Multiplicative independence and bounded height

by

JOHN GARZA (Brownsville, TX)

1. Introduction. Amongst the absolute values in a place v of an algebraic number field K, two play a role in this article. If v is archimedean, let $\| \cdot \|_v$ denote the unique absolute value in v that restricts to the usual archimedean absolute value on \mathbb{Q}. If v is non-archimedean and $v | p$, let $\| \cdot \|_v$ denote the unique absolute value in v that restricts to the usual p-adic absolute value on \mathbb{Q}. For each place v of K, let K_v and \mathbb{Q}_v be the completions of K and \mathbb{Q} with respect to v and define the local degree of v as $d_v = [K_v : \mathbb{Q}_v]$.

For all places v let $| \cdot |_v = \| \cdot \|_v^{d_v/d}$.

The absolute values $| \cdot |_v$ satisfy the product rule: if $\alpha \in K^\times$, then $\prod_v |\alpha|_v = 1$. The absolute (logarithmic) Weil height of α is defined as $h(\alpha) = \sum_v \log^+ |\alpha|_v$ where the sum is over all places v of K. Because of the way in which the absolute values $| \cdot |_v$ are normalized, $h(\alpha)$ does not depend on the field K in which α is contained.

By Kronecker’s theorem $h(\alpha) = 0$ if and only if $\alpha = 0$ or $\alpha \in \text{Tor}(\mathbb{Q}^\times)$. In 1933, Lehmer [L] asked whether or not there exists a constant $\varrho > 1$ such that

$$(1.1) \quad \deg(\alpha)h(\alpha) \geq \log \varrho$$

in all other cases. Lehmer’s question remains unresolved to this day. For algebraic numbers α the Mahler measure $M(\alpha)$ is defined by $\log M(\alpha) = \deg(\alpha)h(\alpha)$. If $m_{\alpha,\mathbb{Z}} = a_0 \prod_{i=1}^d (x - \alpha_i) \in \mathbb{Z}[x]$ is the minimal polynomial of α in $\mathbb{Z}[x]$, it is known that

$$(1.2) \quad M(\alpha) = |a_0| \prod_{i=1}^d \max\{1, |\alpha_i|\}.$$
answer to Lehmer’s question is yes then the minimum possible \(\varrho \) is the log of the Mahler measure of this polynomial.

If \(\alpha \in \overline{\mathbb{Q}}^\times \) is not an algebraic integer, then the \(|a_0| \) of equation (1.2) is at least 2. It follows that \(M(\alpha) \geq 2 \) so that Lehmer’s question restricts to algebraic integers. For an algebraic number field \(\mathbb{K} \), we let \(\mathcal{O}_K \) be the set of algebraic integers in \(\mathbb{K} \). Also, if \(\alpha \in \overline{\mathbb{Q}}^\times \) is an algebraic integer that is not a unit then

\[
\text{(1.3) } \text{Norm}_{\mathbb{Q}(\alpha)/\mathbb{Q}} \geq 2.
\]

It follows from (1.2) that (1.3) implies \(M(\alpha) \geq 2 \) and that Lehmer’s problem restricts to consideration of algebraic units. We will let \(\mathcal{O}_K^\times \) denote the multiplicative group of algebraic units in \(\mathbb{K} \).

Extending earlier work done by Schinzel [Sch], Beukers and Zagier [BZ], Samuels [Sa] and Garza [G1], Garza, Ishak and Pinner [GIP] established the following inequality involving the sum of logarithmic heights. Let \(\alpha_1, \ldots, \alpha_r \in \overline{\mathbb{Q}}^\times \) be such that \(\alpha_1 + \cdots + \alpha_r \neq \alpha_1^{-1} + \cdots + \alpha_r^{-1} \). Let \(\mathcal{R}_S \) be the proportion of the conjugates of \(S = \alpha_1 + \cdots + \alpha_r \) that are real. Then

\[
\text{(1.4) } \sum_{i=1}^{r} h(\alpha_i) \geq \frac{\mathcal{R}_S}{2} \log \left(\frac{(2r)^{1-1/\mathcal{R}_S} + \sqrt{(2r)^{2(1-1/\mathcal{R}_S)} + 4}}{2} \right).
\]

From the arithmetic-geometric mean inequality, inequality (1.4) implies a lower bound for the average of \(e^{h(\alpha_i)} \). In this article we derive a lower bound for \(h(\alpha_1) + \cdots + h(\alpha_r) \) where \(\alpha_1, \ldots, \alpha_r \) are multiplicatively independent algebraic integers. This can be applied to the non-torsion units in a generating set for \(\mathcal{O}_K^\times \) by using Dirichlet’s unit theorem. It is noteworthy that Cohen and Zannier [CZ] established the upper bound \(h(\alpha) + h(1-\alpha) \leq \log 2 \) where \(\alpha \in \overline{\mathbb{Q}}^\times \) and \(\{\alpha, 1-\alpha\} \) is multiplicatively dependent.

2. Main results. A set \(\{\alpha_1, \ldots, \alpha_r\} \subseteq \overline{\mathbb{Q}}^\times \) is said to be multiplicatively independent if the only solution to the equation \(\alpha_1^{m_1} \cdots \alpha_r^{m_r} = 1 \) with \(m_1, \ldots, m_r \in \mathbb{Z} \) is \(m_1 = \cdots = m_r = 0 \). It follows that if \(\{\alpha_1, \ldots, \alpha_r\} \) is multiplicatively independent then \(\{\alpha_1, \ldots, \alpha_r\} \cap \text{Tor}(\overline{\mathbb{Q}}^\times) = \emptyset \). We will say that \(\{\alpha_1, \ldots, \alpha_r\} \subset \overline{\mathbb{Q}}^\times \) is multiplicatively independent up to exponent \(n \) if the inclusion \(\alpha_1^{m_1} \cdots \alpha_r^{m_r} \in \text{Tor}(\overline{\mathbb{Q}}^\times) \) for \(0 \leq |m_i| \leq n \) implies that \(m_1 = \cdots = m_n = 0 \). In this article we establish the following lower bound for \(h(\alpha_1) + \cdots + h(\alpha_r) \) under the hypothesis of multiplicative independence up to exponent \(n \).

Theorem 2.1. Let \(\alpha_1, \ldots, \alpha_r \in \overline{\mathbb{Q}}^\times \), let \(d = [\mathbb{Q}(\alpha_1, \ldots, \alpha_r) : \mathbb{Q}] \), and let \(s \in \mathbb{N} \) be minimal such that \(s > 2^{d/r} \). If \(\alpha_1, \ldots, \alpha_r \) are multiplicatively
independent up to exponent $s - 1$ then
\begin{equation}
\sum_{i=1}^{r} h(\alpha_i) \geq \frac{\log 2}{2(s - 1)}.
\end{equation}

It follows from the arithmetic-geometric mean inequality that Theorem 2.1 and equation (2.1) imply
\[\frac{e^{h(\alpha_1)} + \cdots + e^{h(\alpha_r)}}{r} \geq \left(\sqrt{2} \right)^{1/r(s-1)}. \]

Furthermore, Theorem 2.1, applied to the units in Dirichlet’s theorem, results in the following.

Theorem 2.2. Let \mathbb{K} be an algebraic number field of degree $d \geq 8$. Let $\mathcal{O}_K^\times = \langle \zeta, \alpha_1, \ldots, \alpha_t \rangle$ where $\{\alpha_1, \ldots, \alpha_t\} \cap \text{Tor}(\mathcal{O}_K^\times) = \emptyset$ and $\langle \zeta \rangle = \text{Tor}(\mathcal{O}_K^\times)$. Then
\[\sum_{i=1}^{t} h(\alpha_i) \geq \frac{\log 2}{8}. \]

Although these theorems do not answer Lehmer’s question, they tell us that, within a fixed algebraic number field, a large set of units of low height satisfy a multiplicative relation with small exponents. A generalization of this fact is used in Garza [G2].

3. Preliminary lemmas. In this section we present three lemmas used in the proof of Theorem 2.1. Lemma 3 will be used to establish the inclusion $0 \neq \gamma^2 - \beta^2 \in 4\mathcal{O}_K$ where γ and β are algebraic numbers to be defined in Section 4. Lemma 1 with $p = 2$ will then be used to establish that $\prod_{v|4} |\gamma^2 - \beta^2|_v \leq 1/4$. This last inequality will be used in the application of Lemma 2 to $\gamma^2 - \beta^2$.

Lemma 1. Let \mathbb{K}/\mathbb{Q} be a finite Galois extension and let $p \in \mathbb{N}$ be a prime with ramification index e in \mathbb{K}. Let $\mathcal{A}_p = \{v_1, \ldots, v_t\}$ be the set of places of \mathbb{K} extending the p-adic place of \mathbb{Q}. For $v_i \in \mathcal{A}_p$ let $\mathcal{M}_{v_i} = \{\alpha \in \mathbb{K} : |\alpha|_{v_i} < 1\}$. Let $s \in \mathbb{N}$, $s \leq t$, and let $\beta \in \mathbb{K}^\times$. If $\beta \in \mathcal{M}_{v_1}^{a_1} \cdots \mathcal{M}_{v_s}^{a_s}$ for $a_1, \ldots, a_s \in \mathbb{N} \cup \{0\}$, then
\[\sum_{\mathcal{A}_p} \log |\beta|_{v_i} \leq (- \log p) \cdot \left(\frac{1}{e \cdot t} \right) \cdot \left(\sum_{j=1}^{s} a_j \right). \]

Proof. Let $\mathfrak{B}_i = \mathcal{M}_{v_i} \cap \mathcal{O}_K$ and let $\nu_{\mathfrak{B}_i} : \mathcal{O}_K \to \mathbb{N} \cup \{0\}$ be the associated valuation. Given $\phi \in v_i$ there exists $\rho \in (0, \infty)$ such that for all $\gamma \in \mathbb{K}^\times$, $\phi(\gamma) = \rho^{-\nu_{\mathfrak{B}_i}(\gamma)}$. Since $\nu_{\mathfrak{B}_i}(p) = e$ and $\|p\|_{v_i} = p^{-1}$, the ρ associated to $\| \cdot \|_{v_i}$ is $p^{-1/e}$. Since \mathbb{K}/\mathbb{Q} is Galois, the local degrees d_{v_i} of each place in \mathcal{A}_p are equal. Their sum is $[\mathbb{K} : \mathbb{Q}]$ so the ρ associated to $\| \cdot \|_{v_i}$ is $p^{-1/et}$. Let π_i be a uniformizing parameter for $\| \cdot \|_{v_i}$. Then $\nu_{\mathfrak{B}_i}(\pi_i) = 1$ and $|\pi_i|_{v_i} = p^{-1/et}$. The lemma follows from this last equality. \blacksquare

Lemma 2. Let $\alpha_1, \ldots, \alpha_n \in \overline{\mathbb{Q}}^\times$, let K be the Galois closure of $\mathbb{Q}(\alpha_1, \ldots, \alpha_n)$ and let $d = [K : \mathbb{Q}]$. For $1 \leq j \leq n$ and $1 \leq k \leq m$ let $b_{j,k} \in \mathbb{N} \cup \{0\}$ be such that $\sum b_{j,k} \geq 1$ and let $c_k \in \mathbb{Z} \setminus \{0\}$. Define

$$\delta = \sum_{k=1}^{m} c_k \prod_{j=1}^{n} \alpha_j^{b_{j,k}}, \quad M_j = \max\{b_{j,k} : 1 \leq k \leq m\},$$

$$L = \sum_k |c_k|, \quad w = \prod_{s \mid \infty} |\delta|_v.$$

For each place $v \mid \infty$, let $a_v \in \mathbb{R}^+$ be defined via

$$\|\delta\|_v = a_v \prod_{j=1}^{n} \max\{1, \|\alpha_j^{M_j}\|_v\}$$

and let

$$A = \prod_{v \mid \infty} (a_v)^{d_v/d}.$$

If $\delta \neq 0$, then

$$wA \leq 1, \quad A \leq L \quad \text{and} \quad \sum_{j=1}^{n} M_j \cdot h(\alpha_j) \geq \log(1/wA).$$

Proof. By the triangle inequality, $a_v \leq L$ for all $v \mid \infty$, from which we obtain $A \leq L$. By the product rule, $\sum_v \log |\delta|_v = 0$. By definition, $\sum_{v \mid \infty} \log |\delta|_v = \log w$ so that $\sum_{v \mid \infty} |\delta|_v = -\log w$. At this point we recall that $\| \cdot \|_{d_v/d} = | \cdot |_v$.

Fix $v \mid \infty$. Then

$$\|\delta\|_v = |\delta|_v^{d_v/d} = a_v \prod_{j=1}^{n} \max\{1, \|\alpha_j^{M_j}\|_v\}.$$

Consequently,

$$\log |\delta|_v = \left(\frac{d_v}{d}\right) \cdot \left(\log a_v + \sum_{j=1}^{n} M_j \log^+ \|\alpha_j\|_v\right).$$

Summing over all the archimedean places, we obtain

$$\sum_{v \mid \infty} \log |\delta|_v = \sum_{v \mid \infty} \log a_v^{d_v/d} + \sum_{v \mid \infty} \sum_{j=1}^{n} M_j \log^+ |\alpha_j|_v.$$

This leads to

$$\log(1/wA) = \sum_{j=1}^{n} M_j \sum_{v \mid \infty} \log^+ |\alpha_j|_v.$$
Since $\sum_{v \mid \infty} \log^+ |\alpha_j|_v \leq h(\alpha_j)$ the last equation implies

$$\log(1/wA) \leq \sum_{j=1}^{n} M_j \cdot h(\alpha_j).$$

Lemma 3. Let K be an algebraic number field of degree d over \mathbb{Q}. Let $\alpha_1, \ldots, \alpha_r \in \mathcal{O}_K - \{0\}$. Let $s \in \mathbb{N}$ be minimal such that $s^r > 2^d$. Define

$$A = \{\alpha_1^{\delta_1} \cdots \alpha_r^{\delta_r} : 0 \leq \delta_i \leq s - 1, \ i = 1, \ldots, r\}.$$

If $\{\alpha_1, \ldots, \alpha_r\}$ is multiplicatively independent of exponent $s - 1$ then there exist distinct elements γ and β of A such that

$$0 \neq \gamma^2 - \beta^2 \in 4\mathcal{O}_K.$$

Proof. $(\mathcal{O}_K, +)$ is a free abelian group of rank d. Let $\omega_1, \ldots, \omega_d \in \mathcal{O}_K$ be such that $(\mathcal{O}_K, +) = \langle \omega_1, \ldots, \omega_d \rangle$. Now, $2\mathcal{O}_K \triangleleft \mathcal{O}_K$ and $\mathcal{O}_K/2\mathcal{O}_K$ is an elementary abelian 2-group. Let $\Psi : \mathcal{O}_K \to \mathcal{O}_K/2\mathcal{O}_K$ be the natural projection homomorphism. Then $\mathcal{O}_K/2\mathcal{O}_K = \langle \Psi(\omega_1), \ldots, \Psi(\omega_d) \rangle$. If there exists $1 \leq i < j \leq d$ such that $\Psi(\omega_i) = \Psi(\omega_j)$ then $\omega_i - \omega_j \in 2\mathcal{O}_K$. So there exists $\tau \in \mathcal{O}_K$ such that $\omega_i - \omega_j = 2\tau$. This last equation together with the fact that τ is an element of the free abelian group $\langle \omega_1, \ldots, \omega_d \rangle$ results in a non-trivial \mathbb{Z}-linear dependence equation amongst $\omega_1, \ldots, \omega_d$. This is a contradiction. Thus $|\mathcal{O}_K : 2\mathcal{O}_K| = 2^d$.

Since $\{\alpha_1, \ldots, \alpha_r\}$ is multiplicatively independent of exponent $s - 1$ it follows from the counting principle that $|A| = s^r$. There thus exist distinct γ and β in A such that $\Psi(\gamma) = \Psi(\beta)$ or equivalently $\Psi(\gamma) - \Psi(\beta) = \Psi(\gamma - \beta) = 0$. It follows that $\gamma - \beta \in \ker \Psi = 2\mathcal{O}_K$. Since $2\beta \in 2\mathcal{O}_K$, $(\alpha - \beta) + 2\beta = \alpha + \beta \in 2\mathcal{O}_K$. From this, $(\alpha - \beta)(\alpha + \beta) = \alpha^2 - \beta^2 \in 4\mathcal{O}_K$. Since $\{\alpha_1, \ldots, \alpha_r\}$ is multiplicatively independent of exponent $s - 1$, we have $0 \neq \gamma - \beta$ and $0 \neq \gamma + \beta$. It follows that $0 \neq (\gamma + \beta)(\gamma - \beta) = \gamma^2 - \beta^2$.

4. Proof of the main results

Proof of Theorem 2.1. Define

$$A = \{\alpha_1^{\delta_1} \cdots \alpha_r^{\delta_r} : 0 \leq \delta_i \leq s - 1, \ i = 1, \ldots, r\}.$$

Since $\{\alpha_1, \ldots, \alpha_r\}$ is multiplicatively independent of exponent $s - 1$, we see that $|A| > 2^d$. By Lemma 3, there exist γ and β in A such that $0 \neq \gamma^2 - \beta^2 \in 4\mathcal{O}_K$. By Lemma 1 with $p = 2$,

$$\prod_{v \mid \infty} |\gamma^2 - \beta^2|_v \leq \frac{1}{4}.$$

In this case, the notation of Lemma 2 corresponds with $w \leq 1/4$, $L = 2$, $M_j \leq 2(s - 1)$, and $\log 2 \leq 2(s - 1)\sum_{i=1}^{r} h(\alpha_i)$.

Proof of Theorem 2.2. Let \(r_1 \) be the number of isomorphisms of \(\mathbb{K} \) into \(\mathbb{R} \), let \(r_2 \) be the number of complex conjugation pairs of isomorphisms of \(\mathbb{K} \) into \(\mathbb{C} \) and not into \(\mathbb{R} \) and let \(r = r_1 + r_2 \). By Dirichlet’s unit theorem, there exist \(\zeta \in \text{Tor}(\mathcal{O}_K^\times) \) and \(\omega_1, \ldots, \omega_{r-1} \in \mathcal{O}_K^\times - \text{Tor}(\mathcal{O}_K^\times) \) such that every \(\epsilon \in \mathcal{O}_K^\times \) can be uniquely represented as \(\epsilon = \zeta^k \prod_{i=1}^{r-1} \omega_i^{m_i} \) where \(m_i \in \mathbb{Z} \) for \(i = 1, \ldots, r-1 \) and \(k = 0, \ldots, |\text{Tor}(\mathcal{O}_K^\times)| \). By definition, \(r \geq d/2 \), so that \(r-1 \geq (d-2)/2 \). Since \(\langle \zeta, \alpha_1, \ldots, \alpha_t \rangle = \mathcal{O}_K^\times \), we see that \(\{\alpha_1, \ldots, \alpha_t\} \) contains a set of \(r-1 \) multiplicatively independent algebraic units. If \(d \geq 8 \) then \(5^{r-1} > 2^d \). By Theorem 2.1,

\[
\sum_{i=1}^{t} h(\alpha_i) \geq \frac{\log 2}{8} \tag{*}.
\]

References

John Garza
Department of Mathematics
The University of Texas at Brownsville
80 Fort Brown
Brownsville, TX 78520, U.S.A.
E-mail: John.Garza@utb.edu

Received on 21.3.2010
and in revised form on 29.1.2011