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1. Introduction and notations. In the number field case, many au-
thors (Ramachandra [7], Levesque [6], Greither [2] and Kucera [5]) studied a
certain maximal independent system of units. In the function field case, Feng
and Yin [1] gave results analogous to those of Ramachandra and Levesque
when the base field is a rational function field, and their results are gener-
alized by Xu and Zhao [11] to any subfield of cyclotomic function field over
a global function field. In [4], we gave results analogous to those of Greither
and Kucera when the base field is a rational function field. In this paper,
we extend our previous results to the global function field case.

We introduce some basic notations and facts which are needed later.
Let k be a global function field with constant field F, of ¢ elements, and
let 0o be a fixed place of k£ with degree d. Let ko be the completion of k&
at 0o, and {2 be the completion of an algebraic closure of ko,. Let A be the
Dedekind ring of functions in k& which are holomorphic away from co. Let F
(~ F a0 ) be the residue field at co and Woo = |F | = g% — 1. Throughout
the paper we fix a sign-function sgn : k%, — F% (cf. [3, Section 12]). An
element z of k% is called positive if sgn(z) = 1. For each integral ideal m of
A one uses a sgn-normalized Drinfeld module of rank one to construct a field
extension Ky, called the mth cyclotomic function field, and its maximal real
subfield K,f. For more details we refer to Hayes’s article [3, Part II]. Let
&(m) € 2 be an invariant associated to the ideal m, which is characterized
by the condition that the lattice £(m)m corresponds to some sgn-normalized
Drinfeld module of rank one, say . Let

A8 ={a € NR:g,(a) =0 for x € m}
be the set of m-torsion points associated to g, which is an A-module via p
isomorphic to A/m. In fact, £(m) is determined up to a factor in F}_ ([3,
Proposition 13.1]). Thus we should fix the {-invariants as in [12, Section 2].
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Let ey (z) be the exponential function associated to the lattice m, i.e.,

em(z) =2 H (1—2z/a).

a€m, a#0

Let A\ = &(m)en(1) € K. Then Ay, is a generator of A%,.

Let F/k be a finite abelian extension which is contained in a cyclotomic
function field. Let Fr be the constant field of F' with Wr = [F};|, the order
of nonzero elements of Fr. By the conductor m of F', we mean the integral
ideal m of A such that K is the smallest cyclotomic function field which
contains F. If m = e, then F is unramified at every finite place p # oo.
Let F™ be the maximal real subfield of F' in which oo splits completely.
We say that F/k is a real extension if F = F*. Let Gp = Gal(F/k) and
Jr = Gal(F/F*1) with p = |Jp|, its order. For any integral ideal f of A, let
F; = FN K; and F =FnN Kf Let GF be the character group of G with
values in C. A character X is called real if x(Jr) = 1 and nonreal otherwise.
We denote by @; the set of all real characters of Gg and @I_, = CA}F\CA;’;C We
also denote the conductor of a character x € G F by fy, which is an integral

ideal of A. For y € Gp and an ideal a of A, we define x(a) as follows. If
(a,fy) = ¢, we let x(a) = x(0a), where o4 = (a, F}, /k) is the Artin symbol.
If (a,fy) # e, we put x(a) = 0. Let h(F) and h(F™T) be the divisor class
number of F' and F7T, respectively. We have the following analytic class
number formulas (see [10, Chapter VII, §6, Theorem 4]):

nr) = YEEE Bal gy T 0w,

q—1 Led
1#xeGRr
Wt [Fpr : Fyl
(1.1) h(Ft) = % T zw0.%.
17&XeG+

where Lg(s, x) is the Artin L-function associated to the character x.

Let Of be the integral closure of A in F' and OF% be the unit group
of Op. Let h(Op) and h(Op+) be the ideal class number of O and Op+,
respectively. Then by [8, Lemma 4.1 and its Corollary], we have

dosh(F) = R(F)W(OF),  doch(F") = R(F ") (Op+),
where R(F) and R(FT) are the regulator of F' and F*, respectively. Let
Qo = [OF : O}, ] be the index of units.
LemMa 1.1, R(F) = o 57 R(F+) /Qo.

Proof. Following the proof of [12, Corollary 1.6], we get the result. We
note that “xQo” in [12] corresponds to ()¢ in our notation. m
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We recall the logarithm map Ir of F, which is defined by
lp: F* = Q[GFp], zw—lp(x Zvoo Y

ceG

where v, is the extension to {2 of the normalized valuation of k., at co. We
also write [}, = (1 — e1)lp. Here e; is the idempotent element associated to
the trivial character. Let et = s(Jp)/dp. Let Ry be the augmentation ideal
of R = Z|GF].

LEMMA 1.2. (e" Ry : Ip(O%)) = R(F).

Proof. As in [12, §4, (4.1)], this follows from the definition of the loga-
rithm map Iz and the regulator R(F). =

2. Maximal independent system of units. In this section, we fix
a finite abelian extension F/k with conductor m = [[7_, p;" and let G =
GF, R = Z|G] for simplicity. For any ideal f # ¢, we define
A = N yr (Ap)-
For any prime ideal p of A, let T, and D, be the inertia group and

decomposition group of p in G. Let F, € D, be a Frobenius automorphism
associated to p, which is determined modulo T,. We set 7, = F, 's(T},) /[Ty,

which is the unique element of C[G] satisfying x(7,) = X(p) for any x € G.
For any subset T' of G, we write s(T') = > .y 0 € Z[G]. We also define

we=Wao Y Li(0,X)ey,
x#1, real
where e, = (1/|G|) Y, e x(0)o ! is the idempotent element associated to
the character x.

LEMMA 2.1. For any integral ideal § of A, let Iy = Gal(F/F}). Then
(2.1) O e) = wps(I) TL0 =)

plf
Moreover, for x # 1 real,

X(Ie(A ) = Woo Li (0, %)X (s(I1)) [ (1 = X(0))-
plf

Proof. From [12, Proposition 3.1], we have I} (A1) = wi, [[,;(1 —7p)
€ Q[Gk;]. Applying the restriction map resg,/r, : Q[Gk;] — Q|GF] and
the corestriction map corg, /1 Q[Gr] — Q[G], we get (2.1). m

For any integral ideal n # ¢ of A, let N, be the subgroup of G Fi+ gener-
ated by the Artin symbols 7, = (p, F." /k) for all primes p | n. We choose an
ideal m’ which is coprime to m and Ny = G+. Let m = mm’ = Hfﬁ pit.
Let S = {1,...,s +t} and Pg be the set of all proper subsets of S. For
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each i € S, we write T; = Ty,,, D; = D,, and F; = F,, for simplicity. Let
ti = |Ti|, fi = |Dil/|Ti| and g; = |G|/|D;| be the ramification degree, iner-
tia degree and decomposition degree of p; in F', respectively. We also set
v; = Z;’:l F! € R. For each subset I of S, we also introduce the following

notations: My = [[,c; 07", Tr = [Lic; T, Dr = [l;e; Dis vi = [l vi and
nr = ([Lies ti)/|T1|. For each I € Pg, we put

A = NKW/KI/FW/WI (Aﬁ/m) = )\ﬁ/ﬁl,F-
For any given function 3 : Pg — R, we define

— H )\?Iﬂ(l)

IEPS

Since \7' € O% for any o € G, we have A(3)°"! € Of. Let R be a
system of representatives for G/Jp containing 1 and R* = R\{1}. Let Cj
be the subgroup of O% generated by Fi and {A(3)7"! : 0 € R*}. Let
r=[F*:k]—1.

THEOREM 2.2. For any function 3 : P — R, we have

. B Qo(g—1) W\ MOp+) .
Ok ol = Wg[Fp : F ]<5F> h(g) w

where

=TT 2 wlTu(8) [T - x00)].

x#1  IePg idl
real (fy,mMr)=e

Furthermore if ig = 0, then the index of Cg in OF is infinite.

Proof. Since kerlp N O = kerlp N Cg = F},, by Lemmas 1.1 and 1.2,
we have

(22)  [OF: Cl = [lr(OF) : 1r(Cp)] = (lr(OF) : € Ro)(e" Ro : 1r(C))
517[F+:k]QD
= e (€ R 16 (Cy)).

Now we consider the transition matrix of the generators {{r(A(8)°~!) :0 €
R*} of [(Cg) with respect to the basis {e* (671 — 1) : 0 € R*} of eTRy.
Since Jr is the inertia group of co and )\(ﬂ)ofl is a unit, we have

BT =D vAB) I =Y v (AB) T e (77— 1)

TEG TER*

= 3 5r(WaAB)7) — v AB) et (!~ 1).
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From the Dedekind determinant formula (cf. [9, Lemma 5.26]), we get
(23) ("R 1p(Cp)) = [et(Br(om(A(B)™) — v0u(A(B)) 1 0,7 € R)|

=TI X x(@)sroer(9)7)

x#1 c€R
real

_ ‘ H Z Z Umﬂ( ))‘.

x#1 I€ePg oG
real

Fix x # 1 real and I € Pg. Since Gal(F/Fg/w,) = 11, Lemma 2.1 yields

24) 3 X)) = MBI )

ceG

= X(BI))nWeo Li (0, %) x(s(T0)) [T (1 — X(p))-
idl
Note that if f, t m/m;, then x(s(77)) = 0. Thus by combining (2.2)-(2.4),
we get

(e Ry : Ir(Cpg))

=TI wots0.0|- | TT 3 malTulx(8) [T~ x(00)]

x#1 x#1 I€Pg i€l
real real (fy,mMr)=e

r (q - 1)h(F+) i
© WplFr : Flh(k) ©

where the second equality comes from the class number formula (1.1). Since
h(Ft) = R(FT)h(Op+)/ds and h(k) = h(A)/d~, we have completed the
proof of the theorem. =

A function 8 : Pg — R is called multiplicative if S(()) =1 and S(IUJ) =
B(I)3(J) whenever both sides are defined and the intersection IN.J is empty.
Clearly, a multiplicative function 3 is determined by the values 3({i}) and
these can be assigned arbitrarily. We denote 5({i}) by 5(¢) for simplicity.

PROPOSITION 2.3. For a multiplicative function 3 : Pg — R, we have

H H ZX +1_ (pz))

x#1real piffy
fx#e

s+t s+t

< T (TItx) +1=x)) - [Tt
x#lreal i=1 i=1
fx=¢
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Proof. For any nontrivial real character y, we consider the factor

Ty = Z nr|Tr|x(8(1)) H(l = X(pi))
e #

of iz in Theorem 2.2. We also consider Uy =[], (tix(8(7)) + 1 —X(pi))-
Since (3 is multiplicative, n;|T7| = [[;c; t: and

[T =xk)) = T (0 —xk),

igl igl
piﬁx
we have
o= > J[tx8@) [T @ - %)
IePs €l igl
(fx,mr)=e pitfx

Let Sy = {i € S : p; 1 fy}. Then, if f,, # e, the I which occur in the
summation for T} are exactly the subsets of S,. By expanding the product
Uy, we get T, = Uy. If f, = ¢, then S, becomes S and so [[;cqtix(8(4))
occurs in the expansion of U,. Therefore, we have T\ = U, — [[321 tix(3(i))
in the case f, = e. From this, the proposition follows. m

Now we choose a multiplicative function g : Pg — R with (i) = v;
for each 7 € S. Since A\; € Fig/m, and §([) is uniquely determined modulo
T; = Gal(F'/Fm,), Cp is independent of the choice of F;. Then as in the
rational function field case [4, Theorem 4.1], we have the following result.

PROPOSITION 2.4. Let 3 be as above. Let z; = |(Jp N D;)/(Jp N T;)|.
Then

s+t
Z,B _ HtEG:JFDi]—lfiQ[G:JFDi}_lzi—[G:JpDi]'
i=1
. . . . s+t ,9i—1 p2g;—1
In particular, if F/k is real, then ig = [[;2 ¢ f; )

Proof. Any unramified nontrivial character x may be viewed as a non-
trivial character of Gp+. Since Njw = Gp+, we have x(p;) # 1 for some

i € S. Thus x(v;) = 0 for such i € S and so [[71] x(B(i)) = 0. We follow
the argument in the proof of [4, Theorem 4.1] to get the result. =

Suppose F/k is a real extension. For any divisor n of m, let Kl =K K,
the compositum of K, and K,. Then \~! € K as in [12, Section 2] and

Nicu /)" = Nigg i, (Nig, et (A7)
w0 = <NK+/F,1<A‘J‘1>>€"1-

Thus for o € G, there exists e, € O% such that €&~ = A(3)7 ! and one can
construct €, explicitly from the above relation and the definition of A\(3). We



Mazimal independent system of units 273

define C’é as the subgroup of O}, generated by F},U{e, : 0 € G,0 # 1}. Then

it is easy to see that both Cz and C’/’6 are isomorphic to the augmentation
ideal Rg of R as R-module.

COROLLARY 2.5. When F/k is a real extension, we have

g—1 [ We \FH” 1h<0F Ty 20~
080 = 7 (1) ik

3. Comparison of indices. To compare our index with Xu-Zhao’s [11,
Theorem 1], we change the notations in [11] to ours. Then the index in [11,
Theorem 1] reads

O sen, D) = Tt (52) Hoe) i, ),

with m | n. We also note that the constant field of k in [11] is enlarged so that
[Fr : Fy] =1 in the Xu-Zhao’s index. Thus it suffices to compare ig in our
index with i(n, D). Note that our choice of m satisfies the condition i(m, D) #
0 in [11, Theorem 2|. Define Tp = {i € S : x(pi) = 1 for some nontrivial
X € Gp+}. For Ty CT C S, we let D=D(T) = {f/m; #£e¢: I CT}. For
any integral ideal a of A, let &(a) = [(A/a)*|. Then i(m, D) in [11, Theorem
1] can be written as

mo) =1 > o@)[]a-x)

x#l ICT,I#S igl
real (Wip,fy)=e

=| II I @) +1—xtoa) TT0—xte0)

x#1real €T T
fxie prX
11 (H )+ 1—x(p)) — 5T,S<p(m)) [Ja- x(m))(
x#lreal €T T
fx=¢

where 67 g = 1 if T'= S and 0 otherwise. If T" = S, the above index is
difficult to compute. Thus we assume that T' C S. For simplicity, we also
assume that F is real. Note that Tj is just the set of all 4 € I with ¢g; > 1
(cf. [9, Theorem 3.7]). Thus for ¢ ¢ T, both factors in ig and i(m, D) are
equal to f;. For ¢ € T, as in the proof of Proposition 2.4, we see that

e ((P(p5") + 1)fi — 1)9
(@(py") +1—x(ps)) = :
X#Hﬁfx ! (")

Note that ¢t; < @(p;*) and t; = 1 for i > s. It is easy to see that this factor

. —1 42g;—1
is greater than our factor ¢~ f; %

as in the rational function field case.



274

J. Ahn and H. Jung

So we have ig < i(m,D(T)). We also note that both ig and i(m, D) depend
on the choice of m.
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