On vertical zeros of $\Re \zeta(s)$ and $\Im \zeta(s)$

by
\section*{M. Z. Garaev (Taipei)}

1. Introduction. The following notation will be used:

- $s=\sigma+i t$ - complex variable.
- $\zeta(s)$ - the Riemann zeta function.
- $\Gamma(s)$ - the Euler gamma function.
- $\chi(s)$ - the function defined by $\zeta(s)=\chi(s) \zeta(1-s)$. The functional equation of $\zeta(s)$ yields

$$
\chi(s)=\frac{\pi^{-(1-s) / 2} \Gamma\left(\frac{1-s}{2}\right)}{\pi^{-s / 2} \Gamma\left(\frac{s}{2}\right)}=2(2 \pi)^{s-1} \sin \frac{\pi s}{2} \Gamma(1-s)
$$

- T - large positive parameter.
- $N(\sigma, T)$ - the number of zeros of $\zeta(s)$ in the region $\Re s \geq \sigma,|\Im s| \leq T$.

For a fixed real number σ_{0} we consider $\Re \zeta\left(\sigma_{0}+i t\right)$ and $\Im \zeta\left(\sigma_{0}+i t\right)$ as functions of a real variable t and denote them by $A(t)=A\left(\sigma_{0}, t\right)$ and $B(t)=$ $B\left(\sigma_{0}, t\right)$ respectively. Some properties of these functions are described by J. Moser [3]. In particular for $\sigma_{0}>1 / 2$ he investigated the question of existence of zeros of $A(t)-1$ and $B(t)$ in short intervals.

Our note is motivated by the suggestion of Professor A. A. Karatsuba to investigate the number of zeros of $A(t)$ and $B(t)$ in the interval $(0, T)$.

Let $N_{A}(T)$ be the number of zeros of $A(t)$ in $(0, T)$. Analogously define $N_{B}(T)$. By $N_{A, B}(T)$ we denote any of $N_{A}(T)$ and $N_{B}(T)$.

We will use Jensen's inequality in the following form [2, pp. 328-329]:
Let $f(s)$ be an analytic function in some neighborhood of the disc $\left|s-s_{0}\right|$ $\leq R$. Let $0<r<R$, and suppose $f(s)$ has n zeros (counting with multiplicity) in the disc $\left|s-s_{0}\right|<r$. Then

$$
\left(\frac{R}{r}\right)^{n} \leq \frac{\max _{\left|s-s_{0}\right|=R}|f(s)|}{\left|f\left(s_{0}\right)\right|}
$$

We also need Stirling's formulae [2, pp. 342-344]:
2000 Mathematics Subject Classification: Primary 11M06.

Let $\delta>0$ and $-\pi+\delta<\arg s<\pi-\delta$. Then

$$
\log \Gamma(s)=(s-1 / 2) \log s-s+\log \sqrt{2 \pi}+O\left(|s|^{-1}\right)
$$

where the constant in the O symbol depends only on δ.
Throughout, all constants, including those implicit in the O symbols, may depend only on σ_{0}.

Define the functions $F(s)=F\left(\sigma_{0}, s\right)$ and $G(s)=G\left(\sigma_{0}, s\right)$ by

$$
F(s)=\zeta\left(\sigma_{0}+s\right)+\zeta\left(\sigma_{0}-s\right), \quad G(s)=\zeta\left(\sigma_{0}+s\right)-\zeta\left(\sigma_{0}-s\right)
$$

These functions are analytic on the whole complex plane except two simple poles at $s=\sigma_{0}-1$ and $s=1-\sigma_{0}$. The zeros on the imaginary axis of $F(s)$ and $G(s)$ correspond to the zeros of $A(t)$ and $B(t)$ respectively. Therefore, using

$$
\max _{|s|=R}|F(s)| \ll R^{c R}, \quad \max _{|s|=R}|G(s)| \ll R^{c R}
$$

and appropriately applying Jensen's inequality we obtain

$$
N_{A, B}(T) \ll T \log T .
$$

As follows from the definition, the zeros of $F(s)$ as well as of $G(s)$ are symmetric with respect to the real and imaginary axes. Let $N_{F}(T)$ be the number of zeros of $F(s)$ in the rectangle $-10<\Re s<10,0<\Im s<T$. Analogously define $N_{G}(T)$. Let also $N_{F, G}(T)$ denote either $N_{F}(T)$ or $N_{G}(T)$.

Theorem 1. For any $\sigma_{0}<1 / 2$ there exists $c=c\left(\sigma_{0}\right)>0$ such that

$$
\begin{equation*}
N_{A, B}(T)>\frac{T}{\pi} \log \frac{T}{2 \pi}-\frac{T}{\pi}-N\left(1-\sigma_{0}, T\right)-c \log T \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
N_{F, G}(T)=\frac{T}{\pi} \log \frac{T}{2 \pi}-\frac{T}{\pi}+O(\log T) \tag{2}
\end{equation*}
$$

For estimation of $N\left(1-\sigma_{0}, T\right)$ see [2, Chapter V] and [5, pp. 252-253].
Corollary. For any $\sigma_{0}<1 / 2$ there exists $c_{1}=c_{1}\left(\sigma_{0}\right)>0$ such that

$$
N_{A, B}(T)=\frac{T}{\pi} \log \frac{T}{2 \pi}-\frac{T}{\pi}+O\left(T^{1-c_{1}}\right)
$$

Theorem 2. Let $1 / 2<\sigma_{0}<1$. Then

$$
T \ll N_{A, B}(T) \ll T \log T
$$

2. Proof of Theorem 1. We shall first prove (1) with a constant c and the constants implicit in the O symbols being absolute for $0<\sigma_{0}<$ $1 / 2$. With these restrictions without loss of generality we may suppose that $\zeta\left(\sigma_{0}+i t\right) \neq 0$ for all $t, 0<t \leq T$. Really, this holds if $\sigma_{0} \leq 0$, and we keep σ_{0} unchanged in this case. For $\sigma_{0}>0$ let $N_{A, B}(T)=N_{A}(T)$ and let t_{1}, \ldots, t_{n} be all different zeros of $A\left(\sigma_{0}, t\right)$ with $0<t<T$. If t_{i} has multiplicity k_{i}
then the k_{i} th derivative of $A\left(\sigma_{0}, t\right)$ with respect to t does not vanish in a neighborhood of t_{i}. Hence there exist $\delta>0, \varepsilon>0$ and $\varepsilon_{1}>0$ such that for each index i and for $\left|\sigma-\sigma_{0}\right|<\varepsilon_{1},\left|t-t_{i}\right|<\delta$ we have $\left|d^{k_{i}} A(\sigma, t) / d t^{k_{i}}\right|>\varepsilon$, and for $\left|\sigma-\sigma_{0}\right|<\varepsilon_{1},\left|t-t_{i}\right| \geq \delta, i=1, \ldots, n$, we have $|A(\sigma, t)|>\varepsilon$. Note that if an interval (a, b) contains $k+1$ zeros of $A(\sigma, t)$ then there is a $c \in(a, b)$ such that the k th derivative of $A(\sigma, t)$ at $t=c$ is zero. It follows that for $\left|\sigma-\sigma_{0}\right|<\varepsilon_{1}$ the number of zeros of $A(\sigma, t)$ in $(1, T)$ is not greater than the number of zeros of $A\left(\sigma_{0}, t\right)$ in the same interval. Now it remains to choose $\sigma_{1}>0$ with $0<\sigma_{0}-\sigma_{1}<\varepsilon_{1}$ such that $\zeta\left(\sigma_{1}+i t\right) \neq 0$ for all t.

We may also suppose that there is no zero of $\zeta(s)$ on the line $\Im s=T$. Then

$$
\zeta\left(\sigma_{0}+i t\right)=\zeta\left(\sigma_{0}+i\right) \exp \left(\int_{\sigma_{0}+i}^{\sigma_{0}+i t} \frac{\zeta^{\prime}(s)}{\zeta(s)} d s\right)
$$

Hence

$$
\begin{aligned}
& A(t)=\left|\zeta\left(\sigma_{0}+i\right)\right| e^{\phi(t)} \cos \left(\alpha_{0}+\Im \int_{\sigma_{0}+i}^{\sigma_{0}+i t} \frac{\zeta^{\prime}(s)}{\zeta(s)} d s\right), \\
& B(t)=\left|\zeta\left(\sigma_{0}+i\right)\right| e^{\phi(t)} \sin \left(\alpha_{0}+\Im \int_{\sigma_{0}+i}^{\sigma_{0}+i t} \frac{\zeta^{\prime}(s)}{\zeta(s)} d s\right),
\end{aligned}
$$

where

$$
\alpha_{0}=\arg \zeta\left(\sigma_{0}+i\right), \quad \phi(t)=\Re \int_{\sigma_{0}+i}^{\sigma_{0}+i t} \frac{\zeta^{\prime}(s)}{\zeta(s)} d s
$$

This yields

$$
\begin{equation*}
N_{A, B}(T)>\left|2 \Re \frac{1}{2 \pi i} \int_{\sigma_{0}+i}^{\sigma_{0}+i T} \frac{\zeta^{\prime}(s)}{\zeta(s)} d s\right|+O(1) \tag{3}
\end{equation*}
$$

Note that

$$
\Re \frac{1}{2 \pi i} \int_{L} \frac{\zeta^{\prime}(s)}{\zeta(s)} d s=\frac{T}{2 \pi} \log \frac{T}{2 \pi}-\frac{T}{2 \pi}-\frac{1}{2} N\left(1-\sigma_{0}, T\right)+O(\log T)
$$

where L is a positively oriented rectangle with vertices at $\sigma_{0}+i, 2+i, 2+$ $i T, \sigma_{0}+i T$.

Set

$$
V(T)=\frac{T}{2 \pi} \log \frac{T}{2 \pi}-\frac{T}{2 \pi}-\frac{1}{2} N\left(1-\sigma_{0}, T\right)
$$

Then

$$
-\Re \frac{1}{2 \pi i} \int_{\sigma_{0}+i}^{\sigma_{0}+i T} \frac{\zeta^{\prime}(s)}{\zeta(s)} d s=-\Re \frac{1}{2 \pi i} \int_{L_{1}} \frac{\zeta^{\prime}(s)}{\zeta(s)} d s+V(T)+O(\log T)
$$

where L_{1} is an interval $\left[2+i T, \sigma_{0}+i T\right]$. Hence

$$
-\Re \frac{1}{2 \pi i} \int_{\sigma_{0}+i}^{\sigma_{0}+i T} \frac{\zeta^{\prime}(s)}{\zeta(s)} d s=-\frac{1}{2 \pi} \Delta \arg \zeta(s)+V(T)+O(\log T)
$$

where Δ denotes the variation from $2+i T$ to $\sigma_{0}+i T$. This expression is estimated by $O(\log T)$ according to [5, p. 213]. This proves (1) in view of (3).

We shall now prove (2) following B. C. Berndt [1].
We consider the case $N_{F, G}(T)=N_{F}(T)$. The other case is analogous.
Let M be a constant such that $M>10+\left|\sigma_{0}\right|$ and $F(s) \neq 0$ on $\Re s= \pm M$. Let also T_{0} be a constant sufficiently large with respect to M such that $F(s) \neq 0$ on $\Im s=T_{0}$. We may also suppose that $F(s) \neq 0$ on $\Im s=T$. Then

$$
N_{1}(T)=\frac{1}{2 \pi} \Im\left\{\int_{L_{1}}+\int_{L_{2}}+\int_{L_{3}}+\int_{L_{4}}\right\} \frac{F^{\prime}(s)}{F(s)} d s
$$

where $L_{1}=\left[-M+i T_{0}, M+i T_{0}\right], L_{2}=\left[M+i T_{0}, M+i T\right], L_{3}=[M+$ $i T,-M+i T], L_{4}=\left[-M+i T,-M+i T_{0}\right]$ and $N_{1}(T)$ denotes the number of zeros of $F(s)$ inside the rectangle with sides $L_{1}, L_{2}, L_{3}, L_{4}$.

The first integral is $O(1)$. From $F(s)=F(-s), F(\bar{s})=F(s)$ we see that the integrals along L_{2} and L_{4} are equal. Therefore

$$
N_{1}(T)=\frac{1}{\pi} \Delta_{1} \arg F(s)+\frac{1}{2 \pi} \Delta_{2} \arg F(s)+O(1)
$$

where Δ_{1} denotes the variation from $M+i T_{0}$ to $M+i T$, and Δ_{2} denotes the variation from $M+i T$ to $-M+i T$. Since

$$
F(M+i t)=\zeta\left(\sigma_{0}+M+i t\right)+\chi\left(\sigma_{0}-M-i t\right) \zeta\left(1+M-\sigma_{0}+i t\right)
$$

we have

$$
\begin{aligned}
\Delta_{1} \arg F(s)= & \Delta_{1} \arg \left\{\chi\left(\sigma_{0}-M-i t\right) \zeta\left(1+M-\sigma_{0}+i t\right)\right\} \\
& +\Delta_{1} \arg \left\{1+\frac{\zeta\left(\sigma_{0}+M+i t\right)}{\chi\left(\sigma_{0}-M-i t\right) \zeta\left(1+M-\sigma_{0}+i t\right)}\right\} .
\end{aligned}
$$

Due to Stirling's formula and the inequality $1 / 4<|\zeta(s)|<10$ for $\Re s>2$ we can choose T_{0} such that

$$
\left|\frac{\zeta\left(\sigma_{0}+M+i t\right)}{\chi\left(\sigma_{0}-M-i t\right) \zeta\left(1+M-\sigma_{0}+i t\right)}\right|<\frac{1}{2}
$$

for any $t>T_{0}$. Therefore

$$
\Delta_{1} \arg F(s)=\Delta_{1} \arg \left\{\chi\left(\sigma_{0}-M-i t\right) \zeta\left(1+M-\sigma_{0}+i t\right)\right\}+O(1) .
$$

Since $\Re \zeta\left(1+M-\sigma_{0}+i t\right)>1 / 4$, we have

$$
\Delta_{1} \arg F(s)=\Delta_{1} \arg \chi\left(\sigma_{0}-M-i t\right)+O(1) .
$$

Using Stirling's formula again we easily calculate the above value and obtain the following relation:

$$
N_{1}(T)=\frac{T}{\pi} \log \frac{T}{2 \pi}-\frac{T}{\pi}+\frac{1}{2 \pi} \Delta_{2} \arg F(s)+O(1) .
$$

Let us now estimate $\Delta_{2} \arg F(s)$ using the method of [5, p. 213]. Define

$$
F_{1}(s)=F(s)+F(s-2 i T) .
$$

Let D_{1}, D_{2} be the discs with center $M+i T$ and radii $4 M$ and $2 M$ respectively. It is easy to see that

$$
\max _{s \in D_{1}} \frac{\left|F_{1}(s)\right|}{\left|F_{1}(M+i T)\right|} \ll T^{K}
$$

for some constant $K=K(M)>0$. Therefore according to Jensen's inequality there are $O(\log T)$ zeros of $F_{1}(s)$ inside D_{2}. In particular $F_{1}(s)$ has $O(\log T)$ zeros in the interval $[M+i T,-M+i T]$. Since

$$
F_{1}(\sigma+i T)=2 \Re F(\sigma+i T),
$$

$\Re F(s)$ vanishes $O(\log T)$ times between $M+i T$ and $-M+i T$. Hence

$$
\Delta_{2} \arg F(s)=O(\log T) .
$$

Thus

$$
N_{1}(T)=\frac{T}{\pi} \log \frac{T}{2 \pi}-\frac{T}{\pi}+O(\log T)
$$

If $\sigma_{0} \leq 0$ then $N\left(1-\sigma_{0}, T\right)=0$. Therefore for $\sigma_{0} \leq 0$ the required estimate of $N_{F}(T)$ follows from (1) and $N_{F}(T) \leq N_{1}(T)+O(1)$.

If $0<\sigma_{0}<1 / 2$ then we can choose $T_{0}=T_{0}(M)$ so large that $F(s) \neq 0$ in the region $\Re s>10, \Im s>T_{0}$, i.e. $N_{F}(T)=N_{1}(T)+O(1)$. This completes the proof of Theorem 1.

From the functional equation it follows that

$$
\begin{equation*}
F(s)=\zeta\left(\sigma_{0}+s\right)+2(2 \pi)^{-z} \cos \frac{\pi z}{2} \Gamma(z) \zeta(z) \tag{4}
\end{equation*}
$$

where $z=1-\sigma_{0}+s$. Hence for some $M=M\left(\sigma_{0}\right)>0$ and $T_{0}=T_{0}\left(\sigma_{0}\right)>0$ there is no zero of $F(s)$ in the region $\Re s>M, \Im s>T_{0}$. Taking

$$
M=2 n_{1}-1+\sigma_{0}, \quad T=2 n_{2}-1+\sigma_{0}
$$

where n_{1}, n_{2} are integers, using (4) and applying an argument of R. Spira [4], we can prove that $F(s)$ and $F(s)-\zeta\left(\sigma_{0}+s\right)$ have the same number of zeros in the rectangle with vertices at $M \pm i T_{0}, T \pm i T_{0}$. Indeed, on the sides of this rectangle due to the Γ-factor we have

$$
\begin{aligned}
\left|F(s)-\left(F(s)-\zeta\left(\sigma_{0}+s\right)\right)\right| & =\left|\zeta\left(\sigma_{0}+s\right)\right|<1<\left|2(2 \pi)^{-z} \cos \frac{\pi z}{2} \Gamma(z) \zeta(z)\right| \\
& =\left|F(s)-\zeta\left(\sigma_{0}+s\right)\right|,
\end{aligned}
$$

and thus the assertion follows from Rouché's theorem. For n large enough the function $F(s)$ has different signs at $s=2 n-1+\sigma_{0}$ and $2 n+1+\sigma_{0}$, and therefore it has at least one zero in $\left(2 n-1+\sigma_{0}, 2 n+1+\sigma_{0}\right)$. Furthermore, the zeros of $\left|F(s)-\zeta\left(\sigma_{0}+s\right)\right|$ inside the considered rectangle are $s_{n}=2 n+\sigma_{0}$,
and the number of such zeros is equal to the number of zeros of $F(s)$ inside this rectangle. Hence altogether there exists $M_{1}=M_{1}\left(\sigma_{0}\right)>0$ such that all zeros of $F(s)$ with $|\Re s|>M_{1}$ are real and exactly one in each interval $\left(2 n-1+\sigma_{0}, 2 n+1+\sigma_{0}\right)$. Therefore the following statement is valid:

For any real numbers a, b with $a+b<1$ almost all zeros of the function $\zeta(a+s)+\zeta(b-s)$ are on the line $\Re s=(b-a) / 2$.

The same remains true for the function $\zeta(a+s)-\zeta(b-s)$.
3. Concerning Theorem 2. Theorem 2 can be proved by using the following variant of Voronin's theorem on universality of the Riemann zetafunction, which follows from [2, pp. 241-252]:

Let $0<r<1 / 4$. Suppose that $f(s)$ is a function which is analytic for $|s|<r$ and continuous for $|s| \leq r$. If $f(s) \neq 0$ then for any $\varepsilon>0$,

$$
\lim _{T \rightarrow \infty} \inf \frac{1}{T} \text { meas }\left\{\tau \in[0, T]: \sup _{|s| \leq r}|f(s)-\zeta(s+3 / 4+i \tau)|<\varepsilon\right\}>0
$$

Applying it with $\varepsilon=1 / 10,|r-1 / 4|<\frac{1}{10}\left(\sigma_{0}-1 / 2\right)$ and $f(s)=e^{C s}$ where $C=C\left(\sigma_{0}\right)$ is a positive number large enough, we see $A(t)$ and $B(t)$ change sign more than $c T$ times in $(1, T)$.

Remark. If $\sigma_{0}=1 / 2$ then

$$
N_{A, B}(T)=\frac{T}{2 \pi} \log \frac{T}{2 \pi}-\frac{T}{2 \pi}+N_{0}(T)+O(\log T)
$$

where $N_{0}(T)$ is the number of zeros of $\zeta(1 / 2+i t)$ with $0<t<T$. This formula follows from

$$
\zeta(1 / 2+i t)=e^{-i \theta(t)} Z(t)
$$

Here $Z(t), \theta(t)$ are real-valued functions, $\theta(t)$ increases on $\left(t_{0}, \infty\right)$ and

$$
\theta(t)=\frac{t}{2} \log \frac{t}{2 \pi}-\frac{t}{2}+O(\log t)
$$

Problem. Is it true that for any $\sigma_{0}, 1 / 2<\sigma_{0}<1$, the inequality

$$
N_{A, B}(T)>T \phi(T)
$$

holds for some real-valued function $\phi(t)$ with $\phi(t) \rightarrow \infty$ as $t \rightarrow \infty$?
It would be interesting to define $\phi(t)$ explicitly if it exists.
By applying Voronin's method one can extend Theorem 2 to the values of σ_{0} up to $1+\delta$ with some $\delta>0$. Note that $A(t)$ has no zeros for $\sigma_{0}>2$.

One can study the problem of zeros of $B(t)$ using Hardy's method, by comparing the integrals $\int_{T}^{T+H}|B(t)| d t$ and $\left|\int_{T}^{T+H} B(t) d t\right|$. This method yields the following result.

For any $\sigma_{0}>1$ there exists a constant $H=H\left(\sigma_{0}\right)>0$ such that for any $T>T_{0}\left(\sigma_{0}\right)>0$ the interval $(T, T+H)$ contains a zero of $B(t)$.

Indeed from the simplest approximate functional equation for $\zeta(s)$ we can see that

$$
-B(t)=\sum_{n \leq T / \pi} n^{-\sigma_{0}} \sin (t \log n)+O\left(H T^{-\sigma_{0}}\right)
$$

for $t \in(T, T+H)$. Therefore

$$
\int_{T}^{T+H} B(t) d t \ll 1+H^{2} T^{-\sigma_{0}}
$$

On the other hand it can be easily established that

$$
\int_{T}^{T+H}|B(t)| d t>\int_{T}^{T+H}-B(t) \sin (t \log 2) d t \geq c_{1} H-c_{2}
$$

with some positive constants c_{1}, c_{2} (which may depend on σ_{0}). Hence for H large enough the interval $(T, T+H)$ contains at least one zero of $B(t)$.

In particular for $\sigma_{0}>1$ we have $T \ll N_{B}(T) \ll T \log T$.
Acknowledgements. The author would like to thank the referee for corrections and valuable suggestions.

References

[1] B. C. Berndt, The number of zeros of $\zeta^{(k)}(s)$, J. London Math. Soc. (2) 2 (1970), 577-580.
[2] A. A. Karatsuba and S. M. Voronin, The Riemann Zeta-Function, de Gruyter, Berlin, 1992.
[3] J. Moser, On behavior of the functions $\operatorname{Re} \zeta(s), \operatorname{Im} \zeta(s)$ in the critical strip, Acta Arith. 34 (1977), 25-35 (in Russian).
[4] R. Spira, Another zero-free region for $\zeta^{(k)}(s)$, Proc. Amer. Math. Soc. 26 (1970), 246-247.
[5] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed., revised and edited by D. R. Heath-Brown, Clarendon Press, Oxford, 1986.

Institute of Mathematics
Academia Sinica
Taipei 11529, Taiwan
Republic of China
E-mail: garaev@math.sinica.edu.tw

