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On Hecke L-functions associated with cusp forms
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1. Introduction. Let f(z) =
∑∞
n=1 ane

2πinz be a holomorphic cusp
form of even integral weight k > 0 with respect to the modular group Γ =
SL(2,Z) and define the associated Hecke L-function by

(1.1) Lf (s) =
∞∑

n=1

ann
−s

for <s > (k + 1)/2. Throughout this paper we assume that f(z) is a Hecke
eigenform with a1 = 1. It is known (see [7]) that Lf (s) admits analytic con-
tinuation to C as an entire function and it satisfies the functional equation

(1.2) (2π)−sΓ (s)Lf (s) = (−1)k/2(2π)−(k−s)Γ (k − s)Lf (k − s).
Lf (s) has an Euler product representation (for <s > (k + 1)/2)

(1.3) Lf (s) =
∏

p

(1− app−s + pk−1p−2s)−1.

The non-trivial zeros of Lf (s) lie within the critical strip (k − 1)/2 < <s <
(k+ 1)/2, symmetrically to the real axis and also to the line <s = k/2. The
Riemann hypothesis in this situation asserts that all non-trivial zeros are on
the critical line <s = k/2. From Deligne’s proof of Ramanujan–Peterson’s
conjecture (see [2] and [3]), we have the bound for the coefficients

(1.4) |an| ≤ d(n)n(k−1)/2.

We denote byNf (T ) the number of zeros β+iγ of Lf (s) for which 0 < γ < T ,
for T not equal to any γ; otherwise we put

(1.5) Nf (T ) = lim
ε→0

1
2
{Nf (T + ε) +Nf (T − ε)}.
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in the neighbourhood of the critical line.
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Then one can show that (following Theorem 9.3 of [14])

(1.6) Nf (T ) =
T

π
log

T

π
− T

π
+ 1 + Sf (T ) +O(1/T )

where

(1.7) Sf (t) =
1
π

argLf (k/2 + it).

The amplitude is obtained by a continuous variation along the straight lines
joining the points k/2+1, k/2+1+ iT and k/2+ iT , starting with the value
zero. Hence the variation of Sf (t) is closely connected with the distribution
of the imaginary parts of the zeros of Lf (s).

We now define, for σ ≥ k/2, T ≥ 1 and H ≤ T ,

(1.8) Nf (σ, T, T+H) = |{β+iγ : Lf (β+iγ) = 0, β ≥ σ, T ≤ γ ≤ T+H}|.

2. Notation and preliminaries

• A1, A2, . . . denote effective absolute constants, sometimes positive.
• f(x)� g(x) and f(x) = O(g(x)) will mean that there exists a constant

C > 0 such that |f(x)| ≤ Cg(x).
• ε denotes any small positive constant.
• As usual, s = σ + it, w = u+ iv.

When k is even, it is known that an’s are real and in fact they are totally
real algebraic numbers. Hence ap is real from (1.1) and (1.3). By Deligne’s
estimate, we also have |ap| ≤ 2p(k−1)/2. We define a real number A′p such
that ap = 2A′pp

(k−1)/2 and clearly |A′p| ≤ 1. Let α′p and α′p be the roots of
the equation x2 − 2A′px + 1 = 0; note that |α′p| = 1. Therefore, from the
Euler product of Lf (s), we can write

(2.1) Lf (s) =
∏

p

(1− αpp−s)−1(1− αpp−s)−1

with |αp| = p(k−1)/2 and ap = αp+αp. Taking logarithms and differentiating
both sides with respect to s we find that

(2.2) −
L′f
Lf

(s) =
∑

m≥1,p

(αmp + αmp )p−ms(log p).

Now we define

(2.3) Λf (n) =
{

(αmp + αmp )(log p) if n = pm,

0 otherwise.
Hence we obtain

(2.4) −
L′f
Lf

(s) =
∞∑

n=2

Λf (n)n−s (in <s > (k + 1)/2).
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Note that

(2.5) Λf (n) ≤ 2(logn)n(k−1)/2.

Let x > 1 and write

(2.6) Λx,f (n)

=





Λf (n) if 1 ≤ n ≤ x,

Λf (n)
{(log(x3/n))2 − 2(log(x2/n))2}

2(log x)2 if x ≤ n ≤ x2,

Λf (n)
(log(x3/n))2

2(log x)2 if x2 ≤ n ≤ x3.

We define a non-negative smooth C∞ function ΨU (t) as follows. For H ≤ T ,

(2.7) ΨU (t) =
{

0 if t < 1 + 1/U or t > 1 +H/T − 1/U ,

1 if 1 + 1/U ≤ t ≤ 1 +H/T − 1/U .

Also assume that ΨU is chosen in such a way that

(2.8) Ψ
(p)
U (t)� Up

where U is a positive parameter to be fixed later. Let φ(ξ), φ∗(ξ) be suitable
smooth (C∞) functions satisfying φ∗(ξ) = 1− φ(1/ξ) and

(2.9) φ(ξ) =
{

1 if |ξ| ≤ 2/3,

0 if |ξ| ≥ 3/2.
Define

(2.10) L−1
f (s) =

∞∑

n=1

µf (n)n−s in <s > (k + 1)/2,

so that from the Euler product for Lf (s), we have

(2.11) µf (pr) =





1 if r = 0,

−ap if r = 1,

pk−1 if r = 2,

0 if r ≥ 3.
Now, we define

(2.12) gξ(n) =





1 if 1 ≤ n ≤ ξ,
log(ξ2/n)

log ξ
if ξ ≤ n ≤ ξ2,

0 if n ≥ ξ2,

and define λn = µf (n)gξ(n). Here ξ = T θ with 0 < θ < 1/4 to be chosen
appropriately later. We introduce a Dirichlet polynomial as in [9],

(2.13) Mξ2(s) =
∞∑

v=1

λvv
−s.
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In this paper we prove the following two theorems.

Theorem 1. For t ≥ 2, 2 ≤ x ≤ t2, we have

Sf (t) = − 1
π

∑

n<x3

Λx,f (n) sin(t logn)
nσx,t log n

+O

(
(σx,t − k/2)

∣∣∣∣
∑

n<x3

Λx,f (n)
nσx,t+it

∣∣∣∣
)

+O((σx,t − k/2) log t),

where
σx,t = k/2 + 2 max(β − k/2, 2/logx)

with % = β + iγ running over those zeros for which

|t− γ| ≤ x3|β−k/2|(log x)−1,

and Λx,f (n) is as in (2.6).

As corollaries, by choosing x =
√

log t we obtain

Sf (t) = O(log t)

unconditionally, and assuming Riemann hypothesis, we get

Sf (t) = O

(
log t

log log t

)
.

Theorem 2. Let B be any fixed small positive constant. Let

B′ =
19
20

+
13.505

5
B and B′ < α ≤ 1.

Then for Tα ≤ H ≤ T , we have

Nf (σ, T, T +H)� H

(
H

TB′

)− B
1−B′ (σ−k/2)

log T

uniformly for k/2 ≤ σ ≤ (k + 1)/2.

Remark 1. Theorems 1 and 2 (with T 1/2+ε ≤ H ≤ T and B′ = 1/2)
in the case of the Riemann zeta-function ζ(s) are due to Selberg [13]. The
importance of Theorem 2 is in the exponent of the log factor when |σ−k/2|
� (log T )−1. In fact later developments in the theory allow us to take even
a much shorter interval in the case of ζ(s) in Theorem 2. Theorem 2 (with
H = T ) in the case of Lf (s) is due to Luo [9]. Here we prove an analogue
of a result of Selberg for Lf (s) (Theorem 1) and the density estimate for
Lf (s) over shorter intervals (Theorem 2). We follow closely the papers [13]
and [9].

Remark 2. It should be pointed out here that some more important
results have recently been proved in [1] assuming certain hypotheses (which
are true in this situation) for a class of Dirichlet series which are linear com-
binations of Euler products. We also suggest some basic references related
to our paper: [6], [8], [11], [12].
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3. Some lemmas

Lemma 3.1. We have ξ(s) = (2π)−sΓ (s)Lf (s) is an integral function of
order 1.

Proof. It is standard.

Lemma 3.2. If s 6= %, t ≥ 2, then

L′f
Lf

(s) =
∑

%

((s− %)−1 + %−1) +O(log t)

uniformly for k/2 ≤ σ ≤ k/2 + 10.

Proof. Since ξ(s) is an integral function of order 1 it has the Weierstrass
product representation

(3.2.1) ξ(s) = eb0+b1s
∏

%

{(
1− s

%

)
es/%

}

where b0, b1 are certain constants. Also we have

(3.2.2) ξ(s) = (2π)−sΓ (s)Lf (s).

Taking logarithms and differentiating (3.2.1) and (3.2.2) with respect to s,
and using (for a ≤ <z ≤ b)

(3.2.3)
Γ ′

Γ
(z) = log z − 1

2z
+O(|z|−2),

we obtain the lemma.

Lemma 3.3. In the region defined by σ ≤ 1/4, |s − n| ≥ 1/2 (n =
0,−1,−2, . . .), we have

∣∣∣∣
L′f
Lf

(s)
∣∣∣∣ < A1(log |s|+ 1).

Proof. From the functional equation ξ(s) = eiπk/2ξ(k − s), we have

(3.3.1)
L′f
Lf

(s) = 2 log(2π)− Γ ′

Γ
(s)− Γ ′

Γ
(k − s)−

L′f
Lf

(k − s).

Note that, for σ ≤ 1/4, k − σ ≥ k − 1/4 and hence

(3.3.2)
∣∣∣∣
L′f
Lf

(k − s)
∣∣∣∣ ≤

∞∑

n=1

Λf (n)
nk−σ

� 1.

Now the lemma follows on using (3.2.3).



222 A. Sankaranarayanan

Lemma 3.4. There exists a sequence of numbers T2, T3, . . . such that
m < Tm < m+ 1 (m = 2, 3, . . .) and

∣∣∣∣
L′f
Lf

(s)
∣∣∣∣ < A2 log2m

for k/2 + 1 ≥ σ ≥ 1/4, t = ±Tm.

Proof. From the Weierstrass product representation of ξ(s), we obtain

L′f
Lf

(s) = b1 + log(2π)− Γ ′

Γ
(s) +

∑

%

((s− %)−1 + %−1)(3.4.1)

= g(s) +Σ(s) (say)

where

g(s) = b1 + log(2π)− Γ ′

Γ
(s), Σ(s) =

∑

%

((s− %)−1 + %−1).

Let s = σ+ it, s0 = k/2 + 2 + it where 1/4 ≤ σ ≤ k/2 + 2, t > 2 and t is not
equal to any γ. Let δ0 be the distance of t from the nearest γ and let

(3.4.2) δ = δ(t) = min(δ0, 1).

Then for every zero % = β + iγ with 0 ≤ β ≤ (k + 1)/2, we have

(3.4.3) |s− %|2 ≥ (t− γ)2 ≥ δ2/2 + (t− γ)2/2 ≥ δ2

2
{1 + (t− γ)2}

and

(3.4.4) |s0 − %|2 = (k/2 + 2− β)2 + (t− γ)2 ≥ 1 + (t− γ)2.

Therefore from (3.4.3) and (3.4.4), we get

|Σ(s)−Σ(s0)| =
∣∣∣∣
∑

%

s0 − s
(s− %)(s0 − %)

∣∣∣∣(3.4.5)

≤
∑

%

k/2 + 2− 1/4
(δ2/2)1/2{1 + (t− γ)2} .

On the other hand,

<Σ(s0) =
∑

%

(
k/2 + 2− β
|s0 − %|2

+
β

|%|2
)

(3.4.6)

≥
∑

%

{(k/2 + 2− β)2 + (t− γ)2}−1

≥ (k/2 + 2)−2
∑

%

{1 + (t− γ)2}−1.
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Hence from (3.4.5) and (3.4.6), we get

(3.4.7) |Σ(s)−Σ(s0)| < 2δ−1(k/2 + 2)2(k/2 + 2− 1/4)<Σ(s0).

This implies that
∣∣∣∣
L′f
Lf

(s)− g(s)
∣∣∣∣ = |Σ(s)| ≤ δ−1{2(k/2 + 2)3 + 1}|Σ(s0)|(3.4.8)

≤ A3(k)δ−1

∣∣∣∣
L′f
Lf

(s0)− g(s0)
∣∣∣∣.

Note that
∣∣L′f
Lf

(s0)
∣∣� 1. Now applying the asymptotic expression (3.2.3) for

Γ ′

Γ (s) to g(s) and g(s0), we get

(3.4.9)
∣∣∣∣
L′f
Lf

(s)
∣∣∣∣ < A4(k)δ−1 log t.

Now let m be any integer greater than 1, and νm the number of % for which
m < γ < m + 1 so that νm = N(m + 1) − N(m) < A5 logm. If we divide
the interval (m,m+1) into νm+1 equal parts, then one subinterval at least
will contain no γ in its interior. We choose Tm to be the midpoint of such
an interval. If t = Tm, then δ ≥ 1/(2(νm + 1)) and hence

∣∣∣∣
L′f
Lf

(s)
∣∣∣∣ < A6 log2 m,

which proves the lemma.

Lemma 3.5. There exists a sequence of numbers T2, T3, . . . such that
m < Tm < m+ 1 (m = 2, 3, . . .) and

∣∣∣∣
L′f
Lf

(s)
∣∣∣∣ < A7 log2m

for σ ≥ −m− 1/2, t = ±Tm or σ = −m− 1/2, |t| < Tm.

Proof. This follows from Lemmas 3.3 and 3.4.

Lemma 3.6. For s 6= %, s 6= −q (q = 0, 1, 2, . . .), we have

L′f
Lf

(s) = −
∑

n<x3

Λx,f (n)
ns

+ (log x)−2
∞∑

q=0

x−q−s(1− x−q−s)2

(q + s)3

+ (log x)−2
∑

%

x%−s(1− x%−s)2

(s− %)3 .

Proof. First, we notice that for α1, y > 0,

(3.6.1)
1

2πi

α1+i∞�
α1−i∞

yw

w3 dw =
{

(log y)2/2 if y ≥ 1,

0 if 0 < y ≤ 1.
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Fix α1 = max(k/2 + 1, (k + 1)/2 + σ). From (3.6.1), we obtain

(3.6.2)
∑

n<x3

Λx,f (n)
ns

=
1

2πi(logx)2

α1+i∞�
α1−i∞

xw(1− xw)2

w3

(
−
L′f
Lf

(s+w)
)
dw.

After taking into account the residues at singularities between the contours,
we replace the interval (α1 − iTm, α1 + iTm) of the integration line by the
straight lines joining the points α1− iTm,−m− 1/2− σ− iTm,−m− 1/2−
σ + iTm, α1 + iTm where m ≥ 2 is an integer and Tm is the number defined
in Lemma 3.5. We note that whenever u+ σ ≥ (k + 1)/2 + ε,

∣∣∣∣
L′f
Lf

(s+ w)
∣∣∣∣� 1

and also from Lemma 3.5, the contributions from the horizontal portion
and the vertical portion tend to zero as m → ∞. Therefore the integral on
the right hand side of (3.6.2) is equal to 2πi times the sum of the residues
of the integrand in the half plane <w < α1. The singularities are w = 0,
w = −q − s (q = 0, 1, 2, . . .) and w = %− s, and the corresponding residues
are

−(log x)2 L
′
f

Lf
(s),

x−q−s(1− x−q−s)2

(q + s)3 ,
x%−s(1− x%−s)2

(s− %)3

respectively. Since the series of the residues is absolutely convergent we get
the lemma.

Lemma 3.7. Let w = u+ iv. Then for |v| ≥ 10, we have

J1 =
∞�
−∞

ΨU (t/T )tw dt� Tu+1U3(1 + U−1)u+4

|(w + 1)(w + 2)(w + 3)v| .

Proof. Integration by parts and the properties of ΨU give

(3.7.1) |J1| ≤
Tu+1| � ∞−∞ Ψ (3)

U (t)tu+3+iv dt|
|(w + 1)(w + 2)(w + 3)| .

Let G(t) = Ψ
(3)
U (t)tu+3, F (t) = v log t. Then

G(t)
F ′(t)

= v−1Ψ
(3)
U (t)tu+4

is monotonic in t in the interval 1 + U−1 ≤ t ≤ 1 +HT−1 − U−1. Also, for
any v > 0,

F ′(t)
G(t)

≥ vU−3(1 + U−1)−u−4 > 0
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since Ψ (3)
U (t)� U3. Hence by Lemma 4.3 of [14], we have

(3.7.2)
∣∣∣
∞�
−∞

Ψ
(3)
U (t)tu+3+iv dt

∣∣∣ ≤ 4v−1U3(1 + U−1)u+4.

This proves the lemma for v > 0. For v < 0 the proof is similar.

Lemma 3.8. For |v| ≤ 10, we have

J2 =
∞�
−∞

ΨU (t/T )tw dt� Tu+1

u+ 1
{(2− U−1)u+1 − (1 + U−1)u+1}.

Proof. Using the properties of ΨU and taking the absolute value inside
the integral, a trivial estimation gives the lemma.

Lemma 3.9. If U = 4T/H, then for k/2 ≤ σ ≤ k/2 + ε, we have

|J3| =
∣∣∣∣
∞�
−∞

ΨU (t/T )
(
t

2π

)2k−4σ

dt

∣∣∣∣�ε H.

Proof. By a suitable change of variable, we have

|J3| =
∣∣∣∣
(
T

2π

)2k−4σ

T

∞�
−∞

ΨU (t)t2k−4σ dt

∣∣∣∣

≤ T 2k−4σ+1

(2π)2k−4σ

1+HT−1−U−1�
1+U−1

t2k−4σ dt

�ε T
2k−4σ+1(H/T − 2/U)(1 + U−1)

2k−4σ � H

since σ ≥ k/2.

Lemma 3.10. For b > 0, σ > k/2, we have

∑

v1,v2≤ξ2

λv1λv2

(v1v2)σ
(v1v2)b

(v1, v2)2b � ξ4b+2(log ξ)2.

Proof. Since |λv| = |µf (v)gξ(v)| ≤ d(v)v(k−1)/2, we have

∑

v1,v2≤ξ2

λv1λv2

(v1v2)σ
(v1v2)b

(v1, v2)2b �
∑

v1,v2≤ξ2

d(v1)d(v2)(v1v2)b−1/2

� ξ4b−2
( ∑

v≤ξ2

d(v)
)2
� ξ4b+2(log ξ)2

because σ > k/2, and this proves the lemma.
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Lemma 3.11. We have
T+H�
T

|Lf (k/2 + 1 + it)Mξ2(k/2 + 1 + it)− 1|2 dt� H/ξ2−ε.

Proof. We write

(3.11.1) Lf (s)Mξ2(s)− 1 =
∞∑

n=1

cnn
−s.

We note that an ∗ µf (n) = I(n) = [1/n] (the Dirichlet convolution) and
hence cn = 0 for 2 ≤ n ≤ ξ. Also we notice that, by definition, c1 = 1 and
for n ≥ ξ,

(3.11.2) cn =
∑

d|n
adµf (n/d)gξ(n/d).

Therefore

(3.11.3) |cn| ≤
∑

m|n
d(m)m(k−1)/2d(n/m)(n/m)(k−1)/2 ≤ d4(n)n(k−1)/2

since |µf (n/d)| ≤ an/d, |gξ(n/d)| ≤ 1 and |am| ≤ d(m)m(k−1)/2. Hence we
obtain

(3.11.4) |cn|2 ≤ nk−1d16(n).

From the Montgomery–Vaughan theorem (see [10]), on using (3.11.4) we get

J4 :=
T+H�
T

|Lf (k/2 + 1 + it)Mξ2(k/2 + 1 + it)− 1|2 dt

=
∑

n≥ξ
|cn|2n−k−2(H +O(n))

� H
∑

ξ≤n≤H
n−3d16(n) +

∑

n≥H
n−2d16(n)

� H(log T )15

ξ2 +
(log T )15

H
� H

ξ2−ε ,

which proves the lemma.

Lemma 3.12. If k/2 < σ < k/2 + 1/1000 and µ, ν are co-prime positive
integers ≤ T , then

J5 :=
∞�
−∞

ΨU (t/T )|Lf(σ + it)|2(µ/ν)it dt
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= (µν)−σDµν(2σ)
∞�
−∞

ΨU (t/T ) dt

+ (µν)−(k−σ)Dµν(2(k − σ))
∞�
−∞

ΨU (t/T )(t/T )2k−4σ dt

+O

(
(µν)2876/1000U4T 3/4+ε

2σ − k

)

where

Dµν(s) =
∞∑

l=1

aµlaνl
ls

.

Proof. First consider the following expression:

(3.12.1) E = (µν)σ

×
∑

0≤l≤√µνUT ε

1
2πi

�
(2)

(√
µν

2π

)s
Hl(s)Dµν(s+ 2σ, l)

∞�
−∞

ΨU (t/T )ts dt

where

(3.12.2) Hl(w) =
∞�
0

φ(ξ)e2πi(l/
√
µν)ξ−1

ξw−1 dξ

and

(3.12.3) Dµν(w + 2σ, l) =
∞∑

n=1

ana(nν+l)/µ

(nν + l/2)w+2σ .

We move the line of integration in (3.12.1) to <s = −1/4. From Lemma 5
of [5], we have

(3.12.4) Dµν(w + 2σ, l) = O

(
l|w + 2σ|1+ε

(µν)k/2−2(u+ 2σ − k + 1/4)

)

uniformly in µ, ν, l ≥ 1, u + 2σ ≥ k − 1/4. Note that here u = −1/4. Using
integration by parts and from the properties of φ(ξ), it follows that

(3.12.5) Hl(w)�
√
µν

l
|w|.

From Lemmas 3.7, 3.8 and the inequalities (3.12.4), (3.12.5) we obtain

E � (µν)σ+u/2+1/2+1/2

(2σ − k)(µν)k/2−2
U4T 3/4+ε(3.12.6)

� (µν)σ+23/8−k/2

2σ − k U4T 3/4+ε � (µν)2876/1000

2σ − k U4T 3/4+ε.

Now the lemma follows from Lemma 2.1 of [9].
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Lemma 3.13. For σ = k/2 + A8/log T , with U = 4T/H we have

T+H�
T

|Lf (σ + it)Mξ2(σ + it)− 1|2 dt� H +O

(
T 19/4+εξ13.504(log ξ)3

H4

)
.

Proof. From Lemmas 3.10 and 3.12, with b = 2876/1000, we have

J6 :=
∞�
−∞

ΨU (t/T )|Lf (σ + it)Mξ2(σ + it)− 1|2 dt(3.13.1)

=
∑

v1,v2≤ξ2

λv1λv2

(v1v2)2σ (v1, v2)2σJ7

+
∑

v1,v2≤ξ2

λv1λv2

(v1v2)k
(v1, v2)2(k−σ)J8

+O(T 3/4+εU4ξ13.504(log ξ)3),

where

J7 := Dv1/(v1,v2),v2/(v1,v2)(2σ)
∞�
−∞

ΨU (t/T ) dt,

J8 := Dv1/(v1,v2),v2/(v1,v2)(2(k − σ))
∞�
−∞

ΨU (t/T )(t/T )2k−4σ dt.

Also note that
∞�
−∞

ΨU (t/T ) dt = T

∞�
−∞

ΨU (t) dt(3.13.2)

= T

1+HT−1−U−1�
1+U−1

dt = T{HT−1 − 2U−1} � H.

Now the lemma follows from the arguments of Section 3 of [9].

Lemma 3.14. Let B be any small positive constant. For T 19/20+13.505B/5

� H ≤ T , we have

T+H�
T

|Lf (σ + it)Mξ2(σ + it)− 1|2 dt�ε HT
−(2−ε)(σ−k/2)B

uniformly for k/2 + A9/log T ≤ σ ≤ k/2 + 1.

Proof. We fix ξ = TB so that the error in Lemma 3.13 is

(3.14.1) � H−4T 19/4+13.504B+ε(log T )3 � H−4T 19/4+13.504B+ε1 � H
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for some other small positive constant ε1 (< 0.001B), since T 19/20+13.505B/5

� H. Hence from Lemma 3.13 we have

(3.14.2)
T+H�
T

|Lf (k/2+A9/log T+it)Mξ2(k/2+A9/log T+it)−1|2 dt� H.

Also from Lemma 3.11, we have

(3.14.3)
T+H�
T

|Lf (k/2 + 1 + it)Mξ2(k/2 + 1 + it)− 1|2 dt� HT−B(2−ε).

Now we use the two-variable Gabriel convexity theorem (see [4]):

Convexity Theorem. Let g(s) be an analytic function in a specified
region and for any positive λ, let

(3.14.4) G(σ, λ) =
( T+H�

T

|g(σ + it)|1/λ dt
)λ
.

Then, for α<σ<β and any positive numbers λ, µ, with p = (β − σ)/(β − α)
and q = (σ − α)/(β − α), we have

(3.14.5) G(σ, λp+ µq)� (G(α, λ))p(G(β, µ))q.

In the above convexity theorem, we take λ = µ = 1/2, α = k/2 +
A9/log T , β = k/2 + 1 and g(s) = Lf (s)Mξ2(s)− 1. This implies that

p =
k/2 + 1− σ
1− A9/log T

, q =
σ − k/2− A9/log T

1− A9/log T
.

Note that p+ q = 1. From (3.14.2), (3.14.3) and (3.14.5), we obtain

(3.14.6)
T+H�
T

|Lf (σ + it)Mξ2(σ + it)− 1|2 dt

� Hp(HT−B(2−ε))q � HT−Bq(2−ε) � HT−B(2−ε)(σ−k/2)

and hence the lemma.

Remark. Let B′ = 19/20 + 13.505B/5 where B is any fixed small pos-
itive constant. Let Tα ≤ H ≤ T , B′ < α ≤ 1. We notice that

(
H

TB′

)
≤ T 1−B′ and hence

(
H

TB′

)1/(1−B′)
≤ T.

Therefore, we have

T−(2−ε)B(σ−k/2) ≤ T−B(σ−k/2) ≤
(
H

TB′

)− B
1−B′ (σ−k/2)

.
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This implies that, for Tα ≤ H ≤ T with B′ < α ≤ 1,
T+H�
T

|Lf (σ + it)Mξ2(σ + it)− 1|2 dt� H

(
H

TB′

)− B
1−B′ (σ−k/2)

,

which holds uniformly for k/2 + A10/log ξ ≤ σ ≤ k/2 + 1/2.

4. Proof of Theorem 1. We follow closely the arguments of Selberg
(see [13]). For x ≥ 2, t > 0, we define a number

(4.1) σx,t =
k

2
+ 2 max

%

(
β − k

2
,

2
log x

)

where % runs through all zeros % = β + iγ for which

(4.2) |t− γ| ≤ x3|β−k/2|

log x
.

We notice that ∑

%

β

β2 + γ2 = O(log t)

and hence from Lemma 3.2, for t ≥ 2, taking real parts on both sides, we
obtain

(4.3) S :=
∑

%

σx,t − β
(σx,t − β)2 + (t− γ)2 = <

L′f
Lf

(σx,t + it) +O(log t).

Since zeros lie symmetrically with respect to the line σ = k/2, we have

S = (σx,t − k/2)(4.4)

×
∑

%

{(σx,t − k/2)2 − (β − k/2)2 + (t− γ)2}
{(σx,t − β)2 + (t− γ)2}{(σx,t − k + β)2 + (t− γ)2} .

Arguing as in [13], we find that

S1 :=
(
σx,t −

k

2

)2

−
(
β − k

2

)2

+ (t− γ)2(4.5)

≥ 3
10
{(σx,t − β)2 + (σx,t − k + β)2 + 2(t− γ)2}.

Therefore from (4.4) and (4.5), we get

S ≥ 3
10

(σx,t − k/2)(4.6)

×
∑

%

{
1

(σx,t − β)2 + (t− γ)2 +
1

(σx,t − k + β)2 + (t− γ)2

}

=
3
5

(σx,t − k/2)
∑

%

1
(σx,t − β)2 + (t− γ)2 .
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From (4.3) and (4.6) we have
∑

%

1
(σx,t − β)2 + (t− γ)2 <

5
3

1
σx,t − k/2

∣∣∣∣
L′f
Lf

(σx,t + it)
∣∣∣∣(4.7)

+O

(
log t

σx,t − k/2

)
.

For t ≥ 2, 2 ≤ x ≤ t2, σ ≥ σx,t, Lemma 3.6 yields
L′f
Lf

(s) = −
∑

n<x3

Λx,f (n)
ns

+O(x−σ(log x)−2)(4.8)

+
ω

(log x)2

∑

%

xβ−σ(1 + xβ−σ)2

{(σ − β)2 + (t− γ)2}3/2

where |ω| ≤ 1.
Now, arguing as in [13], we obtain

(4.9)
xβ−σ(1 + xβ−σ)2

{(σ − β)2 + (t− γ)2}3/2 <
2(log x)xk/4−σ/2

(σx,t − β)2 + (t− γ)2 .

Therefore from (4.7) and (4.9), we get
∑

%

xβ−σ(1 + xβ−σ)2

{(σ − β)2 + (t− γ)2}3/2 <
5
6

(logx)2xk/4−σ/2
∣∣∣∣
L′f
Lf

(σx,t + it)
∣∣∣∣(4.10)

+O(xk/4−σ/2(log x)2 log t).
Hence from (4.10), (4.8) becomes

L′f
Lf

(s) = −
∑

n<x3

Λx,f (n)
ns

+O(xk/4−σ/2 log t)(4.11)

+
5
6
ω′xk/4−σ/2

L′f
Lf

(σx,t + it)

where |ω′| < 1. Taking first σ = σx,t, we get

(4.12)
L′f
Lf

(σx,t + it) = O

(∣∣∣∣
∑

n<x3

Λx,f (n)
nσx,t+it

∣∣∣∣
)

+O(log t).

Therefore from (4.7) and (4.12), we get

(4.13)
∑

%

σx,t − k/2
(σx,t − β)2 + (t− γ)2 = O

(∣∣∣∣
∑

n<x3

Λx,f (n)
nσx,t+it

∣∣∣∣
)

+O(log t)

and
L′f
Lf

(s) = −
∑

n<x3

Λx,f (n)
ns

+O

(
xk/4−σ/2

∣∣∣∣
∑

n<x3

Λx,f (n)
nσx,t+it

∣∣∣∣
)

(4.14)

+O(xk/4−σ/2 log t).



232 A. Sankaranarayanan

Now,

argLf (k/2 + it) = −
∞�
k/2

=
L′f
Lf

(σ + it) dσ(4.15)

=
∞�
σx,t

=
L′f
Lf

(σ + it) dσ − (σx,t − k/2)=
L′f
Lf

(σx,t + it)

+
σx,t�
k/2

=
{
L′f
Lf

(σx,t + it)−
L′f
Lf

(σ + it)
}
dσ

= I1 + I2 + I3 (say).

Using (4.14), we find that

(4.16) I1 = =
∑

n<x3

Λx,f (n)
nσx,t+it logn

+O

(
1

log x

∣∣∣∣
∑

n<x3

Λx,f (n)
nσx,t+it

∣∣∣∣
)

+O

(
log t
log x

)
.

From (4.12), we get

(4.17) I2 = O

(
(σx,t − k/2)

∣∣∣∣
∑

n<x3

Λx,f (n)
nσx,t+it

∣∣∣∣
)

+O((σx,t − k/2) log t).

From Lemma 3.2, taking the imaginary part of both sides and arguing as in
[13], we find that

|I3|<10(σx,t − k/2)
∑

%

σx,t − k/2
(σx,t − β)2 + (t− γ)2 +O((σx,t − k/2) log t)(4.18)

= O

(
(σx,t − k/2)

∣∣∣∣
∑

n<x3

Λx,f (n)
nσx,t+it

∣∣∣∣
)

+O((σx,t − k/2) log t).

Now Theorem 1 follows from (4.15)–(4.18).

5. Proof of Theorem 2. It suffices to show that (for any fixed small
positive constant B, Tα ≤ H ≤ T , B′ < α ≤ 1 where B′ is as in the
theorem)

(5.1)
(k+1)/2�

σ

(Nf (σ′, T +H)−Nf (σ′, T )) dσ′ � H

(
H

TB′

)− B
1−B′ (σ−k/2)

for k/2 + A11/log ξ ≤ σ ≤ (k + 1)/2.
Let Φ(s) = 1 − (Lf (s)Mξ2(s) − 1)2. The zeros of Lf (s) occur among

those of Φ(s) with at least the same multiplicities. By Littlewood’s lemma
regarding the number of zeros of an analytic function in a rectangle (see
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[15]), we obtain

(5.2)
(k+1)/2�

σ

(Nf (σ′, T +H)−Nf (σ′, T )) dσ′

≤ 1
2π

T+H�
T

log |Φ(σ + it)| dt

+
1

2π

∞�
σ

argΦ(σ′ + i(T +H)) dσ′ − 1
2π

∞�
σ

argΦ(σ′ + iT ) dσ′.

In the range ((k + 1)/2 + 4,∞), we see that argΦ(σ′ + it) = O(2−σ) and
hence

(5.3)
∞�

(k+1)/2+4

argΦ(σ′ + iT ) dσ′ = O(1).

In the range (k/2, (k + 1)/2 + 4), from Jensen’s theorem (see [14]) and a
standard argument, we find that

(5.4) argΦ(σ′ + iT ) = O(log T ).

Therefore we get

(5.5)
∞�
σ

argΦ(σ′ + iT ) dσ′ � log T.

Similarly we have

(5.6)
∞�
σ

argΦ(σ′ + i(T +H)) dσ′ � log T.

Since log(1 + |x|) ≤ |x|, we obtain
T+H�
T

log |Φ(σ + it)| dt ≤
T+H�
T

|Lf (σ + it)Mξ2(σ + it)− 1|2 dt(5.7)

� H

(
H

TB′

)− B
1−B′ (σ−k/2)

.

Now the inequality (5.1) follows from (5.2) to (5.7). Hence it is enough to
assume that σ − k/2 ≥ (logT )−1. Therefore,

Nf (σ, T, T +H) ≤ (log T )
σ�

σ−1/log T

{Nf (σ′, T +H)−Nf (σ′, T )} dσ′(5.8)

� H

(
H

TB′

)− B
1−B′ (σ−k/2)

log T

from (5.7) and this proves Theorem 2.
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