
ACTA ARITHMETICA
153.3 (2012)

The number of solutions of a homogeneous linear congruence

by

Karol Cwalina (Warszawa) and Tomasz Schoen (Poznań)

1. Introduction. Let n, k be positive integers and a = (a1, . . . , ak) and
b = (b1, . . . , bk) be sequences of integers and naturals respectively. We are
interested in the number of solutions (x1, . . . , xk) of the congruence

a1x1 + · · ·+ akxk ≡ 0 (mod n)

in integers satisfying 0 ≤ xi ≤ bi. We denote this number by Nn(a, b).
Intuitively, by an averaging argument, we can hope to prove a bound of

the form

Nn(a, b) ≥ γ
k∏
i=1

(1 + bi),

for a suitably chosen γ. On the other hand, since for ai = bi = 1, for
i = 1, . . . , k, and k = n − 1 we have Nn(a, b) = Nn(1,1) = 1, we can
see that γ(n) = 21−n would be the best possible coefficient, provided we
restrict ourselves to those depending only on n.

We shall prove the following theorem conjectured by Schinzel [3, 5]. We
present it here in the setting of the group Zn, which is obviously equivalent
to that of the congruence mod n.

Theorem 1.1. Let n, k be positive integers, and let a = (a1, . . . , ak) and
b = (b1, . . . , bk) be sequences such that ai ∈ Zn and bi ∈ N for i = 1, . . . , k.
Then

Nn(a, b) ≥ 21−n
k∏
i=1

(1 + bi).

Schinzel and Zakarczemny [5] proved this theorem in the case of a1, . . . , ak
satisfying gcd(n, ai) | gcd(n, aj) or gcd(n, aj) | gcd(n, ai), or n | lcm(ai, aj), for
all i, j. Later Schinzel [4] established the following result.
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Theorem 1.2 (Schinzel [4, Theorem 1 and Corollary]). Let

n =
l∏

λ=1

qαλλ ,

where qλ are distinct primes, αλ > 0 and
l∑

λ=1

1

qλ
≤ 1 +

min(l, 2l − 5)

n
.

Then, under the assumptions of Theorem 1.1,

Nn(a, b) ≥ 21−n
k∏
i=1

(1 + bi).

In particular, Schinzel’s conjecture holds for n < 60.

We will use this theorem to prove Theorem 1.1 for n < 22.
In the appendix to Schinzel’s paper Kaczorowski [1] proposed an elegant,

purely combinatorial method, which allowed him to establish the bound

Nn(a, b) ≥
1

n
(
n+k−1

k

) k∏
i=1

(1 + bi).

Our proof of Theorem 1.1 will be based on Kaczorowski’s idea.
If bi = 1 (i = 1, . . . , k) then Theorem 1.1 follows from a more general

result of Olson. We keep here, mutatis mutandis, the notation from the above
theorems.

Definition. Let G be a finite abelian group. We define Davenport’s
constant D(G) of G to be the smallest integer s such that every s-element
sequence of elements of G has a nontrivial subsequence that sums to zero.

Theorem (Olson [2, Theorem 2]). Let G be a finite abelian group, k be
a positive integer and a = (a1, . . . , ak) be a sequence such that ai ∈ G for
i = 1, . . . , k. Then

NG(a,1) ≥ 21−D(G) · 2k.
A natural conjecture which would unify these results is the following.

Conjecture. Let G be a finite abelian group, k be a positive integer,
and a = (a1, . . . , ak) and b = (b1, . . . , bk) be sequences such that ai ∈ G and
bi ∈ N for i = 1, . . . , k. Then

NG(a, b) ≥ 21−D(G)
k∏
i=1

(1 + bi).

Since, at present, very little is known about D(G), any attempt at this
conjecture would probably require an indirect approach.
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We discuss some generalizations of Theorem 1.1 in the final section of
the paper.

2. Notation and a sketch of the argument. We adopt the following
non-standard notation.

Definition. Let n be a positive integer, I be any set, and b− = (b−i )i∈I ,
b+ = (b+i )i∈I be sequences of integers satisfying 0 ≤ b−i ≤ b+i . Let c and all
the elements ai of a sequence a = (ai)i∈I belong to Zn.

We define Nc;n(a, b
− ≤ b+) as the number of integer solutions (xi)i∈I

with b−i ≤ xi ≤ b
+
i of the equation∑

i∈I
aixi = c.

Likewise, for a sequence b = (bi)i∈I of naturals, we denote by Cn(a, b) the
set

Cn(a, b) =
{∑
i∈I

aixi : 0 ≤ xi ≤ bi
}
.

We shall also denote by ej the sequence (ei)i∈I such that ej = 1 and
ei = 0 for i 6= j. Finally, 0 and 1 denote the sequences consisting exclusively
of zeros and ones respectively, while 1A stands for the characteristic sequence
of a subset A ⊂ I.

Arithmetic operations on sequences are meant to be performed coordi-
natewise.

We identify an element with a one-element sequence. When the ele-
ments considered split into subfamilies, we separate them by semicolons,
e.g. Nc;n(a, t ≤ b;a′, t′ ≤ b′). In all cases, indexing sets will be given im-
plicitly. Finally, we shall usually drop zeros from the notation, therefore
Nn(a, b) = N0;n(a,0 ≤ b).

Let us now briefly sketch our argument. Following the idea of Kaczorow-
ski [1] we look for a sequence t = (ti) such that Cn(a, t) = Cn(a, b) and
the sum

∑
ti is possibly small (it can be easily chosen to be at most n− 1).

Obviously Nc0;n(a, t ≤ b) ≥ 1
n

∏
(1 + bi − ti) for some residue class c0. If∑

ti is considerably smaller than n, then we can easily conclude that

Nn(a, b) ≥ Nc0;n(a, t ≤ b) ≥ 21−n
∏

(1 + bi)

for sufficiently large n.
In the subsequent parts of the paper we shall encounter various inequal-

ities claimed to hold for sufficiently large integers. In all cases an easy in-
ductive argument proves the claim. Similarly, we shall use several times a
particular, yet well known, form of Bernoulli’s inequality: (1 + a/x)x ≤ 2a

for any real numbers 0 < x ≤ a.
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3. Lemmas. Of course, it is sufficient to consider the problem if ai 66= 0
for all i. Similarly, we can assume that gcd(a1, . . . , ak) = 1.

We can also restrict our attention to the case when 0 < bi < n for all i.
This basically follows from the observation that both the function Nn(·) and
the desired bound are “additive” as functions of bi for every i. Let us make
this more explicit by the analysis of the case b1 = Bn+ r. We assume here
that the bound holds for b1 < n. Then

Nn(a1, b1;a
′, b′) = Nn(a1, 0 ≤ n−1;a′, b′) +Nn(a1, n ≤ 2n−1;a′, b′)

+ · · ·+Nn(a1, Bn ≤ Bn+r;a′, b′)
= Nn(a1, n−1;a′, b′) +Nn(a1, n−1;a′, b′)

+ · · ·+Nn(a1, r;a
′, b′)

≥ 21−nn
∏
i 6=1

(1 + bi) + 21−nn
∏
i 6=1

(1 + bi)

+ · · ·+ 21−n(1 + r)
∏
i 6=1

(1 + bi)

= 21−n(1 +Bn+ r)
∏
i 6=1

(1 + bi) = 21−n
∏

(1 + bi).

We now prove an easy lemma which will turn out useful in our proof of
the theorem. It also justifies the claim, appearing in the preceding section,
that we can select a sequence t = (ti) such that Cn(a, t) = Cn(a, b) and∑
ti ≤ n− 1.

Lemma 3.1. If 0 ≤ ti ≤ bi and Cn(a, t) 6= Cn(a, b) then there exists j
such that tj < bj and |Cn(a, t+ ej)| > |Cn(a, t)|.

Proof. Observe that Cn(a, t+ ej) = Cn(a, t)⊕{0, aj}, where ⊕ denotes
the Minkowski sum, defined as A⊕B = {a+ b : a ∈ A, b ∈ B}.

Now suppose that Cn(a, t+ ej) = Cn(a, t)⊕ {0, aj} = Cn(a, t) for all j
such that tj < bj . Since Minkowski’s sum is associative, we obtain

Cn(a, b) = Cn(a, t)⊕
⊕
j:tj<bj

bj−tj⊕
l=0

{0, aj} = Cn(a, t)

— a contradiction.

The following lemma will allow us to deal with some structured cases in
our proof of the main result.

Lemma 3.2. Let α = (α1, . . . , αδ) and β = (β1, . . . , βδ) be sequences
such that αi ∈ Zn and βi ∈ N for i = 1, . . . , δ, and

δ ≤
∑

βi ≤ min(bn/2c , |Cn(α,β)| − 1).
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Moreover, let a = (a1, . . . , ad) and b = (b1, . . . , bd) be such that aj generates
Zn and bj ∈ N for j = 1, . . . , d. Then, if n ≥ 9, Schinzel’s conjecture holds,
i.e.

Nn(α,β;a, b) ≥
1

2n−1

∏
(1 + βi)

∏
(1 + bj).

Proof. First, we quote a lemma from Schinzel’s paper [3].

Lemma ([3, Lemma 5]). For positive integers a and x ≤ a we have

(1 + a/x)x+1 ≤ 2a+1,

except for the pair a = 2, x = 1.

If Cn(α,β;a, b) 6= Zn then, since every aj generates Zn, we have∑
bj < n− |Cn(α,β)| ≤ n−

∑
βi − 1.

Henceforth, in this case, by the arithmetic mean-geometric mean and Berno-
ulli’s inequalities,∏

(1 + βi)
∏

(1 + bj) ≤
(
1 +

∑
βi +

∑
bj

δ + d

)δ+d
≤ 2

∑
βi+

∑
bj ≤ 2n−1

≤ 2n−1 ·Nn(α,β;a, b).

Now assume that n > b1 ≥ b2 ≥ · · · and l ≤ n−|Cn(α,β)| is the smallest
number such that Cn(α,β; a1, b1; . . . ; al, bl) = Zn.

Since Cn(α,β; a1, b1; . . . ; al, bl) = Zn, every choice of 0 ≤ xj ≤ bj for
j = l + 1, . . . , d leads to at least one solution of the equation considered.
Therefore

Nn(α,β;a, b) ≥
∏
j>l

(1 + bj)

and it is now sufficient to prove that
δ∏
i=1

(1 + βi)

l∏
j=1

(1 + bj) ≤ 2n−1.

If l = 1 then, using the same inequalities again, for n ≥ 7,
δ∏
i=1

(1 + βi)
l∏

j=1

(1 + bj) ≤
(
1 +

∑
βi
δ

)δ
(1 + b1)

≤ 2
∑
βi(1 + b1) ≤ 2bn/2c · n ≤ 2n−1.

If l > 1 then
∑

j<l bj ≤ n−1−|Cn(α,β)|, because every aj generates Zn,
and bl ≤ (

∑
j<l bj)/(l − 1). This leads, in much the same way as above, to
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δ∏
i=1

(1 + βi)

l∏
j=1

(1 + bj) =

δ∏
i=1

(1 + βi)

l−1∏
j=1

(1 + bj) · (1 + bl)

≤
(
1 +

∑
βi
δ

)δ(
1 +

∑
j<l bj

l − 1

)l−1(
1 +

∑
j<l bj

l − 1

)
≤
(
1 +

∑
βi
δ

)δ(
1 +

n− 1− |Cn(α,β)|
l − 1

)l
≤ 2

∑
βi

(
1 +

n− 1− |Cn(α,β)|
l − 1

)l
.

Now we can conclude, since either we can apply the aforementioned lemma,
if its assumptions hold, and then

2
∑
βi

(
1 +

n− 1− |Cn(α,β)|
l − 1

)l
≤ 2

∑
βi · 2n−|Cn(α,β)| ≤ 2n−1,

or, otherwise, l = 2, n− 1− |Cn(α,β)| = 2 and we just write, for n ≥ 9,

2
∑
βi

(
1 +

n− 1− |Cn(α,β)|
l − 1

)l
≤ 2bn/2c · 32 ≤ 2n−1.

In the following lemma we present a procedure to find a proper sequence
t = (ti). If this procedure fails the previous lemma applies, and therefore
Schinzel’s conjecture holds.

Lemma 3.3. Under the assumptions of Theorem 1.1, assuming moreover
that gcd(a1, . . . , ak) = 1, either there exists some sequence t = (ti) such that
0 ≤ ti ≤ bi,

∑
ti ≤ 3n/4 and Cn(a, t) = Cn(a, b), or there exists some

generator a of Zn such that∑
i: ai 6=±a

bi ≤ min(bn/2c, |Cn(a, b · 1{i: ai 6=±a})| − 1).

Proof. Choose t = (ti), 0 ≤ ti ≤ bi, to be any sequence minimal with
respect to

∑
ti among the sequences maximal with respect to |Cn(a, t)| and

satisfying |Cn(a, t)| ≥ 2
∑
ti.

If Cn(a, t) = Cn(a, b) then∑
ti ≤ |Cn(a, b)|/2 ≤ n/2.

Similarly, by Lemma 3.1, if |Cn(a, t)| = |Cn(a, b)| − 1 then for some j such
that tj < bj we have Cn(a, t+ ej) = Cn(a, b) and∑

ti + (ej)i = 1 +
∑

ti ≤ 1 + |Cn(a, t)|/2 ≤ (n+ 1)/2 ≤ 3n/4

and we are done.
Let us now assume that none of the above cases holds. Hence tj∗ < bj∗

and |Cn(a, t+ ej∗)| = |Cn(a, t)|+ 1, for some j∗. Let us write a = aj∗ .
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Cn(a, t) is therefore a union of cosets of some subgroup H of Zn and
an arithmetic progression P with common difference a, which is contained
in another coset of H. In the subsequent parts of this argument we shall
call any coset of H involved an active one and any such coset contained in
Cn(a, t) a full one. Obviously, |H| ≥ 2 and |Cn(a, t)| ≥ 2. A natural choice
of H is simply aZn but we prefer to consider a possibly large subgroup, so
we shall assume that H is maximal.

If P = Cn(a, t) then, because |P | = |Cn(a, t)| ≥ 2, for any j such that
tj < bj we have aj ∈ aZn, as otherwise Cn(a, t + ej) would be the disjoint
union of Cn(a, t) and Cn(a, t)⊕{aj}. Since 0 ∈ P , necessarily Cn(a, t) ⊆ aZn
and consequently Cn(a, b) ⊆ aZn. Therefore

|Cn(a, t)| < |Cn(a, b)| − 1 ≤ |aZn| − 1,

so aj = ±a. Consequently, aj 6= ±a implies tj = bj and∑
i: ai 6=±a

bi =
∑

i: ai 6=±a
ti ≤ min(bn/2c, |Cn(a, b · 1{i: ai 6=±a})| − 1).

Here, the first inequality stems from
∑
ti ≤ bn/2c and the second, by

Lemma 3.1, from minimality of the chosen sequence t. Furthermore, a gen-
erates Zn by our assumption that gcd(a1, . . . , ak) = 1.

In the case when P 6= Cn(a, t) every full coset of H is mapped onto some
other such coset under the mapping x 7→ x+ aj . If it were not so, the above
would apply to the active cosets. Moreover, by maximality of t, we would
have |P | = |H| − 1. This, however, would contradict the assumption that
Cn(a, t) < Cn(a, b)− 1. Hence, by maximality of H, we get aj ∈ H.

This allows us to invoke Lemma 3.1 in order to find a sequence τ = (τi)
such that Cn(a, t + τ ) = Cn(a, b) with

∑
τi ≤ |Cn(a, b)| − |Cn(a, t)| and

0 ≤ τi ≤ bi − ti. In particular∑
ti ≤

1

2
|Cn(a, t)| ≤

1

2

(
|Cn(a, b)| −

∑
τi

)
≤ 1

2

(
n−

∑
τi

)
.

Then, because |Cn(a, b)| − |Cn(a, t)| ≤ |H|, we have
∑
τi ≤ |H| and, by a

simple calculation,∑
ti +

∑
τi ≤

1

2

(
n−

∑
τi

)
+
∑

τi =
n

2
+

1

2

∑
τi

≤ n

2
+

1

2
· |H| ≤ n

2
+

1

2
· n
2
=

3

4
n.

The sequence t+ τ is just one we are looking for.

4. Proof of the theorem. We deal with the cases when n < 22 by
referring to Schinzel’s Theorem 1.2. For n ≥ 22 we apply Lemma 3.3. If the
lemma results in some generator a of Zn, we can apply Lemma 3.2, which
readily shows the theorem.
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In the other case, there is a sequence t = (ti), 0 ≤ ti ≤ bi, such that∑
ti ≤ 3n/4 and Cn(a, t) = Cn(a, b). Moreover

Nc0;n(a, t ≤ b) ≥
∏

(1 + bi − ti)/n

for some c0 ∈ Cn(a, b) = Cn(a, t).
By subtracting one particular solution represented in Nc0;n(a, t) from all

those counted in Nc0;n(a, t ≤ b) we get at least
∏
(1+ bi− ti)/n solutions of

the equation considered, so Nn(a, b) ≥
∏
(1 + bi − ti)/n.

By Bernoulli’s inequality,

1 + bi − ti ≥ (1 + bi)
1−ti/bi ≥ 1 + bi

2ti
.

Hence, for n ≥ 22,

Nn(a, b) ≥
1

n

∏
(1 + bi − ti) ≥

1

n

∏ 1 + bi
2ti

≥
∏
(1 + bi)

n · 2
∑
ti
≥
∏
(1 + bi)

n23n/4
≥ 21−n

∏
(1 + bi).

5. Concluding remarks. The reasoning used in the proof of Lemma 3.3
can be easily adapted to the general abelian group case. We remark here
that while we do not attempt to generalize Lemma 3.2, it is only applied if
Lemma 3.3 results in some generator of a cyclic subgroup. Consequently, we
obtain

Theorem 5.1. Let G be a finite abelian group, |G| ≥ 22 or G cyclic, k
be a positive integer, and a = (a1, . . . , ak) and b = (b1, . . . , bk) be sequences
such that ai ∈ G and bi ∈ N for i = 1, . . . , k. Then

NG(a, b) ≥ 21−|G|
k∏
i=1

(1 + bi).

On the other hand, while an inspection of our method reveals that it still
applies to the question of bounding the number Nn(a, b

− ≤ b+), the result
of Schinzel that we rely on fails in this more general case. For this reason,
we do not claim any bound of the form

Nn(a, b
− ≤ b+) ≥ γ(n)

k∏
i=1

(1 + b+i − b
−
i ),

even if there exists a solution of the corresponding equation.
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