_{1}\right) L\left(s-\ell / 2+1, \chi_{2}\right)
$$

and $L(s, f)$ is the Hecke L-function associated with a cusp form of weight 2 and level N. Here t_{1}, t_{2} are positive divisors of N, and χ_{1}, χ_{2} are Dirichlet characters modulo $N / t_{1}, N / t_{2}$ respectively.

According to (1.6) with $\ell=4$, we learn that $|L(s, f)|<_{\varepsilon} 1$ for $\Re e s \geq$ $3 / 2+\varepsilon$. When $\ell=4$, we also have $\ell / 2-1 / 2=3 / 2$. Therefore similar to (3.2), we have

$$
\left|Z_{Q}(s)\right| \ll\left|L_{Q}(s)\right|+1
$$

for $\Re e s \geq 3 / 2+\varepsilon$. On recalling the classical results $\left(^{2}\right)$

$$
\begin{equation*}
\int_{1}^{T}|L(1 / 2+\mathrm{i} t, \chi)|^{4} d t \ll T^{1+\varepsilon} \tag{3.8}
\end{equation*}
$$

$$
\begin{align*}
& L(1 / 2+\mathrm{i} t, \chi) \ll(|t|+1)^{1 / 6+\varepsilon} \tag{3.6}\\
& L(1 / 2+\mathrm{i} t, \chi) \ll(|t|+1)^{18.4974(1-\sigma)^{3 / 2}}(\log |t|)^{2 / 3} \tag{3.7}
\end{align*}
$$

$$
\begin{equation*}
\int_{1}^{T}|L(1 / 2+\mathrm{i} t, \chi)|^{12} d t \ll T^{2+\varepsilon} \tag{3.9}
\end{equation*}
$$

it is easy to see that the estimates in Lemmas 2.2 and 2.3 also hold when $\ell=4$. Thus we can follow the arguments of Section 3.1 to show that 1.13) is also true for $\ell=4$. We omit the details.
4. The divisor problem with congruence conditions. The divisor problem with congruence conditions (1.14) was first studied by Nowak [18, 19] and Müller \& Nowak [17]. They established very interesting Ω-type results for $\Delta_{k}(x ; \mathbf{q}, \mathbf{r})$. As they indicated ([18, p. 456; p. 110], [17, Remarks]), it is straightforward to obtain the same O-results as in the classical divisor problem, since the theory of $\zeta(s)$ developed in the textbooks [22, 7] may be readily generalized to L-series. Here we state this O-result as a lemma, since it is important in the proof of Theorem 2 .

Lemma 4.1. Suppose $k=1,2,3$. Then

$$
D_{k}(x ; \mathbf{q}, \mathbf{r})=\frac{x}{q_{1} \cdots q_{k}} \mathcal{P}_{k-1}\left(\log \frac{x}{q_{1} \cdots q_{k}}\right)+O_{k, \varepsilon}\left(\left(\frac{x}{q_{1} \cdots q_{k}}\right)^{\vartheta_{k}+\varepsilon}\right)
$$

$\left(^{2}\right) 3.6$ is a special case of [5, Corollary 1]; 3.7) can be deduced easily from 2.7; (3.9) is a consequence of 2.13).
uniformly for $x \geq 3,1 \leq r_{i} \leq q_{i}(1 \leq i \leq k)$ and $q_{1} \cdots q_{k} \leq x$, where $\mathcal{P}_{k-1}(t)$ is a polynomial of degree $k-1$ and ϑ_{k} is given by 1.16). Furthermore,

Proof. It is easy to see that

$$
D_{k}(x ; \mathbf{q}, \mathbf{r})=\sum_{\substack{1 \leq n_{1} \cdots n_{k} \leq x \\ n_{i} \equiv r_{i}\left(\bmod q_{i}\right)(1 \leq i \leq k)}} 1=\sum_{\substack{m_{1} \geq 0, \ldots, m_{k} \geq 0 \\\left(m_{1}+r_{1} / q_{1}\right) \cdots\left(m_{k}+r_{k} / q_{k}\right) \leq x /\left(q_{1} \cdots q_{k}\right)}} 1 .
$$

Thus the case of $k=1$ is trivial. When $k=2$, we can deduce from the above formula, by the well-known hyperbolic approach, that

$$
D_{2}(x ; \mathbf{q}, \mathbf{r})=\left(x / q_{1} q_{2}\right) \mathcal{P}_{1}\left(\log \left(x /\left(q_{1} q_{2}\right)\right)\right)+\Delta_{2}(x ; \mathbf{q}, \mathbf{r})
$$

where $\psi(t):=\{t\}-1 / 2(\{t\}$ is the fractional part of $t)$ and

$$
\Delta_{2}(x ; \mathbf{q}, \mathbf{r})=-\sum_{1 \leq i \leq 2} \sum_{m_{i} \leq \sqrt{x /\left(q_{1} q_{2}\right)}-r_{i} / q_{i}} \psi\left(\frac{x /\left(q_{1} q_{2}\right)}{m_{i}+r_{i} / q_{i}}\right)+O(1)
$$

Using Huxley's new result on exponential sums [6] we get

$$
\Delta_{2}(x ; \mathbf{q}, \mathbf{r}) \ll\left(x /\left(q_{1} q_{2}\right)\right)^{131 / 416+\varepsilon}
$$

For $k=3$, we could also follow Kolesnik's argument [9] to show $\vartheta_{3}=43 / 96$.
Next we prove 4.1). When s is near to 1 , it is well known that (we suppose $0<\lambda \leq 1$)

$$
\zeta(s, \lambda)=\frac{1}{s-1}-\frac{\Gamma^{\prime}}{\Gamma}(\lambda)+\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n!} \gamma_{n}(\lambda)(s-1)^{n}
$$

where $\gamma_{n}(\lambda)$ is the nth Stieltjes constant. By the Cauchy formula, it is not difficult to see that $\gamma_{n}(\lambda) \ll_{n} 1$ uniformly for $0<\lambda \leq 1$. On the other hand, since $s=0$ is a pole of order 1 of $\Gamma(s)$, we have

$$
\frac{\Gamma^{\prime}}{\Gamma}(\lambda) \ll \frac{1}{\lambda}
$$

Finally we note that the polynomial \mathcal{P}_{k-1} is determined by

$$
\operatorname{Res}_{s=1}\left(\zeta\left(s, \lambda_{1}\right) \cdots \zeta\left(s, \lambda_{k}\right) x^{s} s^{-1}\right)=\frac{x}{q_{1} \cdots q_{k}} \mathcal{P}_{k-1}\left(\log \frac{x}{q_{1} \cdots q_{k}}\right)
$$

From all the above information, we can easily deduce 4.1.
5. Proof of Theorem 2. In this section for any function $g(n)$ we define

$$
g_{j}(n):=\sum_{n=n_{1} \cdots n_{j}} g\left(n_{1}\right) \cdots g\left(n_{j}\right)
$$

which is similar to 1.2 . Let

$$
A:=(2 \pi)^{\ell / 2} /(\Gamma(\ell / 2) \sqrt{|\mathbf{A}|}), \quad \tilde{r}(n, Q):=A^{-1} n^{1-\ell / 2} r(n, Q)
$$

Since $r_{k}(n, Q)=A^{k} \tilde{r}_{k}(n, Q) n^{\ell / 2-1}$, it is sufficient to prove that

$$
\begin{equation*}
\sum_{n \leq x} \tilde{r}_{k}(n, Q)=x \tilde{P}_{k-1}(\log x)+O_{k, \varepsilon}\left(x^{\vartheta_{k}+\varepsilon}\right) \tag{5.1}
\end{equation*}
$$

where $\tilde{P}_{k-1}(t)$ is a polynomial of degree $k-1$ and ϑ_{k} is defined by 1.16).
We first establish the following lemma.
Lemma 5.1. Suppose $\ell \geq 6$ and $k=1,2,3$. Then for any $\varepsilon>0$,

$$
\begin{equation*}
\sum_{n \leq x} \sigma_{k}(n, Q)=x P_{k-1}^{*}(\log x)+O_{k, \varepsilon}\left(x^{\vartheta_{k}+\varepsilon}\right) \tag{5.2}
\end{equation*}
$$

where $P_{k-1}^{*}(t)$ is a polynomial of degree $k-1$ and ϑ_{k} is defined by 1.16.
Proof. Write

$$
\sigma(n, Q)=\tilde{\sigma}(n, Q)+\hat{\sigma}(n, Q)
$$

with

$$
\begin{aligned}
& \tilde{\sigma}(n, Q):=\sum_{q \leq x} \frac{1}{q^{\ell}} \sum_{h=1}^{q} S\left(\frac{h Q}{q}\right) \mathrm{e}\left(-\frac{h n}{q}\right), \\
& \hat{\sigma}(n, Q):=\sum_{q>x} \frac{1}{q^{\ell}} \sum_{h=1}^{q} S\left(\frac{h Q}{q}\right) \mathrm{e}\left(-\frac{h n}{q}\right) .
\end{aligned}
$$

It is easy to see that $\tilde{\sigma}(n, Q) \ll 1$ and $\hat{\sigma}(n, Q) \ll x^{-1}$ (since $\left.\ell \geq 6\right)$. From these facts, we can deduce that

$$
\tilde{\sigma}_{j}(n, Q) \ll \tau_{j}(n), \quad \hat{\sigma}_{j}(n, Q) \ll x^{-j} \tau_{j}(n)
$$

and

$$
\begin{align*}
\sigma_{k}(n, Q) & =\sum_{j=0}^{k}\binom{k}{j} \sum_{d m=n} \tilde{\sigma}_{k-j}(d, Q) \hat{\sigma}_{j}(m, Q) \tag{5.3}\\
& =\tilde{\sigma}_{k}(n, Q)+O\left(x^{-1} \tau_{k-1}(n)\right)
\end{align*}
$$

Thus in order to prove (5.2), it is sufficient to show that

$$
\begin{equation*}
\sum_{n \leq x} \tilde{\sigma}_{k}(n, Q)=x P_{k-1}^{*}(\log x)+O\left(x^{\vartheta_{k}+\varepsilon}\right) \tag{5.4}
\end{equation*}
$$

By using Lemma 4.1, it follows that

$$
\begin{align*}
\sum_{n \leq x} \tilde{\sigma}_{k}(n, Q) & =\prod_{i=1}^{k} \sum_{q_{i} \leq x} \frac{1}{q_{i}^{\ell}} \sum_{h_{i}=1}^{q_{i}} S\left(\frac{h_{i} Q}{q_{i}}\right) \sum_{r_{i}=1}^{q_{i}} \mathrm{e}\left(-\frac{h_{i} r_{i}}{q_{i}}\right) D_{k}(x ; \mathbf{q}, \mathbf{r}) \tag{5.5}\\
& =x S_{1}(x)+S_{2}(x)+S_{3}(x)
\end{align*}
$$

where

$$
\begin{aligned}
S_{1}(x):= & \prod_{i=1}^{k} \sum_{q_{i} \leq x} \frac{1}{q_{1} \cdots q_{k} \leq x} \\
q_{i}^{\ell+1} & \sum_{h_{i}=1}^{q_{i}} S\left(\frac{h_{i} Q}{q_{i}}\right) \sum_{r_{i}=1}^{q_{i}} \mathrm{e}\left(-\frac{h_{i} r_{i}}{q_{i}}\right) \mathcal{P}_{j-1}\left(\log \frac{x}{q_{1} \cdots q_{k}}\right) \\
S_{2}(x):= & \prod_{i=1}^{k} \sum_{q_{i} \leq x} \frac{1}{q_{1} \cdots q_{k}>x} \sum_{h_{i}=1}^{q_{i}} S\left(\frac{h_{i} Q}{q_{i}}\right) \sum_{r_{i}=1}^{q_{i}} \mathrm{e}\left(-\frac{h_{i} r_{i}}{q_{i}}\right) D_{k}(x ; \mathbf{q}, \mathbf{r}) \\
S_{3}(x):= & \prod_{i=1}^{k} \sum_{q_{i} \leq x} \frac{1}{q_{i}^{\ell}} \sum_{h_{i}=1}^{q_{i}} S\left(\frac{h_{i} Q}{q_{i}}\right) \sum_{r_{i}=1}^{q_{i}} \mathrm{e}\left(-\frac{h_{i} r_{i}}{q_{i}}\right) \Delta_{k}(x ; \mathbf{q}, \mathbf{r})
\end{aligned}
$$

It is easy to estimate

$$
\begin{equation*}
S_{3}(x) \ll x^{\vartheta_{k}+\varepsilon} \prod_{i=1}^{k} \sum_{q_{i} \leq x} \frac{1}{q_{i}^{\ell / 2-2+\vartheta_{k}+\varepsilon}} \ll x^{\vartheta_{k}+\varepsilon} \quad(\text { since } \ell \geq 6) \tag{5.6}
\end{equation*}
$$

When $q_{1} \cdots q_{k}>x$, we use the trivial bound

$$
D_{k}(x ; \mathbf{q}, \mathbf{r}) \ll \frac{x}{r_{1} \cdots r_{k}}+1
$$

to write

$$
\begin{align*}
S_{2}(x) & \ll \prod_{\substack{i=1 \\
q_{1} \cdots q_{k}>x}}^{k} \sum_{q_{i} \leq x} \frac{1}{q_{i}^{\ell / 2}} \sum_{h_{i}=1}^{q_{i}} \sum_{r_{i}=1}^{q_{i}}\left(\frac{x}{r_{1} \cdots r_{k}}+1\right) \tag{5.7}\\
& \ll x \prod_{\substack{i=1 \\
q_{1} \cdots q_{k}>x}} \sum_{q_{i} \leq x} \frac{\log q_{i}}{q_{i}^{\ell / 2-1}}+\prod_{i=1}^{k} \sum_{\substack{i \leq x \\
q_{1} \cdots q_{k}>x}} \frac{1}{q_{i}^{\ell / 2-2}} \\
& \ll x \sum_{n>x} \frac{\tau_{k}(n)(\log n)^{k}}{n^{\ell / 2-1}}+\sum_{n>x} \frac{\tau_{k}(n)}{n^{\ell / 2-2}} \\
& \ll x^{\varepsilon} \quad(\text { since } \ell \geq 6) .
\end{align*}
$$

Obviously we can write

$$
\begin{equation*}
S_{1}(x)=x P_{k-1}^{*}(\log x)+O(R(x)) \tag{5.8}
\end{equation*}
$$

where

$$
R(x):=\prod_{\substack{i=1 \\ q_{1} \cdots q_{k}>x}}^{k} \sum_{q_{i} \geq 1} \frac{1}{q_{i}^{\ell / 2-1}}\left|\mathcal{P}_{k-1}\left(\log \frac{x}{q_{1} \cdots q_{k}}\right)\right|
$$

By virtue of 4.1), we deduce that

$$
\begin{align*}
R(x) & \ll \prod_{i=1}^{k} \sum_{q_{i} \geq 1} \frac{1}{q_{1}^{\ell / 2}} \sum_{r_{i}=1}^{q_{i}} \sum_{1 \leq i_{1}<\cdots<i_{k-1} \leq x} \frac{q_{i_{1}} \cdots q_{i_{k-1}}}{r_{i_{1}} \cdots r_{i_{k-1}}} \log ^{k-1}\left(q_{1} \cdots q_{k}\right) \tag{5.9}\\
& \ll \prod_{i=1}^{k} \sum_{q_{i} \leq x} \frac{1}{q_{i}^{\ell / 2-1}} \log ^{2 j-2}\left(q_{1} \cdots q_{k}\right) \ll \sum_{n>x} \frac{\tau_{k}(n)(\log n)^{2 k-2}}{n^{\ell / 2-1}} \\
& \ll x^{-\ell / 2+2+\varepsilon} .
\end{align*}
$$

Inserting (5.6)-(5.9) into (5.5), we obtain (5.4).
Now we are ready to prove 5.1. By 1.10 , we have

$$
\tilde{r}(n, Q)=\sigma(n, Q)+\beta(n) \quad \text { with } \quad \beta(n)=O\left(n^{-1}\right)
$$

Similar to (5.3), we have

$$
\tilde{r}_{k}(n, Q)=\sum_{j=0}^{k}\binom{k}{j} \sum_{d m=n} \sigma_{j}(d, Q) \beta_{k-j}(m), \quad \beta_{j}(n) \ll \tau_{j}(n) / n
$$

Thus Lemma 5.1 allows us to deduce

$$
\begin{aligned}
\sum_{n \leq x} \tilde{r}_{k}(n, Q) & =\sum_{j=0}^{k}\binom{k}{j} \sum_{m \leq x} \beta_{k-j}(m) \sum_{d \leq x / m} \sigma_{j}(d, Q) \\
& =x \sum_{j=0}^{k}\binom{k}{j} \sum_{m \leq x} \frac{\beta_{k-j}(m)}{m} P_{j-1}^{*}\left(\log \frac{x}{m}\right)+O\left(x^{\vartheta_{j}+\varepsilon}\right)
\end{aligned}
$$

which implies (5.1) since

$$
\begin{aligned}
\sum_{m \leq x} \frac{\beta_{k-j}(m)}{m} P_{j-1}^{*}\left(\log \frac{x}{m}\right) & =\sum_{m \geq 1} \frac{\beta_{k-j}(m)}{m} P_{j-1}^{*}\left(\log \frac{x}{m}\right)+O\left(x^{-1+\varepsilon}\right) \\
& =P_{j-1}^{* *}(\log x)+O\left(x^{-1+\varepsilon}\right)
\end{aligned}
$$

where $P_{j-1}^{* *}(t)$ is a polynomial of degree $j-1$.
6. Proof of Theorem 3. We reason by recurrence on k. The case of $k=1$ follows from Theorem 1 since a_{1} is fixed. Assume that the required asymptotic formula holds for $1, \ldots, k-1$. Then in view of 1.10 and the fact that $\ell / 4-\delta_{\ell} \leq \ell / 2-1$, we can write

$$
\begin{align*}
\sum_{n \leq x} \prod_{1 \leq i \leq k} r\left(n+a_{i}, Q\right)= & \left(\frac{\zeta(\ell / 2) \Gamma(\ell / 2)}{(2 \pi)^{\ell / 2}}\right)^{k} S \tag{6.1}\\
& +O\left(x^{(\ell / 2-1)(k-1)+1+\ell / 4-\delta_{\ell}+\varepsilon}\right)
\end{align*}
$$

where

$$
S:=\sum_{n \leq x} \prod_{1 \leq i \leq k}\left(n+a_{i}\right)^{\ell / 2-1} \sigma\left(n+a_{i}, Q\right)
$$

Inserting the series expansion for $\sigma(n, Q)$ and using the simple relation

$$
\left(n+a_{1}\right)^{\ell / 2-1} \cdots\left(n+a_{k}\right)^{\ell / 2-1}=n^{(\ell / 2-1) k}+O_{a_{1}, \ldots, a_{k}}\left(n^{(\ell / 2-1) k-1}\right)
$$

it follows that

$$
\begin{aligned}
S= & \sum_{q_{1}=1}^{\infty} \cdots \sum_{q_{k}=1}^{\infty} \sum_{h_{1}=1}^{q_{1}} \cdots \sum_{h_{k}=1}^{q_{k}} * \frac{S\left(h_{1} Q / q_{1}\right) \cdots S\left(h_{k} Q / q_{k}\right)}{\left(q_{1} \cdots q_{k}\right)^{\ell}} \\
& \times \mathrm{e}\left(-\frac{h_{1} a_{1}}{q_{1}}-\cdots-\frac{h_{k} a_{k}}{q_{k}}\right) \sum_{n \leq x} n^{(\ell / 2-1) k} \mathrm{e}\left\{-n\left(\frac{h_{1}}{q_{1}}+\cdots+\frac{h_{k}}{q_{k}}\right)\right\} \\
& +O\left(x^{(\ell / 2-1) k}\right)
\end{aligned}
$$

By 1.12 , the infinite series

$$
\sum_{q_{1}=1}^{\infty} \cdots \sum_{q_{k}=1}^{\infty} \sum_{h_{1}=1}^{q_{1}} * \cdots \sum_{h_{k}=1}^{q_{k}} * \frac{S\left(h_{1} Q / q_{1}\right) \cdots S\left(h_{k} Q / q_{k}\right)}{\left(q_{1} \cdots q_{k}\right)^{\ell}} \mathrm{e}\left(-\frac{h_{1} a_{1}}{q_{1}}-\cdots-\frac{h_{k} a_{k}}{q_{k}}\right)
$$

is absolutely convergent. Since

$$
\sum_{n \leq x} n^{(\ell / 2-1) k}=\frac{x^{(\ell / 2-1) k+1}}{(\ell / 2-1) k+1}+O\left(x^{(\ell / 2-1) k}\right)
$$

the contribution of $\left(q_{1}, \ldots, q_{k}, h_{1}, \ldots, h_{k}\right)$ with $h_{1} / q_{1}+\cdots+h_{k} / q_{k} \in \mathbb{Z}$ to S is

$$
\begin{equation*}
C_{Q}\left(a_{1}, \ldots, a_{k}\right) x^{(\ell / 2-1) k+1}+O\left(x^{(\ell / 2-1) k}\right) \tag{6.2}
\end{equation*}
$$

By using (2.2), partial summation and the fact $\left\|h_{1} / q_{1}+\cdots+h_{k} / q_{k}\right\| \geq$ $\left(q_{1} \cdots q_{k}\right)^{-1}$, the contribution of $\left(q_{1}, \ldots, q_{k}, h_{1}, \ldots, h_{k}\right)$ with $h_{1} / q_{1}+\cdots+$ $h_{k} / q_{k} \notin \mathbb{Z}$ to S is

$$
\begin{equation*}
\ll x^{(\ell / 2-1) k} \sum_{q_{1}=1}^{\infty} \cdots \sum_{q_{k}=1}^{\infty} \frac{\min \left\{x, q_{1} \cdots q_{k}\right\}}{\left(q_{1} \cdots q_{k}\right)^{\ell / 2-1}} \ll x^{(\ell / 2-1) k+\eta_{\ell}(\varepsilon)}, \tag{6.3}
\end{equation*}
$$

where we have used the estimate

$$
\min \left\{x, q_{1} \cdots q_{k}\right\} \leq \begin{cases}x^{1 / 2+\varepsilon}\left(q_{1} \cdots q_{k}\right)^{1 / 2-\varepsilon} & \text { if } \ell=5 \\ x^{\varepsilon}\left(q_{1} \cdots q_{k}\right)^{1-\varepsilon} & \text { if } \ell=6,7 \\ q_{1} \cdots q_{k} & \text { if } \ell \geq 8\end{cases}
$$

Now Theorem 3 follows from (6.2 and $\sqrt{6.3}$, by noticing that

$$
(\ell / 2-1)(k-1)+1+\ell / 4-\delta_{\ell}+\varepsilon \leq(\ell / 2-1) k+\eta_{\ell}(\varepsilon) \quad(\ell \geq 5)
$$

7. Proof of Corollary 1.1. By (1.5) and (1.6), we have, for $n \leq x$,

$$
\begin{aligned}
\prod_{i=1}^{k} \sigma_{\ell / 2-1}\left(n+a_{i}\right) & =\left(\frac{\zeta(\ell / 2) \Gamma(\ell / 2)}{(2 \pi)^{\ell / 2}}\right)^{k} \prod_{i=1}^{k} r\left(n+a_{i}, Q\right) \\
& +O\left(x^{(k-d)(\ell / 2-1) / 2} \sum_{d=1}^{k-1} \sum_{\left\{i_{1}, \ldots, i_{d}\right\} \subset\{1, \ldots, k\}} \prod_{j=1}^{d} r\left(n+a_{i_{j}}, Q\right)\right)
\end{aligned}
$$

Now Theorem 3 implies the required result since
$(k-d)(\ell / 2-1) / 2+(\ell / 2-1) d+1 \leq(\ell / 2-1)(k-1 / 2)+1 \leq(\ell / 2-1) k$.
Acknowledgements. The authors deeply thank the referee for careful reading of the manuscript and valuable suggestions.

Guangshi Lü is supported in part by the National Natural Science Foundation of China (11031004, 11171182), NCET (NCET-10-0548) and Shandong Province Natural Science Foundation for Distinguished Young Scholars (JQ201102). Wenguang Zhai is supported by the Natural Science Foundation of China (Grant No. 11171344) and the Natural Science Foundation of Beijing (Grant No. 1112010).

References

[1] S. Baier, Addendum to "the p^{λ} problem", Acta Arith. 117 (2005), 181-186.
[2] K. G. Bhar and K. Ramachandra, A remark on a theorem of A. E. Ingham, HardyRamanujan J. 29 (2006), 37-43.
[3] K. Chandrasekharan and R. Narasimhan, Functional equations with multiple gamma factors and the average order of arithmetical functions, Ann. of Math. 76 (1962), 93-136.
[4] P. Deligne, La conjecture de Weil, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 29-39.
[5] D. R. Heath-Brown, Hybrid bounds for Dirichlet L-functions, Invent. Math. 47 (1978), 149-170.
[6] M. N. Huxley, Integer points, exponential sums and the Riemann zeta function, in: Number Theory for the Millennium, II (Urbana, IL, 2000), A K Peters, Natick, MA, 2002, 275-290.
[7] A. Ivić, The Riemann Zeta-Function, Wiley, New York, 1985 (2nd ed., Dover, Mineola, NY, 2003).
[8] H. Iwaniec, Topics in Classical Automorphic Forms, Grad. Stud. Math. 17, Amer. Math. Soc., Providence, RI, 1997.
[9] G. Kolesnik, On the estimation of multiple exponential sums, in: Recent Progress in Analytic Number Theory, Vol. 1 (Durham, 1979), Academic Press, London, 1981, 231-246.
[10] M. Kulas, Refinement of an estimate for the Hurwitz zeta function in a neighbourhood of the line $\sigma=1$, Acta Arith. 89 (1999), 301-309.
[11] E. Landau, Über die Anzahl der Gitterpunkte in gewissen Bereichen, Göttinger Nachr. 18 (1912), 687-773.
[12] G. S. Lü, On a divisor problem related to the Epstein zeta-function, Bull. London Math. Soc. 42 (2010), 267-274.
[13] G. S. Lü, J. Wu and W. G. Zhai, On a divisor problem related to the Epstein zeta-function, II, J. Number Theory 131 (2011), 1734-1742.
[14] G. S. Lü, J. Wu and W. G. Zhai, On a divisor problem related to the Epstein zeta-function, III, Quart. J. Math., to appear.
[15] T. Meurman, The mean twelfth power of Dirichlet L-functions on the critical line, Ann. Acd. Sci. Fenn. Ser. A Math. Dissertationes 52 (1984), 44 pp.
[16] W. Müller, The mean square of Dirichlet series associated with automorphic forms, Monatsh. Math. 113 (1992), 121-159.
[17] W. Müller and W. G. Nowak, Third power moments of the error term corresponding to certain arithmetic functions, Manuscripta Math. 87 (1995), 459-480.
[18] W. G. Nowak, On the Piltz divisor problem with congruence conditions, in: Number Theory (Banff, AB, 1988), de Gruyter, Berlin, 1990, 455-469.
[19] W. G. Nowak, On the Piltz divisor problem with congruence conditions, II, Abh. Math. Sem. Univ. Hamburg 60 (1990), 153-163.
[20] C. D. Pan and C. B. Pan, Foundations of Analytic Number Theory, Science Press, 1991 (in Chinese).
[21] A. Sankaranarayanan, On a divisor problem related to the Epstein zeta-function, Arch. Math. (Basel) 65 (1995), 303-309.
[22] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed., rev. by D. R. Heath-Brown, Clarendon Press, Oxford, 1986.

Guangshi Lü
School of Mathematics
Shandong University
Jinan, Shandong 250100, China
E-mail: gslv@sdu.edu.cn
Wenguang Zhai
Department of Mathematics
China University of Mining and Technology
Beijing 100083, China
E-mail: zhaiwg@hotmail.com

Jie Wu
School of Mathematics
Shandong University
Jinan, Shandong 250100, China
Institut Élie Cartan Nancy
CNRS, Université Henri Poincaré
54506 Vandœuvre-lès-Nancy, France
E-mail: wujie@iecn.u-nancy.fr

Received on 20.11.2011
and in revised form on 1.3.2012

[^0]: 2010 Mathematics Subject Classification: 11N37, 11N75, 11F30, 11F66.

[^1]: $\left.{ }^{1}\right)$ When $k \geq 4$, a similar result has been proved by Lü 12 using complex integration.

