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1. Introduction. In this paper, we continue our study of divisor prob-
lems related to the Epstein zeta-function [12–14]. Let ` ≥ 2, y := (y1, . . . , y`)
∈ Z` and A = (aij) be an integral matrix such that aii ≡ 0 (mod 2) for
1 ≤ i ≤ `. Then a positive definite quadratic form Q(y) can be written as

Q(y) =
1

2
ytAy =

1

2

∑
1≤i≤`

aiiy
2
i +

∑
1≤i<j≤`

aijyiyj ,

where yt is the transpose of y. The corresponding Epstein zeta-function is
initially defined by the Dirichlet series

(1.1) ZQ(s) :=
∑

y∈Z`\{0}

1

Q(y)s
=
∑
n≥1

r(n,Q)

ns

for <e s > `/2, where

r(n,Q) := |{y ∈ Z` : Q(y) = n}|.
According to [21], ZQ(s) has an analytic continuation to the whole complex
plane C with only a simple pole at s = `/2, and satisfies a functional equation
of Riemann type.

For each integer k ≥ 1, we are interested in the mean value of the k-fold
Dirichlet convolution of r(n,Q) defined by

(1.2) rk(n,Q) :=
∑

n1···nk=n
r(n1, Q) · · · r(nk, Q).

The asymptotic behavior of the error term

(1.3) ∆∗k(x,Q) :=
∑
n≤x

rk(n,Q)− Res
s=`/2

(ZQ(s)kxss−1)
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has received much attention [11, 3, 21]. In particular Sankaranarayanan [21]
showed, by the complex integration method, that for k ≥ 2 and ` ≥ 3,

(1.4) ∆∗k(x,Q)� x`/2−1/k+ε;

here and throughout this paper, ε denotes an arbitrarily small positive con-
stant.

Recently, inspired by Iwaniec’s book [8, Chapter 11], Lü [12] noted that
(1.4) can be improved for quadratic forms of level one. These quadratic
forms satisfy the following supplementary conditions:

` ≡ 0 (mod 8), A is equivalent to A−1, |A| = 1.

For such forms, we have [8, (11.32)]

(1.5) r(n,Q) =
(2π)`/2

ζ(`/2)Γ (`/2)
σ`/2−1(n) + af (n,Q) (n ≥ 1),

where σα(n) =
∑

d|n d
α, ζ(s) is the Riemann zeta-function, Γ (s) is the

Gamma function and af (n,Q) is the nth Fourier coefficient of a cusp form
f(z,Q) of weight `/2 with respect to the full modular group SL(2,Z), sat-
isfying Deligne’s bound [4]

(1.6) |af (n,Q)| ≤ n(`/2−1)/2σ0(n) (n ≥ 1).

Thus

(1.7) ZQ(s) =
(2π)`/2

ζ(`/2)Γ (`/2)
ζ(s)ζ(s− `/2 + 1) + L(s, f)

for s ∈ C \ {`/2}, where L(s, f) is the Hecke L-function associated with
f(z,Q). In view of basic properties of ζ(s) and L(s, f), it is not difficult
to see that ζ(s − `/2 + 1) is more dominant and we may view ∆∗k(Q;x)
as the classical k-dimensional divisor problem associated to the Riemann
zeta-function. With the help of these ideas, Lü, Wu & Zhai [13] obtained,
via a simple convolution argument,

(1.8) ∆∗k(x,Q)� x`/2−1+θk+ε (x ≥ 2)

for k = 2, 3 (1), where θk is the exponent in the classical k-dimension divisor
problem

(1.9)
∑
n≤x

τk(n) = Res
s=1

(ζ(s)kxss−1) +O(xθk+ε) (x ≥ 2).

Moreover, an Ω-result for k = 2, 3 and a mean value theorem for ∆∗2(x,Q)
have been established in [13] and [14], respectively.

In this paper we shall refine Sankaranarayanan’s result (1.4) for general
positive definite quadratic forms Q. In this case, it is known that [8, Theorem
11.2]

(1) When k ≥ 4, a similar result has been proved by Lü [12] using complex integration.
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(1.10) r(n,Q) =
(2π)`/2

Γ (`/2)
√
|A|

n`/2−1σ(n,Q) +O(n`/4−δ`+ε)

for ` ≥ 4, where with e(t) := e2πit (t ∈ R),

S(Q) :=
∑

0≤y1,...,y`≤q−1
e(Q(y)),

σ(n,Q) :=

∞∑
q=1

1

q`

q∑∗

h=1

S

(
hQ

q

)
e

(
−hn
q

)
,

δ` :=

{
1/4 if ` is odd,

1/2 if ` is even.

Here and below, the symbol
∑∗ means

∑
(h,q)=1. We propose two methods

to bound ∆∗k(x,Q): the complex integration method and the convolution
method. The former allows us to establish nontrivial estimates for ∆∗k(x,Q)
for all k ≥ 1 and ` ≥ 4. But the convolution argument is more powerful for
k = 1, 2, 3 when ` ≥ 6.

Let

(1.11) LQ(s) :=
∞∑
n=1

σ(n,Q)

ns
(<e s > 1).

In view of the bound (cf. [8, Lemma 10.5])

(1.12) S(hQ/q)� q`/2 ((h, q) = 1),

the Dirichlet series LQ(s) is absolutely convergent for <e s > 1 provided
` ≥ 5. In Section 2 we shall prove that LQ(s) can be analytically continued
to a meromorphic function on the half-plane <e s > 0, which has a simple
pole at s = 1 with residue 1 (see Lemma 2.1 below), and establish some
individual and average subconvexity bounds for LQ(s) similar to ζ(s) (see
Lemmas 2.2 and 2.3). With the help of these new tools, the standard complex
integration method allows us to deduce the following result, which improves
Sankaranarayanan’s (1.4) when k ≥ 3.

Theorem 1. Let ` ≥ 4 and k ≥ 1. We have

(1.13) ∆∗k(x,Q)� x`/2−1+ϑk,`+ε (x ≥ 2),

where

ϑk,` =



1/2 if 1 ≤ k ≤ 4 and ` ≥ 4,

k/(k + 4) if 5 ≤ k ≤ 12 and ` = 4 or ` ≥ 6,

(13k − 4)/(13k + 44) if 5 ≤ k ≤ 12 and ` = 5,

(k − 3)/k if 13 ≤ k ≤ 49 and ` = 4 or ` ≥ 6,

(4k − 11)/(4k + 1) if 13 ≤ k ≤ 49 and ` = 5,

1− (2738k2)−1/3 if k ≥ 50 and ` ≥ 4.
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The convolution argument of [13] can also be generalized to estimate
∆∗k(x,Q). Though (1.10) is more complicated than (1.5), we can use it to es-
tablish a connection between ∆∗k(x,Q) and the divisor problem with congru-
ence conditions. We will discuss this in Section 4. For q := (q1, . . . , qk) ∈ Nk
and r := (r1, . . . , rr) ∈ Nk such that ri ≤ qi (1 ≤ i ≤ k), define

τk(n;q, r) :=
∑

n1···nk=n
ni≡ri (mod qi) (1≤i≤k)

1, Dk(x;q, r) :=
∑
n≤x

τk(n;q, r).

The divisor problem with congruence conditions aims to bound the error
term

(1.14) ∆k(x;q, r) := Dk(x;q, r)− Res
s=1

(
ζ(s, r1/q1) · · · ζ(s, rk/qk)x

ss−1
)

where ζ(s, α) is the Hurwitz zeta-function defined by

(1.15) ζ(s, α) :=

∞∑
n=0

1

(n+ α)s
(0 < α ≤ 1, σ > 1).

With the help of a convolution argument, we can prove the following result,
which offers better exponents than (1.4) for k = 1, 2, 3 when ` ≥ 6.

Theorem 2. Let ` ≥ 6 and k = 1, 2, 3. Assume that there is some
ϑk ∈ (0, 1) such that

∆k(x;q, r)�k,`,ε (x/(q1 · · · qk))ϑk+ε

uniformly for 1 ≤ ri ≤ qi (1 ≤ i ≤ k) and q1 · · · qk ≤ x. Then

∆∗k(x,Q)�k,`,ε x
`/2−1+ϑk+ε.

In particular we can take

(1.16) ϑk =


0 if k = 1,

131/416 if k = 2,

43/96 if k = 3.

Another interesting problem related to r(n,Q) is to evaluate its kth
power sum. In this direction, Landau [11] first showed that

(1.17)
∑
n≤x

r(n,Q) =
(2π)`/2

Γ (`/2 + 1)
√
|detQ|

x`/2 +O(x`/2−`/(`+1)).

For k = 2, Müller [16] proved that

(1.18)
∑
n≤x

r(n,Q)2 =

{
AQx log x+BQx+O(x3/5 log x) if ` = 2,

CQx
`−1 +O(x`−1−2(`−1)/(4`−3)) if ` ≥ 3,

where AQ, BQ and CQ are some constants depending on Q. In this paper
we study a more general correlated sum of r(n,Q), which contains the kth
power sum as a special case.
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Theorem 3. Let ` ≥ 5, k ≥ 1 and a1, . . . , ak be fixed nonnegative inte-
gers. Then ∑

n≤x

∏
1≤i≤k

r(n+ ai, Q) = CQ(a1, . . . , ak)x
(`/2−1)k+1

+Oa1,...,ak(x(`/2−1)k+η`(ε)),

where CQ(a1, . . . , ak) is a constant depending on Q and (a1, . . . , ak), and

η`(ε) :=


1/2 + ε if ` = 5,

ε if ` = 6, 7,

0 if ` ≥ 8.

Obviously the two particular cases of Theorem 3:

“k = 1, a1 = 0” and “k = 2, a1 = a2 = 0”

improve (1.17) for ` ≥ 6 and (1.18) for ` ≥ 5, respectively. It is worth
indicating that our method is different from Müller’s [16] and simpler.

As an application of Theorem 3, we give the following asymptotic formula
for the correlated sum involving the divisor sum function σ`/2−1(n).

Corollary 1.1. Let 8 | `, k ≥ 2 and a1, . . . , ak be fixed nonnegative
integers. Then∑
n≤x

∏
1≤i≤k

σ`/2−1(n+ ai) = D`(a1, . . . , ak)x
(`/2−1)k+1 +Oa1,...,ak(x(`/2−1)k),

where D`(a1, . . . , ak) is a constant depending on ` and a1, . . . , ak.

2. Study of LQ(s). This section is devoted to LQ(s), which is important
in the proof of Theorem 1.

Lemma 2.1. If ` ≥ 5, then LQ(s) can be analytically continued to a
meromorphic function on the half-plane <e s > 0, which has a simple pole
at s = 1 with residue 1.

Proof. By using the definition of σ(n,Q), a simple calculation shows that

LQ(s) =
∞∑
q=1

1

q`

q∑∗

h=1

S(hQ/q)F (s,−h/q)(2.1)

= ζ(s) +

∞∑
q=2

1

q`

q∑∗

h=1

S(hQ/q)F (s,−h/q)

for <e s > 1, where F (s, a) is the periodic zeta-function defined by

F (s, a) :=
∞∑
n=1

e(an)

ns
(<s > 1).
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In view of well-known proprieties of ζ(s), it suffices to prove that the last
double series in (2.1) can be continued analytically to the half-plane <e s>0.

Introducing the notation

(2.2) M(u, α) :=
∑
n≤u

e(nα)� min{u, ‖α‖−1},

where ‖α‖ := mint∈Z |α−t|, a simple integration by parts allows us to write,
for <e s > 1, q ≥ 2, and (h, q) = 1, that

F (s, h/q) =
∑

n≤|t|+1

e(hn/q)

ns
− M(|t|+ 1, h/q)

(|t|+ 1)s
+ s

∞�

|t|+1

M(u, h/q)

us+1
du.

This formula and (2.2) give an analytic continuation of F (s, h/q) to the
region <e s > 0, and the estimate

F (s, h/q)� |t|+ 1

‖h/q‖
holds uniformly for <e s > 0. From this and (1.12), we deduce that

∞∑
q=2

1

q`

q∑∗

h=1

|S(hQ/q)F (s,−h/q)| �
∞∑
q=2

|t|+ 1

q`/2

q/2∑
h=1

q

h

� (|t|+ 1)

∞∑
q=2

log q

q`/2−1
,

which converges absolutely for <e s > 0 since ` ≥ 5.

The next two lemmas give individual and average subconvexity bounds
for LQ(s).

Lemma 2.2. Let ` ≥ 5 and ε > 0. Then

(2.3) LQ(σ + it)� min{|t|(1−σ)/3+ε, |t|18.4974(1−σ)3/2(log |t|)2/3}
uniformly for 1/2 ≤ σ ≤ 1 and |t| ≥ 2.

Proof. According to [20, p. 127], we have, for 0 < α ≤ 1,

F (s, α) =
Γ (1− s)
(2π)1−s

{e
πi
2
(1−s)ζ∗(1− s, α) + e

πi
2
(1−s)α−(1−s)(2.4)

+ e−
πi
2
(1−s)ζ∗(1− s, 1− α) + e

πi
2
(1−s)(1− α)−(1−s)},

where ζ∗(s, α) := ζ(s, α) − α−s and ζ(s, α) is the Hurwitz zeta-function
defined by (1.15). By combining (2.4) with Stirling’s formula, we have, for
s = 1/2 + it and (h, q) = 1 with q ≥ 2,

F (s, h/q)� ζ∗(1/2− it, h/q) + ζ∗(1/2− it, 1− h/q)(2.5)

+ q1/2h−1/2 + q1/2(q − h)−1/2.
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Similar to the Riemann zeta-function, it is known that [2, Theorem]

(2.6) ζ∗(s, α)� (|t|+ 1)(1−σ)/3+ε

and

(2.7) ζ∗(s, α)� |t|18.4974(1−σ)3/2(log |t|)2/3

uniformly for 0 < α ≤ 1, 1/2 ≤ σ ≤ 1 and |t| ≥ 10 (see e.g. [22] and
[10], respectively). Now the required estimate (2.3) follows from (2.1) and
(2.4)–(2.7), by noticing that∑

q≥2

1

q`

q∑∗

h=1

|S(hQ/q)|(q1/2h−1/2 + q1/2(q − h)−1/2)�
∑
q≥2

1

q`/2−1
(2.8)

� 1,

since ` ≥ 5.

Lemma 2.3. Let ` ≥ 5 and k ≥ 1 be fixed integers. Then

(2.9)

T�

1

|LQ(1/2 + it)|k dt� T 1+βk,`+ε,

where

βk,` :=



0 if 1 ≤ k ≤ 4 and ` ≥ 5,

13(k − 4)/96 if 5 ≤ k ≤ 12 and ` = 5,

(k − 4)/8 if 5 ≤ k ≤ 12 and ` ≥ 6,

k/6− 11/12 if k > 12 and ` = 5,

k/6− 1 if k > 12 and ` ≥ 6.

Proof. Write s = 1/2 + it. It suffices to prove that

T�

1

|LQ(s)|4 dt� T 1+ε,(2.10)

T�

1

|LQ(s)|12 dt� T 2+max{(16−3`)/12,0}+ε.(2.11)

Our key tools are the fourth mean value of Hurwitz’ zeta-function [1, The-
orem 4]

(2.12)

T�

1

|ζ∗(s, α)|4 dt� T (log T )10,

which holds uniformly for 0 < α ≤ 1, T ≥ 2 , and the twelfth power moment
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of the Dirichlet L-function (see [15])

(2.13)
∑

χ (mod q)

T�

1

|L(s, χ)|12 dt� q3T 2+ε,

which holds uniformly for q ≥ 1, T ≥ 2.

From (2.1), (2.5) and (2.8), we deduce that

(2.14) |LQ(s)| � |ζ(s)|+
∑
q≥2

1

q`/2

∑
h≤q/2

|ζ∗(1/2− it, h/q)|+ 1.

So by Hölder’s inequality we have

|LQ(s)|4 �
(∑
q≥2

∑
h≤q/2

1

q5/2

)3∑
q≥2

∑
h≤q/2

|ζ∗(1/2− it, h/q)|4

q(4`−15)/2
(2.15)

+ |ζ(s)|4 + 1,

which combined with (2.12) leads to (2.10) since ` ≥ 5.

In order to prove (2.11), we write, by the orthogonality of Dirichlet char-
acters,

F (s, h/q) =

q∑
a=1

e(ah/q)
∑

n≡a (mod q)

1

ns
=

1

ϕ(q)

∑
χ (mod q)

G(h, χ)L(s, χ),

where ϕ(q) is the Euler function and G(h, χ) is the Gauss sum defined by

G(h, χ) :=

q∑
a=1

χ(a)e(ah/q).

By the well-known bound |G(h, χ)| ≤ q1/2 ((h, q) = 1), it follows that

(2.16) F (s, h/q)� q1/2

ϕ(q)

∑
χ (mod q)

|L(s, χ)|.

Let η > 0 be a parameter to be chosen later. We split the sum over q in
(2.1) into two parts according to q ≤ T η or q > T η. Using (2.16) for q ≤ T η
and (2.5), (2.8) for q > T η, we deduce that

(2.17) |LQ(s)| � LQ,1(s) + LQ,2(s) + 1

where

LQ,1(s) :=
∑
q≤T η

1

q(`−1)/2

∑
χ (mod q)

|L(s, χ)|,

LQ,2(s) :=
∑
q>T η

1

q`/2

∑
h≤q/2

|ζ∗(1/2− it, h/q)|.
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By Hölder’s inequality again we have

|LQ,1(s)|12 �
(∑
q≤T η

∑
χ (mod q)

1

q2

)11 ∑
q≤T η

∑
χ (mod q)

|L(s, χ)|12

q6`−28

� (log T )11
∑
q≤T η

∑
χ (mod q)

|L(s, χ)|12

q6`−28
,

which combined with (2.13) gives

(2.18)

T�

1

|LQ,1(s)|12 dt� T 2+ε
∑
q≤T η

q−6`+31 � T 2+max{η(32−6`),0}+ε.

The bound (2.6) implies trivially that∑
q>T η

1

q`/2

∑
h≤q/2

|ζ∗(1/2− it, h/q)| � T 1/6+ε
∑
q>T η

1

q`/2−1
� T 1/6−η(`/2−2)+ε.

On the other hand, similarly to (2.15), we have(∑
q>T η

1

q`/2

∑
h≤q/2

|ζ∗(1/2−it, h/q)|
)4

� T−3η/2
∑
q>T η

∑
h≤q/2

|ζ∗(1/2− it, h/q)|4

q(4`−15)/2
.

Combining these with (2.12) yields

T�

1

|LQ,2(s)|12 dt� T 8{1/6−η(`/2−2)}−3η/2−η(4`−19)/2+1+ε(2.19)

� T 7/3−(6`−24)η+ε.

Now (2.11) follows from (2.18) and (2.19) with the choice of η = 1
24 .

3. Proof of Theorem 1

3.1. The case ` ≥ 5 and 1 ≤ k ≤ 49. By [21, Lemmas 3.1 and 3.2], it
follows that

(3.1)
∑
n≤x

rk(n,Q) =
1

2πi

`/2+ε+iT�

`/2+ε−iT

ZQ(s)k
xs

s
ds+O

(
x`/2+ε

T
+ xε

)
.

In view of (1.10) and Lemma 2.1, we have

(3.2) ZQ(s)� |LQ(s− `/2 + 1)|+ 1

uniformly for <e s ≥ (` + 3)/4 + ε and t 6= 0. By noticing that (` + 3)/4 ≤
(`− 1)/2 (since ` ≥ 5), we can move the integration in (3.1) to the parallel
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segment with <e s = (`− 1)/2 + ε. By Lemma 2.1 and the residue theorem,

(3.3)
1

2πi

`/2+ε+iT�

`/2+ε−iT

ZQ(s)k
xs

s
ds = Res

s=`/2
(ZQ(s)kxss−1)−

�

L

ZQ(s)k
xs

s
ds,

where L is the contour joining `/2+iT , (`−1)/2+ε+iT , (`−1)/2+ε− iT ,
`/2 − iT with straight line segments. With the help of (3.2) and Lemmas
2.2–2.3, the contribution of the horizontal segments to the last integral of
(3.3) is

(3.4) � x`/2+εT−1

provided T ≤ x3/k (2 ≤ k ≤ 49), and the contribution of the vertical segment
is

(3.5) � x(`−1)/2+ε
T�

1

|LQ(1/2 + ε+ it)|k

t
dt� x(`−1)/2+εT βk,`+ε.

Combining (3.3)–(3.5) with (3.1) and taking T = x1/(2+2βk,`), we obtain the
required estimate for ` ≥ 5 and k ≤ 49.

3.2. The case ` ≥ 5 and k ≥ 50. In this case we apply Lemma 2.2.
After applying Perron’s formula, we move the integration to the parallel

segment with <e s = σ0 = `/2 − 2Ak−2/3 and choose T = xAk
−2/3

, where
A > 0 is an absolute constant which will be determined later. By applying
(3.2) and Lemma 2.2, the contribution of the vertical segment is

� x`/2−2Ak
−2/3

T 18.5k{`/2−(σ0−`/2+1)}3/2(log x)2k/3+1

= x`/2−(2A−18.5×
√
8A5/2)k−2/3

(log x)2k/3+1,

and the contribution of the horizontal segments is

� x`/2+εT−1(log x)2k/3 + max
σ0≤σ≤`/2

xσT 18.5k{1−(σ−`/2+1)}3/2−1(log x)2k/3

� (x`/2−(A−ε)k
−2/3

+ x`/2−(2A−37
√
2A5/2)k−2/3

)(log x)2k/3+1.

Now we choose A to satisfy A = 2A−37
√

2A5/2, which gives A = 2738−1/3.
Therefore for k ≥ 50 we have

∆∗k(x,Q)� x`/2−(2738k
2)−1/3

(log x)2k/3+1.

3.3. The case ` = 4. It is known that in this case

θ(z,Q) :=
∞∑
n=0

r(n,Q)e(nz)

is a modular form of weight 2 and level N (N is an integer such that NA−1

is also an integral matrix; see [8, Theorem 10.9]). Then by the standard
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theory of modular forms, ZQ(s) can be written as

ZQ(s) = LQ(s) + L(s, f),

where LQ(s) is a linear combination of series of the form

(t1t2)
−sL(s, χ1)L(s− `/2 + 1, χ2),

and L(s, f) is the Hecke L-function associated with a cusp form of weight 2
and level N . Here t1, t2 are positive divisors of N , and χ1, χ2 are Dirichlet
characters modulo N/t1, N/t2 respectively.

According to (1.6) with ` = 4, we learn that |L(s, f)| �ε 1 for <e s ≥
3/2 + ε. When ` = 4, we also have `/2 − 1/2 = 3/2. Therefore similar to
(3.2), we have

|ZQ(s)| � |LQ(s)|+ 1

for <e s ≥ 3/2 + ε. On recalling the classical results (2)

L(1/2 + it, χ)� (|t|+ 1)1/6+ε,(3.6)

L(1/2 + it, χ)� (|t|+ 1)18.4974(1−σ)
3/2

(log |t|)2/3,(3.7)

T�

1

|L(1/2 + it, χ)|4 dt� T 1+ε,(3.8)

T�

1

|L(1/2 + it, χ)|12 dt� T 2+ε,(3.9)

it is easy to see that the estimates in Lemmas 2.2 and 2.3 also hold when
` = 4. Thus we can follow the arguments of Section 3.1 to show that (1.13)
is also true for ` = 4. We omit the details.

4. The divisor problem with congruence conditions. The divi-
sor problem with congruence conditions (1.14) was first studied by Nowak
[18, 19] and Müller & Nowak [17]. They established very interesting Ω-type
results for ∆k(x;q, r). As they indicated ([18, p. 456; p. 110], [17, Remarks]),
it is straightforward to obtain the same O-results as in the classical divisor
problem, since the theory of ζ(s) developed in the textbooks [22, 7] may be
readily generalized to L-series. Here we state this O-result as a lemma, since
it is important in the proof of Theorem 2.

Lemma 4.1. Suppose k = 1, 2, 3. Then

Dk(x;q, r) =
x

q1 · · · qk
Pk−1

(
log

x

q1 · · · qk

)
+Ok,ε

((
x

q1 · · · qk

)ϑk+ε)
(2) (3.6) is a special case of [5, Corollary 1]; (3.7) can be deduced easily from (2.7);

(3.9) is a consequence of (2.13).
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uniformly for x ≥ 3, 1 ≤ ri ≤ qi (1 ≤ i ≤ k) and q1 · · · qk ≤ x, where Pk−1(t)
is a polynomial of degree k − 1 and ϑk is given by (1.16). Furthermore,

(4.1) max |coefficients of Pk−1| �
∑

1≤i1<···<ik−1≤k

qi1 · · · qik−1

ri1 · · · rik−1

·

Proof. It is easy to see that

Dk(x;q, r) =
∑

1≤n1···nk≤x
ni≡ri (mod qi) (1≤i≤k)

1 =
∑

m1≥0, ...,mk≥0
(m1+r1/q1)···(mk+rk/qk)≤x/(q1···qk)

1.

Thus the case of k = 1 is trivial. When k = 2, we can deduce from the above
formula, by the well-known hyperbolic approach, that

D2(x;q, r) = (x/q1q2)P1(log(x/(q1q2))) +∆2(x;q, r),

where ψ(t) := {t} − 1/2 ({t} is the fractional part of t) and

∆2(x;q, r) = −
∑

1≤i≤2

∑
mi≤
√
x/(q1q2)−ri/qi

ψ

(
x/(q1q2)

mi + ri/qi

)
+O(1).

Using Huxley’s new result on exponential sums [6] we get

∆2(x;q, r)� (x/(q1q2))
131/416+ε.

For k = 3, we could also follow Kolesnik’s argument [9] to show ϑ3 = 43/96.

Next we prove (4.1). When s is near to 1, it is well known that (we
suppose 0 < λ ≤ 1)

ζ(s, λ) =
1

s− 1
− Γ ′

Γ
(λ) +

∞∑
n=1

(−1)n

n!
γn(λ)(s− 1)n

where γn(λ) is the nth Stieltjes constant. By the Cauchy formula, it is not
difficult to see that γn(λ)�n 1 uniformly for 0 < λ ≤ 1. On the other hand,
since s = 0 is a pole of order 1 of Γ (s), we have

Γ ′

Γ
(λ)� 1

λ
·

Finally we note that the polynomial Pk−1 is determined by

Res
s=1

(
ζ(s, λ1) · · · ζ(s, λk)x

ss−1
)

=
x

q1 · · · qk
Pk−1

(
log

x

q1 · · · qk

)
.

From all the above information, we can easily deduce (4.1).

5. Proof of Theorem 2. In this section for any function g(n) we define

gj(n) :=
∑

n=n1···nj

g(n1) · · · g(nj),
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which is similar to (1.2). Let

A := (2π)`/2/(Γ (`/2)
√
|A|), r̃(n,Q) := A−1n1−`/2r(n,Q).

Since rk(n,Q) = Akr̃k(n,Q)n`/2−1, it is sufficient to prove that

(5.1)
∑
n≤x

r̃k(n,Q) = xP̃k−1(log x) +Ok,ε(x
ϑk+ε),

where P̃k−1(t) is a polynomial of degree k − 1 and ϑk is defined by (1.16).
We first establish the following lemma.

Lemma 5.1. Suppose ` ≥ 6 and k = 1, 2, 3. Then for any ε > 0,

(5.2)
∑
n≤x

σk(n,Q) = xP ∗k−1(log x) +Ok,ε(x
ϑk+ε),

where P ∗k−1(t) is a polynomial of degree k − 1 and ϑk is defined by (1.16).

Proof. Write
σ(n,Q) = σ̃(n,Q) + σ̂(n,Q),

with

σ̃(n,Q) :=
∑
q≤x

1

q`

q∑∗

h=1

S

(
hQ

q

)
e

(
−hn
q

)
,

σ̂(n,Q) :=
∑
q>x

1

q`

q∑∗

h=1

S

(
hQ

q

)
e

(
−hn
q

)
.

It is easy to see that σ̃(n,Q) � 1 and σ̂(n,Q) � x−1 (since ` ≥ 6). From
these facts, we can deduce that

σ̃j(n,Q)� τj(n), σ̂j(n,Q)� x−jτj(n)

and

σk(n,Q) =

k∑
j=0

(
k

j

) ∑
dm=n

σ̃k−j(d,Q)σ̂j(m,Q)(5.3)

= σ̃k(n,Q) +O(x−1τk−1(n)).

Thus in order to prove (5.2), it is sufficient to show that

(5.4)
∑
n≤x

σ̃k(n,Q) = xP ∗k−1(log x) +O(xϑk+ε).

By using Lemma 4.1, it follows that∑
n≤x

σ̃k(n,Q) =

k∏
i=1

∑
qi≤x

1

q`i

qi∑∗

hi=1

S

(
hiQ

qi

) qi∑
ri=1

e

(
−hiri

qi

)
Dk(x;q, r)(5.5)

= xS1(x) + S2(x) + S3(x),
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where

S1(x) :=
k∏
i=1

∑
qi≤x

q1···qk≤x

1

q`+1
i

qi∑∗

hi=1

S

(
hiQ

qi

) qi∑
ri=1

e

(
−hiri

qi

)
Pj−1

(
log

x

q1 · · · qk

)
,

S2(x) :=

k∏
i=1

∑
qi≤x

q1···qk>x

1

q`i

qi∑∗

hi=1

S

(
hiQ

qi

) qi∑
ri=1

e

(
−hiri

qi

)
Dk(x;q, r),

S3(x) :=
k∏
i=1

∑
qi≤x

1

q`i

qi∑∗

hi=1

S

(
hiQ

qi

) qi∑
ri=1

e

(
−hiri

qi

)
∆k(x;q, r).

It is easy to estimate

(5.6) S3(x)� xϑk+ε
k∏
i=1

∑
qi≤x

1

q
`/2−2+ϑk+ε
i

� xϑk+ε (since ` ≥ 6).

When q1 · · · qk > x, we use the trivial bound

Dk(x;q, r)� x

r1 · · · rk
+ 1

to write

S2(x)�
k∏
i=1

∑
qi≤x

q1···qk>x

1

q
`/2
i

qi∑∗

hi=1

qi∑
ri=1

(
x

r1 · · · rk
+ 1

)
(5.7)

� x
k∏
i=1

∑
qi≤x

q1···qk>x

log qi

q
`/2−1
i

+
k∏
i=1

∑
qi≤x

q1···qk>x

1

q
`/2−2
i

� x
∑
n>x

τk(n)(log n)k

n`/2−1
+
∑
n>x

τk(n)

n`/2−2

� xε (since ` ≥ 6).

Obviously we can write

(5.8) S1(x) = xP ∗k−1(log x) +O(R(x))

where

R(x) :=
k∏
i=1

∑
qi≥1

q1···qk>x

1

q
`/2−1
i

∣∣∣∣Pk−1(log
x

q1 · · · qk

)∣∣∣∣.
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By virtue of (4.1), we deduce that

R(x)�
k∏
i=1

∑
qi≥1

q1···qk>x

1

q
`/2
i

qi∑
ri=1

∑
1≤i1<···<ik−1≤k

qi1 · · · qik−1

ri1 · · · rik−1

logk−1(q1 · · · qk)(5.9)

�
k∏
i=1

∑
qi≤x

q1···qk>x

1

q
`/2−1
i

log2j−2(q1 · · · qk)�
∑
n>x

τk(n)(log n)2k−2

n`/2−1

� x−`/2+2+ε.

Inserting (5.6)–(5.9) into (5.5), we obtain (5.4).

Now we are ready to prove (5.1). By (1.10), we have

r̃(n,Q) = σ(n,Q) + β(n) with β(n) = O(n−1).

Similar to (5.3), we have

r̃k(n,Q) =
k∑
j=0

(
k

j

) ∑
dm=n

σj(d,Q)βk−j(m), βj(n)� τj(n)/n.

Thus Lemma 5.1 allows us to deduce∑
n≤x

r̃k(n,Q) =

k∑
j=0

(
k

j

)∑
m≤x

βk−j(m)
∑

d≤x/m

σj(d,Q)

= x
k∑
j=0

(
k

j

)∑
m≤x

βk−j(m)

m
P ∗j−1

(
log

x

m

)
+O(xϑj+ε),

which implies (5.1) since∑
m≤x

βk−j(m)

m
P ∗j−1

(
log

x

m

)
=
∑
m≥1

βk−j(m)

m
P ∗j−1

(
log

x

m

)
+O(x−1+ε)

= P ∗∗j−1(log x) +O(x−1+ε),

where P ∗∗j−1(t) is a polynomial of degree j − 1.

6. Proof of Theorem 3. We reason by recurrence on k. The case of
k = 1 follows from Theorem 1 since a1 is fixed. Assume that the required
asymptotic formula holds for 1, . . . , k − 1. Then in view of (1.10) and the
fact that `/4− δ` ≤ `/2− 1, we can write∑

n≤x

∏
1≤i≤k

r(n+ ai, Q) =

(
ζ(`/2)Γ (`/2)

(2π)`/2

)k
S(6.1)

+O(x(`/2−1)(k−1)+1+`/4−δ`+ε),
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where

S :=
∑
n≤x

∏
1≤i≤k

(n+ ai)
`/2−1σ(n+ ai, Q).

Inserting the series expansion for σ(n,Q) and using the simple relation

(n+ a1)
`/2−1 · · · (n+ ak)

`/2−1 = n(`/2−1)k +Oa1,...,ak(n(`/2−1)k−1),

it follows that

S =

∞∑
q1=1

· · ·
∞∑
qk=1

q1∑∗

h1=1

· · ·
qk∑∗

hk=1

S(h1Q/q1) · · ·S(hkQ/qk)

(q1 · · · qk)`

× e

(
−h1a1

q1
− · · · − hkak

qk

)∑
n≤x

n(`/2−1)ke

{
−n
(
h1
q1

+ · · ·+ hk
qk

)}
+O(x(`/2−1)k).

By (1.12), the infinite series

∞∑
q1=1

· · ·
∞∑
qk=1

q1∑∗

h1=1

· · ·
qk∑∗

hk=1

S(h1Q/q1) · · ·S(hkQ/qk)

(q1 · · · qk)`
e

(
−h1a1

q1
− · · · − hkak

qk

)
is absolutely convergent. Since∑

n≤x
n(`/2−1)k =

x(`/2−1)k+1

(`/2− 1)k + 1
+O(x(`/2−1)k),

the contribution of (q1, . . . , qk, h1, . . . , hk) with h1/q1 + · · ·+hk/qk ∈ Z to S
is

(6.2) CQ(a1, . . . , ak)x
(`/2−1)k+1 +O(x(`/2−1)k).

By using (2.2), partial summation and the fact ‖h1/q1 + · · ·+ hk/qk‖ ≥
(q1 · · · qk)−1, the contribution of (q1, . . . , qk, h1, . . . , hk) with h1/q1 + · · · +
hk/qk /∈ Z to S is

(6.3) � x(`/2−1)k
∞∑
q1=1

· · ·
∞∑
qk=1

min{x, q1 · · · qk}
(q1 · · · qk)`/2−1

� x(`/2−1)k+η`(ε),

where we have used the estimate

min{x, q1 · · · qk} ≤


x1/2+ε(q1 · · · qk)1/2−ε if ` = 5,

xε(q1 · · · qk)1−ε if ` = 6, 7,

q1 · · · qk if ` ≥ 8.

Now Theorem 3 follows from (6.2) and (6.3), by noticing that

(`/2− 1)(k − 1) + 1 + `/4− δ` + ε ≤ (`/2− 1)k + η`(ε) (` ≥ 5).
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7. Proof of Corollary 1.1. By (1.5) and (1.6), we have, for n ≤ x,

k∏
i=1

σ`/2−1(n+ ai) =

(
ζ(`/2)Γ (`/2)

(2π)`/2

)k k∏
i=1

r(n+ ai, Q)

+O
(
x(k−d)(`/2−1)/2

k−1∑
d=1

∑
{i1,...,id}⊂{1,...,k}

d∏
j=1

r(n+ aij , Q)
)
.

Now Theorem 3 implies the required result since

(k − d)(`/2− 1)/2 + (`/2− 1)d+ 1 ≤ (`/2− 1)(k − 1/2) + 1 ≤ (`/2− 1)k.
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[12] G. S. Lü, On a divisor problem related to the Epstein zeta-function, Bull. London
Math. Soc. 42 (2010), 267–274.
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