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1. Introduction. The following notation will be used:

• s = σ + it — complex variable.
• ζ(s) — the Riemann zeta function.
• Γ (s) — the Euler gamma function.
• χ(s) — the function defined by ζ(s) = χ(s)ζ(1 − s). The functional

equation of ζ(s) yields

χ(s) =
π−(1−s)/2Γ

(
1−s

2

)

π−s/2Γ
(
s
2

) = 2(2π)s−1 sin
πs

2
Γ (1− s).

• T — large positive parameter.
• N(σ, T ) — the number of zeros of ζ(s) in the region < s ≥ σ, |= s| ≤ T.
For a fixed real number σ0 we consider < ζ(σ0 + it) and = ζ(σ0 + it) as

functions of a real variable t and denote them by A(t) = A(σ0, t) and B(t) =
B(σ0, t) respectively. Some properties of these functions are described by
J. Moser [3]. In particular for σ0 > 1/2 he investigated the question of
existence of zeros of A(t)− 1 and B(t) in short intervals.

Our note is motivated by the suggestion of Professor A. A. Karatsuba
to investigate the number of zeros of A(t) and B(t) in the interval (0, T ).

Let NA(T ) be the number of zeros of A(t) in (0, T ). Analogously define
NB(T ). By NA,B(T ) we denote any of NA(T ) and NB(T ).

We will use Jensen’s inequality in the following form [2, pp. 328–329]:

Let f(s) be an analytic function in some neighborhood of the disc |s− s0|
≤ R. Let 0 < r < R, and suppose f(s) has n zeros (counting with multi-
plicity) in the disc |s− s0| < r. Then

(
R

r

)n
≤ max|s−s0|=R |f(s)|

|f(s0)| .

We also need Stirling’s formulae [2, pp. 342–344]:
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Let δ > 0 and −π + δ < arg s < π − δ. Then

logΓ (s) = (s− 1/2) log s− s+ log
√

2π +O(|s|−1)

where the constant in the O symbol depends only on δ.

Throughout, all constants, including those implicit in the O symbols,
may depend only on σ0.

Define the functions F (s) = F (σ0, s) and G(s) = G(σ0, s) by

F (s) = ζ(σ0 + s) + ζ(σ0 − s), G(s) = ζ(σ0 + s)− ζ(σ0 − s).
These functions are analytic on the whole complex plane except two simple
poles at s = σ0− 1 and s = 1− σ0. The zeros on the imaginary axis of F (s)
and G(s) correspond to the zeros of A(t) and B(t) respectively. Therefore,
using

max
|s|=R

|F (s)| � RcR, max
|s|=R

|G(s)| � RcR

and appropriately applying Jensen’s inequality we obtain

NA,B(T )� T log T.

As follows from the definition, the zeros of F (s) as well as of G(s) are
symmetric with respect to the real and imaginary axes. Let NF (T ) be the
number of zeros of F (s) in the rectangle −10 < < s < 10, 0 < = s < T.
Analogously defineNG(T ). Let alsoNF,G(T ) denote eitherNF (T ) orNG(T ).

Theorem 1. For any σ0 < 1/2 there exists c = c(σ0) > 0 such that

(1) NA,B(T ) >
T

π
log

T

2π
− T

π
−N(1− σ0, T )− c log T

and

(2) NF,G(T ) =
T

π
log

T

2π
− T

π
+O(logT ).

For estimation of N(1− σ0, T ) see [2, Chapter V] and [5, pp. 252–253].

Corollary. For any σ0 < 1/2 there exists c1 = c1(σ0) > 0 such that

NA,B(T ) =
T

π
log

T

2π
− T

π
+O(T 1−c1).

Theorem 2. Let 1/2 < σ0 < 1. Then

T � NA,B(T )� T log T.

2. Proof of Theorem 1. We shall first prove (1) with a constant c
and the constants implicit in the O symbols being absolute for 0 < σ0 <
1/2. With these restrictions without loss of generality we may suppose that
ζ(σ0+it) 6= 0 for all t, 0 < t ≤ T. Really, this holds if σ0 ≤ 0, and we keep σ0

unchanged in this case. For σ0 > 0 let NA,B(T ) = NA(T ) and let t1, . . . , tn
be all different zeros of A(σ0, t) with 0 < t < T . If ti has multiplicity ki
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then the kith derivative of A(σ0, t) with respect to t does not vanish in a
neighborhood of ti. Hence there exist δ > 0, ε > 0 and ε1 > 0 such that for
each index i and for |σ − σ0| < ε1, |t− ti| < δ we have |dkiA(σ, t)/dtki | > ε,
and for |σ − σ0| < ε1, |t − ti| ≥ δ, i = 1, . . . , n, we have |A(σ, t)| > ε.
Note that if an interval (a, b) contains k + 1 zeros of A(σ, t) then there is a
c ∈ (a, b) such that the kth derivative of A(σ, t) at t = c is zero. It follows
that for |σ − σ0| < ε1 the number of zeros of A(σ, t) in (1, T ) is not greater
than the number of zeros of A(σ0, t) in the same interval. Now it remains
to choose σ1 > 0 with 0 < σ0 − σ1 < ε1 such that ζ(σ1 + it) 6= 0 for all t.

We may also suppose that there is no zero of ζ(s) on the line =s = T .
Then

ζ(σ0 + it) = ζ(σ0 + i) exp
( σ0+it�
σ0+i

ζ ′(s)
ζ(s)

ds

)
.

Hence

A(t) = |ζ(σ0 + i)|eφ(t) cos
(
α0 + =

σ0+it�
σ0+i

ζ ′(s)
ζ(s)

ds

)
,

B(t) = |ζ(σ0 + i)|eφ(t) sin
(
α0 + =

σ0+it�
σ0+i

ζ ′(s)
ζ(s)

ds

)
,

where

α0 = arg ζ(σ0 + i), φ(t) = <
σ0+it�
σ0+i

ζ ′(s)
ζ(s)

ds.

This yields

(3) NA,B(T ) >
∣∣∣∣2<

1
2πi

σ0+iT�
σ0+i

ζ ′(s)
ζ(s)

ds

∣∣∣∣+O(1).

Note that

< 1
2πi

�
L

ζ ′(s)
ζ(s)

ds =
T

2π
log

T

2π
− T

2π
− 1

2
N(1− σ0, T ) +O(logT )

where L is a positively oriented rectangle with vertices at σ0 + i, 2 + i, 2 +
iT, σ0 + iT.

Set

V (T ) =
T

2π
log

T

2π
− T

2π
− 1

2
N(1− σ0, T ).

Then

−< 1
2πi

σ0+iT�
σ0+i

ζ ′(s)
ζ(s)

ds = −< 1
2πi

�
L1

ζ ′(s)
ζ(s)

ds+ V (T ) +O(logT )
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where L1 is an interval [2 + iT, σ0 + iT ]. Hence

−< 1
2πi

σ0+iT�
σ0+i

ζ ′(s)
ζ(s)

ds = − 1
2π
∆ arg ζ(s) + V (T ) +O(logT )

where ∆ denotes the variation from 2 + iT to σ0 + iT . This expression is
estimated by O(log T ) according to [5, p. 213]. This proves (1) in view of (3).

We shall now prove (2) following B. C. Berndt [1].
We consider the case NF,G(T ) = NF (T ). The other case is analogous.
LetM be a constant such thatM > 10+|σ0| and F (s) 6= 0 on < s = ±M .

Let also T0 be a constant sufficiently large with respect to M such that
F (s) 6= 0 on = s = T0. We may also suppose that F (s) 6= 0 on = s = T. Then

N1(T ) =
1

2π
=
{ �
L1

+
�
L2

+
�
L3

+
�
L4

} F ′(s)
F (s)

ds

where L1 = [−M + iT0,M + iT0], L2 = [M + iT0,M + iT ], L3 = [M +
iT,−M + iT ], L4 = [−M + iT,−M + iT0] and N1(T ) denotes the number
of zeros of F (s) inside the rectangle with sides L1, L2, L3, L4.

The first integral is O(1). From F (s) = F (−s), F (s) = F (s) we see that
the integrals along L2 and L4 are equal. Therefore

N1(T ) =
1
π
∆1 argF (s) +

1
2π
∆2 argF (s) +O(1)

where ∆1 denotes the variation from M + iT0 to M + iT , and ∆2 denotes
the variation from M + iT to −M + iT. Since

F (M + it) = ζ(σ0 +M + it) + χ(σ0 −M − it)ζ(1 +M − σ0 + it)

we have
∆1 argF (s) = ∆1 arg{χ(σ0 −M − it)ζ(1 +M − σ0 + it)}

+∆1 arg
{

1 +
ζ(σ0 +M + it)

χ(σ0 −M − it)ζ(1 +M − σ0 + it)

}
.

Due to Stirling’s formula and the inequality 1/4 < |ζ(s)| < 10 for < s > 2
we can choose T0 such that∣∣∣∣

ζ(σ0 +M + it)
χ(σ0 −M − it)ζ(1 +M − σ0 + it)

∣∣∣∣ <
1
2

for any t > T0. Therefore

∆1 argF (s) = ∆1 arg{χ(σ0 −M − it)ζ(1 +M − σ0 + it)}+O(1).

Since < ζ(1 +M − σ0 + it) > 1/4, we have

∆1 argF (s) = ∆1 argχ(σ0 −M − it) +O(1).

Using Stirling’s formula again we easily calculate the above value and obtain
the following relation:
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N1(T ) =
T

π
log

T

2π
− T

π
+

1
2π
∆2 argF (s) +O(1).

Let us now estimate ∆2 argF (s) using the method of [5, p. 213]. Define

F1(s) = F (s) + F (s− 2iT ).

Let D1,D2 be the discs with center M + iT and radii 4M and 2M respec-
tively. It is easy to see that

max
s∈D1

|F1(s)|
|F1(M + iT )| � TK

for some constant K = K(M) > 0. Therefore according to Jensen’s in-
equality there are O(log T ) zeros of F1(s) inside D2. In particular F1(s) has
O(log T ) zeros in the interval [M + iT,−M + iT ]. Since

F1(σ + iT ) = 2<F (σ + iT ),

<F (s) vanishes O(log T ) times between M + iT and −M + iT. Hence

∆2 argF (s) = O(log T ).
Thus

N1(T ) =
T

π
log

T

2π
− T

π
+O(logT ).

If σ0 ≤ 0 then N(1 − σ0, T ) = 0. Therefore for σ0 ≤ 0 the required
estimate of NF (T ) follows from (1) and NF (T ) ≤ N1(T ) +O(1).

If 0 < σ0 < 1/2 then we can choose T0 = T0(M) so large that F (s) 6= 0
in the region < s > 10,= s > T0, i.e. NF (T ) = N1(T )+O(1). This completes
the proof of Theorem 1.

From the functional equation it follows that

(4) F (s) = ζ(σ0 + s) + 2(2π)−z cos
πz

2
Γ (z)ζ(z)

where z = 1− σ0 + s. Hence for some M = M(σ0) > 0 and T0 = T0(σ0) > 0
there is no zero of F (s) in the region < s > M , = s > T0. Taking

M = 2n1 − 1 + σ0, T = 2n2 − 1 + σ0

where n1, n2 are integers, using (4) and applying an argument of R. Spira
[4], we can prove that F (s) and F (s)− ζ(σ0 + s) have the same number of
zeros in the rectangle with vertices at M ± iT0, T ± iT0. Indeed, on the sides
of this rectangle due to the Γ -factor we have

|F (s)− (F (s)− ζ(σ0 + s))| = |ζ(σ0 + s)| < 1 <
∣∣∣∣2(2π)−z cos

πz

2
Γ (z)ζ(z)

∣∣∣∣
= |F (s)− ζ(σ0 + s)|,

and thus the assertion follows from Rouché’s theorem. For n large enough
the function F (s) has different signs at s = 2n−1 +σ0 and 2n+ 1 +σ0, and
therefore it has at least one zero in (2n−1+σ0, 2n+1+σ0). Furthermore, the
zeros of |F (s)− ζ(σ0 + s)| inside the considered rectangle are sn = 2n+ σ0,
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and the number of such zeros is equal to the number of zeros of F (s) inside
this rectangle. Hence altogether there exists M1 = M1(σ0) > 0 such that
all zeros of F (s) with |< s| > M1 are real and exactly one in each interval
(2n− 1 + σ0, 2n+ 1 + σ0). Therefore the following statement is valid:

For any real numbers a, b with a+ b < 1 almost all zeros of the function
ζ(a+ s) + ζ(b− s) are on the line < s = (b− a)/2.

The same remains true for the function ζ(a+ s)− ζ(b− s).

3. Concerning Theorem 2. Theorem 2 can be proved by using the
following variant of Voronin’s theorem on universality of the Riemann zeta-
function, which follows from [2, pp. 241–252]:

Let 0 < r < 1/4. Suppose that f(s) is a function which is analytic for
|s| < r and continuous for |s| ≤ r. If f(s) 6= 0 then for any ε > 0,

lim
T→∞

inf
1
T

meas {τ ∈ [0, T ] : sup
|s|≤r

|f(s)− ζ(s+ 3/4 + iτ)| < ε} > 0.

Applying it with ε = 1/10, |r − 1/4| < 1
10 (σ0 − 1/2) and f(s) = eCs

where C = C(σ0) is a positive number large enough, we see A(t) and B(t)
change sign more than cT times in (1, T ).

Remark. If σ0 = 1/2 then

NA,B(T ) =
T

2π
log

T

2π
− T

2π
+N0(T ) +O(log T )

where N0(T ) is the number of zeros of ζ(1/2 + it) with 0 < t < T . This
formula follows from

ζ(1/2 + it) = e−iθ(t)Z(t).

Here Z(t), θ(t) are real-valued functions, θ(t) increases on (t0,∞) and

θ(t) =
t

2
log

t

2π
− t

2
+O(log t).

Problem. Is it true that for any σ0, 1/2 < σ0 < 1, the inequality

NA,B(T ) > T φ(T )

holds for some real-valued function φ(t) with φ(t)→∞ as t→∞?

It would be interesting to define φ(t) explicitly if it exists.
By applying Voronin’s method one can extend Theorem 2 to the values

of σ0 up to 1 + δ with some δ > 0. Note that A(t) has no zeros for σ0 > 2.
One can study the problem of zeros of B(t) using Hardy’s method,

by comparing the integrals � T+H
T

|B(t)| dt and | � T+H
T

B(t) dt|. This method
yields the following result.
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For any σ0 > 1 there exists a constant H = H(σ0) > 0 such that for any
T > T0(σ0) > 0 the interval (T, T +H) contains a zero of B(t).

Indeed from the simplest approximate functional equation for ζ(s) we
can see that

−B(t) =
∑

n≤T/π
n−σ0 sin(t logn) +O(HT−σ0)

for t ∈ (T, T +H). Therefore
T+H�
T

B(t) dt� 1 +H2T−σ0 .

On the other hand it can be easily established that
T+H�
T

|B(t)| dt >
T+H�
T

−B(t) sin(t log 2) dt ≥ c1H − c2

with some positive constants c1, c2 (which may depend on σ0). Hence for H
large enough the interval (T, T +H) contains at least one zero of B(t).

In particular for σ0 > 1 we have T � NB(T )� T log T.
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