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On the Diophantine equation
(

n
k1,...,ks

)
= xl

by

Peng Yang and Tianxin Cai (Hangzhou)

1. Introduction. Consider the Diophantine equation involving the bi-
nomial coefficient,

(1.1)
(

n

k

)
= xl,

with integers n, k, x, l satisfying n ≥ k ≥ 2, x, l ≥ 2. For k = 2, l = 2, there
are infinitely many solutions of (1.1) given e.g. by the recursion formula(
(2n−1)2

2

)
= 4(2n − 1)2

(
n
2

)
(cf. [1]). For k = 3, l = 2, when n is odd Meyl

[8] proved that (1.1) has only the trivial solution (n, x) = (3, 1), when n is
even Watson [11] proved that (1.1) has only the solutions (n, x) = (4, 2),
(50, 140). In 1939, Erdős [3] proved that (1.1) has no solution if l = 3 or
k ≥ 2l and he conjectured that (1.1) has no solution if l > 2. In 1951, Erdős
[4] proved his conjecture for k ≥ 4. For k = 2, l > 2, it can be deduced from
Darmon and Merel’s result on the equation xl + yl = 2zl with x, y, z ∈ Z
and (x, y, z) = 1 (cf. [2]) that (1.1) has no solution [5], [6]. For k = 3, l > 2,
Győry [5] proved that (1.1) has no solution, thereby completing the proof
of Erdös’ conjecture.

In this note, we consider the multinomial coefficient form of (1.1), i.e.

(1.2)
(

n

k1, . . . , ks

)
= xl, s ≥ 3, l ≥ 2, k1 + · · ·+ ks = n, k1 ≥ · · · ≥ ks ≥ 1,

where
(

n
k1,...,ks

)
= n!

k1!···ks!
.

Our main result is:

Theorem. (1.2) has no solution for n ≥ 3, s ≥ 3, l ≥ 2.

Together with the results concerning (1.1), our Theorem gives the com-
plete solution of (1.2) for s ≥ 2 as well.
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2. Proof of the Theorem. The well-known Chebyshev’s theorem says
that for any positive integer n, there is a prime p which satisfies n < p ≤ 2n.
We first give a consequence of Chebyshev’s theorem:

Lemma 2.1. For any integer n > 1, there is a prime p ≤ n satisfying
n = p + r, 0 ≤ r < p.

Proof. Lemma 2.1 is obviously true when n = 2. Let n > 2, and take
the largest prime p1 ≤ n. We write n = t1p1 + r1 with 0 ≤ r1 < p1,
t1 ≥ 1. If t1 ≥ 2, by Chebyshev’s theorem, we have a prime p2 satisfying
p1 < p2 < 2p1 ≤ n, a contradiction.

The following lemma is a generalized form of Chebyshev’s theorem.

Lemma 2.2 (Sylvester [10]). For positive integers n, k with 2k ≤ n, there
is a prime p > k with p |

(
n
k

)
.

Lemma 2.3 (Saradha [9], Győry [7]). For any positive integer b, denote
by P (b) the greatest prime factor of b. Apart from k = b = l = 2, consider
the equation

n(n + 1) · · · (n + k − 1) = bxl

with positive integers n, k, b, x, l satisfying k ≥ 2, l ≥ 2, P (b) ≤ k, b lth
power free. When P (x) > k, the equation has only the solution (n, k, b, x, l) =
(48, 3, 6, 140, 2).

Lemma 2.4. If n/2 ≥ k1 ≥ · · · ≥ ks ≥ 1, then there is a prime p > k1

such that

p ‖
(

n

k1, . . . , ks

)
.

Proof. By Lemma 2.1, there is a prime p such that n = p+ r, 0 ≤ r < p,
which means k1 ≤ n/2 < p ≤ n < 2p. Since(

n

k1, . . . , ks

)
=

n(n− 1) · · · (k1 + 1)
k2! · · · ks!

and P (k2! . . . ks!) < k1, we have vp

((
n

k1,...,ks

))
= 1, where vp(n) means the

exponent of p in the factorization of n.

Proof of the Theorem. By Lemma 2.4, we only need to consider k1 >
n/2 > k2 ≥ · · · ≥ ks ≥ 1. Suppose in this case that (1.2) has an integer
solution. We can write (1.2) in the form
(2.1) n(n− 1) · · · (n− k2 − · · · − ks + 1) = k2! · · · ks!xl = btlxl

where k2! · · · ks! = btl, b is lth power free. By assumption, we have P (b) ≤
P (k2! · · · ks!) < k1. Let k = k2 + · · ·+ ks, n′ = k1 + 1. Then (2.1) takes the
form
(2.2) n′(n′ + 1) · · · (n′ + k − 1) = b(tx)l.

Note that k = n − k1 < n/2 and by Lemma 2.2, we have a prime p > k
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`

n
k1,...,ks

´
= xl 9

with p |
(
n
k

)
. Since

(
n

k1,...,ks

)
=

(
n
k

)(
k

k2,...,ks

)
, we have p |

(
n

k1,...,ks

)
, whence p |x,

P (tx) ≥ P (x) > k, which contradicts Lemma 2.3 if k > 3. Therefore (2.2)
has no integer solution if k > 3. Now we only need to consider the cases
k = 2 and k = 3.

For k = 2, equation (1.2) takes the form
(

n
n−2,1,1

)
= n(n − 1) = xl. If

this has a solution, then as (n, n− 1) = 1, both n and n− 1 should be full
lth powers, which is impossible. Hence there is no positive integer solution
when k = 2.

For k = 3, (1.2) leads to
(

n
n−3,2,1

)
= n(n−1)(n−2)/2 = xl or

(
n

n−3,1,1,1

)
=

n(n− 1)(n− 2) = xl. By Lemma 2.3, the above equations have no positive
integer solution. This completes the proof of the Theorem.
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