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On determination of GL3 cusp forms

by

Qingfeng Sun (Weihai)

1. Introduction. In 1997, Luo and Ramakrishnan [LR] studied to what
extent modular forms can be characterized by central values of twisted L-
functions and their derivatives. Since then, this subject has been studied by
many authors for various modular forms (see Luo [L] and Ganguly, Hoffstein
and Sengupta [GHS]). The determination of GL3 cusp forms by central
values of twisted L-functions was first studied by Chinta and Diaconu [CD]
as a generalization of the results in [LR]. Recently, Liu [Liu] studied the
question of determining a GL3 self-dual Hecke–Maass cusp form by central
values of its GL2 twisted L-functions. Precisely, let f be a fixed self-dual
Hecke–Maass cusp form for SL3(Z) and let A(m,n) denote its (m,n)th
Fourier coefficient. Liu proved that f is uniquely determined by the family
{L(1/2, f × g) : g ∈ Hk}, where Hk is an orthogonal basis of holomorphic
cusp forms of weight k ≡ 0 (mod 4) for SL2(Z).

In this paper, we will show that f is also uniquely determined by the fam-
ily {L′(1/2, f ×g) : g ∈ Bk}, where Bk is an orthogonal basis of holomorphic
cusp forms of weight k ≡ 2 (mod 4) for SL2(Z).

Theorem 1.1. Let f and f ′ be fixed self-dual Hecke–Maass cusp forms
for SL3(Z). Let c 6= 0 be a constant. If

L′(1/2, f × g) = cL′(1/2, f ′ × g)(1.1)

for all g ∈ Bk, then f = f ′.

As in [Liu], we will prove Theorem 1.1 by establishing an asymptotic
formula for the first twisted moment of L′(s, f ×g) at s = 1/2, where g runs
over Bk. Let λg(n) be the normalized nth Fourier coefficient of g ∈ Bk and

ωg =
k − 1
2π2

L(1, sym2g),

where L(s, sym2g) is the symmetric-square L-function associated to g.
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Theorem 1.2. Let h be a fixed positive valued, smooth function of com-
pact support on [1, 2], with derivatives satisfying h(j) �j 1. Given any
prime p, we have∑

k≡2 (mod 4)

h

(
k − 1
K

) ∑
g∈Bk

ω−1
g L′(1/2, f × g)λg(p)

=
3(A(1, p)− p−1)L(1, f)

2
√
p

ĥ(0)K logK

+
(A(1, p)− p−1)(2L′(1, f) + c0L(1, f))

2
√
p

ĥ(0)K

+
log p
p
√
p
L(1, f)ĥ(0)K +Oε,f,p(Kε)

for any ε > 0 and K > 0 large enough, where c0 = −6 log 2− 3 log π− log p.

The proof of Theorem 1.2 starts from an approximate functional equation
and then an application of Petersson’s trace formula. Subsequently, we need
to deal with a diagonal term and an off-diagonal term as expected. For
the diagonal term, we use the analytic continuation of a Dirichlet series
which may be of interest in other problems. For the off-diagonal term, we
apply a result of Iwaniec, Luo and Sarnak [ILS] to deal with an averaging of
J-Bessel functions. Goldfeld and Li’s Voronŏı formula for GL3 in [GL] plays
an important role in estimating the off-diagonal term. Theorem 1.2 yields
the following non-vanishing result.

Corollary 1.3. For each K large enough, there exists g ∈ Bk with
K ≤ k ≤ 2K such that for any prime p,

L′(1/2, f × g)λg(p) 6= 0.

Proof. Let p be a fixed prime. By Jacquet and Shalika [JS], L(1, f) 6= 0.
Then by Theorem 1.2, if A(1, p) 6= p−1,∑

k≡2 (mod 4)

h

(
k − 1
K

) ∑
g∈Bk

ω−1
g L′(1/2, f × g)λg(p)

∼ 3(A(1, p)− p−1)L(1, f)
2
√
p

ĥ(0)K logK,

and if A(1, p) = p−1,∑
k≡2 (mod 4)

h

(
k − 1
K

) ∑
g∈Bk

ω−1
g L′(1/2, f × g)λg(p) ∼

log p
p
√
p
L(1, f)ĥ(0)K.

It follows that there exists g ∈ Bk such that L′(1/2, f × g)λg(p) 6= 0.
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Now we can prove Theorem 1.1. Let A(1, p) and A′(1, p) be the normal-
ized (p, 1)th Fourier coefficients of f and f ′, respectively. By the strong
multiplicity one theorem (see Theorem 12.6.1 in Goldfeld [G]), we only
need to prove A(1, p) = A′(1, p) for all but finitely many primes p. If
A(1, p) = A′(1, p) = p−1, then we are done. In the following, we assume
that A(1, p) 6= p−1 and A′(1, p) 6= p−1. In [S], the author proved that∑

k≡2 (mod 4)

h

(
k − 1
K

) ∑
g∈Bk

ω−1
g L′(1/2, f × g) ∼ 3L(1, f)

2
ĥ(0)K logK.

Thus under the condition (1.1), we have

L(1, f) = cL(1, f ′).(1.2)

On the other hand, by (1.1) and Theorem 1.2, we have

(1.3)
3(A(1, p)− p−1)L(1, f)

2
√
p

ĥ(0) = c
3(A′(1, p)− p−1)L(1, f ′)

2
√
p

ĥ(0).

By (1.2) and (1.3) we obtain A(1, p) = A′(1, p). This proves Theorem 1.1.
In Section 2, we recall some basic facts about Maass cusp forms for

SL3(Z). In Section 3, we study the properties of GL3 × GL2 L-functions.
We will prove Theorem 1.2 in Sections 4–6.

2. Maass cusp forms for SL3(Z). Let f be a Maass cusp form of
type (ν1, ν2) for SL3(Z) and let A(m1,m2) denote the (m1,m2)th Fourier
coefficient of f . Assume f is normalized so that A(1, 1) = 1. We have (see
Remark 12.1.8 in [G]) ∑

m2≤N
|A(m1,m2)| �f N |m1|.(2.1)

Let f̃ denote the dual Maass form of f . Then f̃ is of type (ν2, ν1) and the
(m1,m2)th Fourier coefficient of f̃ is the corresponding (m2,m1)th Fourier
coefficient of f . If f is self-dual, then the Fourier coefficients are all real and
A(m1,m2) = A(m2,m1).

For <s > 1, we define the Godement–Jacquet L-function associated to f ,

L(s, f) =
∑
n≥1

A(1, n)n−s,

which has a holomorphic continuation to all s ∈ C and satisfies the functional
equation

γ(s, f)L(s, f) = γ̃(1− s, f)L(1− s, f̃)(2.2)
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where

γ(s, f) = π−3s/2Γ

(
s− α

2

)
Γ

(
s− β

2

)
Γ

(
s− γ

2

)
,(2.3)

γ̃(s, f) = π−3s/2Γ

(
s+ α

2

)
Γ

(
s+ β

2

)
Γ

(
s+ γ

2

)
,(2.4)

with

α = −ν1 − 2ν2 + 1, β = −ν1 + ν2, γ = 2ν1 + ν2 − 1.

Here L(s, f̃) is the L-function associated to the dual Maass form f̃ . By Luo,
Rudnick and Sarnak [LRS] we have |<α|, |<β|, |<γ| ≤ 1/2− 1/10.

Let p be a fixed prime. For <s > 2, we define

Lp(s, f) =
∑
m≥1

A(p,m)
ms

,(2.5)

Lp(s, f̃ ) =
∑
m≥1

A(m, p)
ms

.(2.6)

The following result shows Lp(s, f) and Lp(s, f̃) have holomorphic continu-
ations to all s ∈ C.

Lemma 2.1. Let p be a fixed prime. Then Lp(s, f) and Lp(s, f̃ ) defined
in (2.5) and (2.6) have holomorphic continuations to all s ∈ C and satisfy
the functional equation

(A(1, p)− ps−1)γ(s, f)Lp(s, f) = (A(p, 1)− p−s)γ̃(1− s, f)Lp(1− s, f̃ ),

where γ(s, f) and γ̃(s, f) are defined in (2.3) and (2.4), respectively.

Proof. Applying the multiplicative property

A(m1, 1)A(1,m2) =
∑

d|(m1,m2)

A

(
m1

d
,
m2

d

)
, m1,m2 ≥ 1,

we have

Lp(s, f) = (A(p, 1)− p−s)L(s, f),(2.7)

Lp(s, f̃ ) = (A(1, p)− p−s)L(s, f̃ ).

Then the lemma follows from the functional equation (2.2).

Let ψ(x) be a smooth function compactly supported on (0,∞) and de-
note the Mellin transform of ψ(x) by

ψ̃(s) :=
∞�

0

ψ(x)xs
dx

x
.
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For k = 0, 1, we set

(2.8) Ψk(x) =
�

<s=σ
(π3x)−s

Γ
(

1+s+2k+α
2

)
Γ
(1+s+2k+β

2

)
Γ
(1+s+2k+γ

2

)
Γ
(−s−α

2

)
Γ
(−s−β

2

)
Γ
(−s−γ

2

)
× ψ̃(−s− k) ds

with σ > max{−1−<α,−1−<β,−1−<γ},

Ψ0
0,1(x) = Ψ0(x) +

π−3c3m

n2
1n2i

Ψ1(x),(2.9)

Ψ1
0,1(x) = Ψ0(x)− π−3c3m

n2
1n2i

Ψ1(x).(2.10)

We have the following Voronŏı formula for GL3 (see Goldfeld and Li [GL]):

Lemma 2.2. Let ψ ∈ C∞c (0,∞). Let d, d, c ∈ Z with c 6= 0, (d, c) = 1
and dd ≡ 1 (mod c). Then∑

n>0

A(m,n)e
(
nd

c

)
ψ(n)

=
cπ−5/2

4i

∑
n1|cm

∑
n2>0

A(n2, n1)
n1n2

S(md, n2;mcn−1
1 )Ψ0

0,1

(
n2n

2
1

c3m

)

+
cπ−5/2

4i

∑
n1|cm

∑
n2>0

A(n2, n1)
n1n2

S(md,−n2;mcn−1
1 )Ψ1

0,1

(
n2n

2
1

c3m

)
.

As pointed out in Li [Li2], x−1Ψ1(x) has similar asymptotic behavior to
Ψ0(x). Therefore, we only need to consider Ψ0(x). The following result is
Lemma 6.1 of Li [Li1]. For α = β = γ = 0, it was proved by Ivić [I].

Lemma 2.3. Suppose ψ is a smooth function compactly supported on
[X, 2X]. Let Ψ0(x) be defined as in (2.8). Then for any fixed integer M ≥ 1
and xX � 1, we have

Ψ0(x) = 2π4xi

∞�

0

ψ(y)
M∑
j=1

cj cos(6πx1/3y1/3) + dj sin(6πx1/3y1/3)
(π3xy)j/3

dy

+O((xX)(−M+2)/3),

where cj and dj are constants depending on α, β and γ. In particular, c1 = 0
and d1 = −2/

√
3π.

3. Rankin–Selberg L-functions. Let f be a self-dual Hecke–Maass
cusp form of type (ν, ν) for SL3(Z) and Bk be an orthogonal basis of holomor-
phic cusp forms of weight k ≡ 2 (mod 4) for SL2(Z). The Rankin–Selberg
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L-function of f and g ∈ Bk defined by

L(s, f × g) =
∑
m≥1

∑
n≥1

λg(n)A(m,n)
(m2n)s

is entire and satisfies the functional equation

Λ(s, f × g) = −Λ(1− s, f × g)

where Λ(s, f × g) = γ(s, k)L(s, f × g) and for α = −3ν + 1,

γ(s, k) = π−3sΓ

(
s+ k−1

2 − α
2

)
Γ

(
s+ k−1

2

2

)
Γ

(
s+ k−1

2 + α

2

)
(3.1)

× Γ
(
s+ k+1

2 − α
2

)
Γ

(
s+ k+1

2

2

)
Γ

(
s+ k+1

2 + α

2

)
.

Set G(u) = eu
2
. We define

V (y, k) =
1

2πi

�

(3)

y−uG(u)
γ(1/2 + u, k)
γ(1/2, k)

du

u2
.(3.2)

One has the following approximate functional equation for L′(1/2, f × g)
(see Iwaniec and Kowalski [IK]).

Lemma 3.1. For a self-dual Hecke–Maass cusp form f of type (ν, ν) for
SL3(Z) and g in an orthogonal basis of holomorphic cusp forms of weight
k ≡ 2 (mod 4) for SL2(Z), we have

L′(1/2, f × g) = 2
∑
m≥1

∑
n≥1

λg(n)A(m,n)
(m2n)1/2

V (m2n, k)

where V (y, k) is defined in (3.2).

V (y, k) has the following properties (see Lemma 4.2 in Sun [S]).

Lemma 3.2. For y > 0 and k large enough, we have

V (y, k)�f,A (k3/y)A,

and

V (y, k) = log(k3/y) + c0 +Of (y/k3 + k−1),

where c0 = −6 log 2− 3 log π.

4. Proof of Theorem 1.2. Petersson’s trace formula states that for
any m,n ≥ 1,∑

g∈Bk

ω−1
g λg(m)λg(n) = δmn + 2πik

∑
c≥1

S(m,n; c)
c

Jk−1

(
4π
√
mn

c

)
,(4.1)
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where δmn = 1 if m = n, and is 0 otherwise, Jk−1(x) is the J-Bessel function
and S(m,n; c) is the classical Kloosterman sum defined by

S(m,n; c) =
∑

dd≡1 (mod c)

e

(
md+ nd

c

)
.

Applying Lemma 3.1 and Petersson’s trace formula (4.1) we have∑
k≡2 (mod 4)

h

(
k − 1
K

) ∑
g∈Bk

ω−1
g L′(1/2, f × g)λg(p)

=
∑

k≡2 (mod 4)

h

(
k − 1
K

) ∑
g∈Bk

ω−1
g λg(p)

{
2
∑
m≥1

∑
n≥1

λg(n)A(m,n)
(m2n)1/2

V (m2n, k)
}

= 2
∑

k≡2 (mod 4)

h

(
k − 1
K

)∑
m≥1

∑
n≥1

A(m,n)
(m2n)1/2

V (m2n, k)
{∑
g∈Bk

ω−1
g λg(n)λg(p)

}
= D +ND,
where

D = 2p−1/2
∑

k≡2 (mod 4)

h

(
k − 1
K

)∑
m≥1

A(m, p)
m

V (m2p, k),(4.2)

ND = −4π
∑
m≥1

∑
n≥1

A(m,n)
(m2n)1/2

∑
c≥1

c−1S(n, p; c)(4.3)

×
∑

k≡2 (mod 4)

h

(
k − 1
K

)
V (m2n, k)Jk−1

(
4π
√
np

c

)
.

Then Theorem 1.2 follows from

D =
3(A(1, p)− p−1)L(1, f)

2
√
p

ĥ(0)K logK(4.4)

+
(A(1, p)− p−1)(2L′(1, f) + c0L(1, f))

2
√
p

ĥ(0)K

+
log p
p
√
p
L(1, f)ĥ(0)K +Of,p(1),

ND = Oε,f,p(Kε).(4.5)

We will establish (4.4) and (4.5) in Sections 5 and 6, respectively.

5. Estimation of D. By (4.2) we have

D = 2p−1/2
∑

k≡2 (mod 4)

h

(
k − 1
K

)
4(k),(5.1)
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where

4(k) =
∑
m≥1

A(m, p)
m

V (m2p, k).

By the definition of V (y, k) in (3.2),

4(k) =
∑
m≥1

A(m, p)
m

1
2πi

�

(3)

(m2p)−uG(u)
γ(1/2 + u, k)
γ(1/2, k)

du

u2
(5.2)

=
1

2πi

�

(3)

(∑
m≥1

A(m, p)
m1+2u

)
p−uG(u)

γ(1/2 + u, k)
γ(1/2, k)

du

u2

=
1

2πi

�

(3)

Lp(1 + 2u, f)p−uG(u)
γ(1/2 + u, k)
γ(1/2, k)

du

u2
,

where Lp(s, f) is defined in (2.5). By Lemma 2.1, we can move the line of
integration in (5.2) to <u = −1/2, picking up a double pole at u = 0,

4(k) = resu=0

(
Lp(1 + 2u, f)

G(u)
puu2

γ(1/2 + u, k)
γ(1/2, k)

)
(5.3)

+
1

2πi

�

(−1/2)

Lp(1 + 2u, f)p−uG(u)
γ(1/2 + u, k)
γ(1/2, k)

du

u2
.

First we compute the residue in (5.3). By the duplication formula, γ(s, k)
in (3.1) is

γ(s, k) = π3/2−3s23−3(s+(k−1)/2)Γ

(
s+

k − 1
2
− α

)
Γ

(
s+

k − 1
2

)
× Γ

(
s+

k − 1
2

+ α

)
.

Thus,

(5.4)
γ(1/2 + u, k)
γ(1/2, k)

= (2π)−3uΓ (u+ k/2− α)Γ (u+ k/2)Γ (u+ k/2 + α)
Γ (k/2− α)Γ (k/2)Γ (k/2 + α)

,

and

(5.5) lim
u→0

d

du

γ(1/2 + u, k)
γ(1/2, k)

= −3 log(2π) +
Γ ′(k/2− α)
Γ (k/2− α)

+
Γ ′(k/2)
Γ (k/2)

+
Γ ′(k/2 + α)
Γ (k/2 + α)

.

By Stirling’s formula, for |arg z| ≤ π − δ, δ > 0,

Γ ′(z)
Γ (z)

= log z − 1
2z

+Oδ

(
1
|z|2

)
.
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Thus by (5.5),

lim
u→0

d

du

γ(1/2 + u, k)
γ(1/2, k)

= −3 log(2π) + 3 log(k/2) +Of (k−1),

and the residue in (5.3) is

(5.6) lim
u→0

d

du

(
Lp(1 + 2u, f)

G(u)
pu

γ(1/2 + u, k)
γ(1/2, k)

)
= 2L′p(1, f)− Lp(1, f) log p+ Lp(1, f) lim

u→0

d

du

γ(1/2 + u, k)
γ(1/2, k)

= 3Lp(1, f) log k + 2L′p(1, f) + c0Lp(1, f) +Of (k−1),

where c0 = −6 log 2−3 log π−log p. Here we have used the fact that G(0) = 1
and G′(0) = 0. By (2.7), we have

Lp(1, f) = (A(1, p)− p−1)L(1, f),

L′p(1, f) = (A(1, p)− p−1)L′(1, f) +
log p
p

L(1, f).

So by (5.6), the residue in (5.3) is

(5.7) resu=0

(
Lp(1 + 2u, f

)
G(u)
puu2

γ(1/2 + u, k)
γ(1/2, k)

)
= 3(A(1, p)− p−1)L(1, f) log k + (A(1, p)− p−1)(2L′(1, f) + c0L(1, f))

+
2 log p
p

L(1, f) +Of (k−1).

Next, we compute the integral in (5.3). By Stirling’s formula, for |arg z|
≤ π − δ, δ > 0,

logΓ (z) =
(
z − 1

2

)
log z − z +

1
2

log(2π) +Oδ

(
1
|z|

)
.

Thus, for u = −1/2 + iv, we have

log
Γ (u+ k/2− α)
Γ (k/2− α)

=
(
−1 +

k

2
−<α+ i(v −=α)

)
log
(
−1

2
+
k

2
−<α+ i(v −=α)

)
−
(
−1

2
+
k

2
−<α+ i(v −=α)

)
+

1
2

log(2π) + of (1)

−
(
−1

2
+
k

2
−<α− i=α

)
log
(
k

2
−<α− i=α

)
+
(
k

2
−<α− i=α

)
− 1

2
log(2π) + of (1)
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=
(
−1 +

k

2
−<α+ i(v −=α)

)
log
(
k

2
+ iv

)
−
(
−1

2
+
k

2
−<α− i=α

)
log
(
k

2

)
+
(

1
2
− iv

)
+
(
−1 +

k

2
−<α+ i(v −=α)

)
log
(

1 +
−1/2−<α− i=α

k/2 + iv

)
−
(
−1

2
+
k

2
−<α− i=α

)
log
(

1 +
−<α− i=α

k/2

)
+ of (1).

For −1 < x ≤ 1, we have

log(1 + x) = x− x2

2
+
x3

3
− x4

4
+ · · ·+ (−1)n+1x

n

n
+ · · ·.

Thus for k sufficiently large, we have

log
(

1 +
−1/2−<α− i=α

k/2 + iv

)
= O

(∣∣∣∣−1/2−<α− i=α
k/2 + iv

∣∣∣∣) = Of

(
1
k

)
,

log
(

1 +
−<α− i=α

k/2

)
= O

(∣∣∣∣−<α− i=αk/2

∣∣∣∣) = Of

(
1
k

)
.

Therefore,

(5.8) log
Γ (u+ k/2− α)
Γ (k/2− α)

=
(
−1 +

k

2
−<α

)
log
(
k2

4
+ v2

)1/2

− (v −=α) arctan
(

2v
k

)
−
(
−1

2
+
k

2
−<α

)
log
(
k

2

)
+ iθ +Of (1),

where

θ = (v −=α) log
(
k2

4
+ v2

)1/2

+
(
−1 +

k

2
−<α

)
arctan

(
2v
k

)
− (=α) log

(
k

2

)
− v.

By (5.8), we obtain∣∣∣∣Γ (u+ k/2− α)
Γ (k/2− α)

∣∣∣∣�f
(k/2 + |v|)−1+k/2−<αe

π
2
(|v|+|=α|)

(k/2)−1/2+k/2−<α(5.9)

�f k
−1/2

(
1 +

2|v|
k

)−1+k/2−<α
eπ|v|/2.
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Similarly, ∣∣∣∣Γ (u+ k/2)
Γ (k/2)

∣∣∣∣�f k
−1/2

(
1 +

2|v|
k

)−1+k/2

eπ|v|/2,(5.10) ∣∣∣∣Γ (u+ k/2 + α)
Γ (k/2 + α)

∣∣∣∣�f k
−1/2

(
1 +

2|v|
k

)−1+k/2+<α
eπ|v|/2,(5.11)

By (5.4) and (5.9)–(5.11), we have∣∣∣∣γ(1/2 + u, k)
γ(1/2, k)

∣∣∣∣�f k
−3/2

(
1 +

2|v|
k

)−3+3k/2

e3π|v|/2.(5.12)

By (2.7), (5.12) and the convexity bound for L(s, f):

L(σ + iv, f)�f (1 + |v|)3(1−σ)/2+ε, 0 ≤ σ ≤ 1,

for any ε > 0, we have

(5.13)
1

2πi

�

(−1/2)

Lp(1 + 2u, f)p−uG(u)
γ(1/2 + u, k)
γ(1/2, k)

du

u2

�f,p

�

(−1/2)

|L(1 + 2u, f)| |G(u)|
∣∣∣∣γ(1/2 + u, k)

γ(1/2, k)

∣∣∣∣ du|u|2
�f,p k

−3/2
∞�

−∞
(1 + |v|)3/2+εe−v

2

(
1 +

2|v|
k

)−3+3k/2

e3π|v|/2
dv

1/4 + v2

�f,p k
−3/2

for k sufficiently large. By (5.3), (5.7) and (5.13), we have

4(k) = 3(A(1, p)− p−1)L(1, f) log k(5.14)

+ (A(1, p)− p−1)(2L′(1, f) + c0L(1, f))

+
2 log p
p

L(1, f) +Of,p(k−1).

Then (4.4) follows from (5.1) and (5.14). Here we have used the fact that

4
∑

k≡2 (mod 4)

h

(
k − 1
K

)
= Kĥ(0) +OA(K−A)

for any A > 0.

6. Estimation of ND. In this section, we estimate ND of (4.3). Let ω
be a smooth function of compact support on [1, 2]. By Lemma 3.2, we only
need to estimate
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ND∗ =
∑
m≥1

∑
n≥1

A(m,n)
(m2n)1/2

ω

(
m2n

N

)∑
c≥1

c−1S(n, p; c)(6.1)

×
∑

k≡2 (mod 4)

h

(
k − 1
K

)
V (m2n, k)Jk−1

(
4π
√
np

c

)
with N ≤ K3+ε for any ε > 0.

The following result is Proposition 8.1 in Iwaniec, Luo and Sarnak [ILS].

Lemma 6.1. Fix a real valued function h ∈ C∞0 (R+) and K ≥ 1. Then

4
∑

k≡2 (mod 4)

h

(
k − 1
K

)
Jk−1(x)

= h

(
x

K

)
+

K√
x
=
(
eix−iπ/4H

(
K2

2x

))
+O

(
x

K3

)
,

where

H(v) =
∞�

0

h(
√
u)√

2πu
eiuv du.

Applying Lemma 6.1 for x = 4π
√
np/c we have

(6.2) 4
∑

k≡2 (mod 4)

h

(
k − 1
K

)
V (m2n, k)Jk−1(x)

= h

(
x

K

)
V (m2n, x+ 1) +

K√
x
=
(
eix−iπ/4H

(
K2

2x

))
+Of

(
x

K3

)
,

where

H(v) =
∞�

0

h(
√
u)√

2πu
V (m2n,

√
uK + 1)eiuv du.

By multiple partial integration, we have

H(v)�f,A,B |v|−A
(
K3

m2n

)B
(6.3)

for any A,B > 0. By Weil’s bound for Kloosterman sums,

|S(n, p; c)| ≤ c1/2(n, p, c)1/2τ(c).

Thus the contribution from the error term in (6.2) to ND∗ in (6.1) is

�f

∑
m≥1

∑
n≥1

|A(m,n)|
(m2n)1/2

ω

(
m2n

N

)∑
c≥1

c−1c1/2(n, p, c)1/2τ(c)K−3 4π
√
np

c
(6.4)

�ε,f,p K
−3
∑
m≥1

m−1
∑
n≥1

|A(m,n)|ω
(
m2n

N

)∑
c≥1

c−3/2+ε
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�ε,f,p K
−3

∑
m≤
√

2N

m−1
∑

n≤2N/m2

|A(m,n)|

�ε,f,p K
−3

∑
m≤
√

2N

m−1 ·Nm−1 �ε,f,p NK
−3 �ε,f,p K

ε

for any ε > 0. Here we have used the bound (2.1). By (6.1), (6.2) and (6.4),
we need to estimate the quantities

ND1 =
∑
m≥1

∑
n≥1

A(m,n)
(m2n)1/2

ω

(
m2n

N

)∑
c≥1

c−1S(n, p; c)(6.5)

× h
(

4π
√
np

cK

)
V

(
m2n,

4π
√
np

c
+ 1
)
,

ND2 =
∑
m≥1

∑
n≥1

A(m,n)
(m2n)1/2

ω

(
m2n

N

)∑
c≥1

c−1S(n, p; c)(6.6)

× K
√
c

(pn)1/4
=
(
ei4π

√
np/c−iπ/4H

(
K2c

8π
√
pn

))
.

Note that

K2c

8π
√
n
�p K

2N−1/2 �p K
1/2−ε

for any ε > 0, so by (6.3), ND2 in (6.6) is negligible.
It remains to estimate ND1. Note that 1 ≤ 4π

√
np/(cK) ≤ 2 and 1 ≤

m2n/N ≤ 2. Thus

2π
√
pN

Km
≤ c ≤ 4π

√
2pN

Km
.(6.7)

Opening the Kloosterman sum in (6.5), we have

(6.8) ND1 =
∑
m≥1

∑
n≥1

A(m,n)
(m2n)1/2

ω

(
m2n

N

)∑
c

c−1

×
∑

dd≡1 (mod c)

e

(
pd+ nd

c

)
h

(
4π
√
np

cK

)
V

(
m2n,

4π
√
np

c
+ 1
)

=
∑
m≥1

m−1
∑
c

c−1
∑

dd≡1 (mod c)

e

(
pd

c

){∑
n≥1

A(m,n)e
(
nd

c

)
ψ(n)

}
,

where

ψ(y) = y−1/2ω

(
m2y

N

)
h

(
4π
√
py

cK

)
V

(
m2y,

4π
√
py

c
+ 1
)
.
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Applying the Voronŏı formula in Lemma 2.2 for the n-sum, we have

(6.9)
∑
n≥1

A(m,n)e
(
nd

c

)
ψ(n)

=
cπ−5/2

4i

∑
n1|cm

∑
n2>0

A(n2, n1)
n1n2

S(md, n2;mcn−1
1 )Ψ0

0,1

(
n2n

2
1

c3m

)

+
cπ−5/2

4i

∑
n1|cm

∑
n2>0

A(n2, n1)
n1n2

S(md,−n2;mcn−1
1 )Ψ1

0,1

(
n2n

2
1

c3m

)
,

where Ψ0
0,1(x) and Ψ1

0,1(x) are defined in (2.9) and (2.10), respectively. By
(6.8) and (6.9), we only need to estimate

ND0
1 =

π−5/2

4i

∑
m≥1

m−1
∑
c≥1

∑
dd≡1 (mod c)

e

(
pd

c

)

×
∑
n1|cm

∑
n2>0

A(n2, n1)
n1n2

S(md, n2;mcn−1
1 )Ψ0

(
n2n

2
1

c3m

)
.

By (6.7),

n2n
2
1

c3m

N

m2
= N

n2n
2
1

(cm)3
�p N

(
K√
N

)3

= K3N−1/2 � K3/2−ε

for any ε > 0. Thus by Lemma 2.3 for x = n2n
2
1/(c

3m),

Ψ0(x) = 2π4xi

∞�

0

ψ(y)
M∑
j=1

cj cos(6πx1/3y1/3) + dj sin(6πx1/3y1/3)
(π3xy)j/3

dy

+O

((
n2n

2
1

c3m

N

m2

)(−M+2)/3)
,

where cj and dj are constants depending only on f . In particular, c1 = 0
and d1 = −2/

√
3π. Denote

Ψ j0 (x) = 2π4xi

∞�

0

ψ(y)
cj cos(6πx1/3y1/3) + dj sin(6πx1/3y1/3)

(π3xy)j/3
dy.

Then

Ψ0(x) =
M∑
j=1

Ψ j0 (x) +O

((
n2n

2
1

c3m

N

m2

)(−M+2)/3)
.

Take M = 8. Then the contribution from the O-term above to ND0
1 is
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negligible. Now we estimate Ψ1
0 (x):

Ψ1
0 (x) = 2π4xi

∞�

0

ψ(y)
d1 sin(6πx1/3y1/3)

(π3xy)1/3
dy = 2π3x2/3d1

∞�

0

b(y) sin(a(y)) dy,

where a(y) = 6πx1/3y1/3 and

b(y) = y−5/6ω

(
m2y

N

)
h

(
4π
√
py

cK

)
V

(
m2y,

4π
√
py

c
+ 1
)
.

Since a′(y)y � K1/2−ε, by multiple partial integration, one shows that the
contribution from Ψ1

0 (x) to ND0
1 is negligible. Repeating the above argu-

ments for Ψ j0 (x), j = 2, . . . ,M , one shows that the other terms are also
negligible. Thus ND0

1 is negligible. This proves (4.5).
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