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On the Waring–Goldbach problem
with small non-integer exponent

by

M. Z. Garaev (Taipei)

1. Introduction. I. I. Piatetski-Shapiro [6] considered the following
variant of the Waring–Goldbach problem. Let c > 1 be non-integer and
denote by H(c) the least k such that the inequality

|pc1 + pc2 + . . .+ pck −N | < ε

has a solution in prime numbers p1, p2, . . . , pk for every ε > 0 and N >
N0(c, ε). It is proved in [6] that

lim sup
c→∞

H(c)
c log c

≤ 4.

Piatetski-Shapiro also proved that if 1 < c < 3/2 then H(c) ≤ 5.
In this paper we sharpen the last result and prove the following theorem:

Theorem. If 1 < c ≤ (
√

5 + 1)/2 then H(c) ≤ 5.

It should be pointed out that if c is near to unity then H(c) ≤ 3. More
precisely D. I. Tolev [7] showed that if 1 < c < 15/14 then H(c) ≤ 3.
Afterwards several authors sharpened Tolev’s result improving on the range
for c (see [1], [3], [5]). The best improvement to date is due to A. Kumchev
[3]; he proved that H(c) ≤ 3 for 1 < c < 61/55. Note that from the result
of A. Kumchev and M. B. S. Laporta [4] it follows that H(c) ≤ 4 for 1 <
c < 6/5 and for almost all c ∈ (1, 2) (in the sense of Lebesgue measure). We
also refer the readers to [8].

2. Auxiliary lemmas. Set A = {n ∈ Z : P c−1/2 ≤ n ≤ P c−1},
B = {n ∈ Z : P/10 ≤ n ≤ P/5}.

Lemma 1. Let 1 < c ≤ (
√

5 + 1)/2. Then for any real N1 the number
of solutions of the inequality

2000 Mathematics Subject Classification: 11P05, 11P32.

[297]



298 M. Z. Garaev

|xc + yc − uc − vc −N1| < 1, x, u ∈ A, y, v ∈ B,(1)

is O(P c logP ).

Proof. For any given integer k the number Ik of solutions of the equation

[xc] + [yc] = [uc] + [vc] + k, x, u ∈ A, y, v ∈ B,
satisfies

Ik =
1�

0

∣∣∣
∑

x∈A

∑

y∈B
e2πiα([xc]+[yc])

∣∣∣
2
e−2πiαk dα.

Hence Ik ≤ I0. Furthermore, for any solution x, y, u, v of (1), one has

[xc] + [yc] = [uc] + [vc] +N1 + 4θ,

where |θ| ≤ 1, and N1 + 4θ is an integer. Therefore, if we prove that the
number J of solutions of the equation

[xc] + [yc] = [uc] + [vc], x, u ∈ A, y, v ∈ B,
is O(P c logP ) then we are done. To do that we follow our work [2].

Obviously

J < P c + 2
∑

1≤l<P c−1

Jl,(2)

where Jl denotes the number of solutions of the equation

[xc] + [yc] = [(x+ l)c] + [zc], x, x+ l ∈ A, y, z ∈ B.
In order to estimate Jl we fix x = x0 = x0(l) such that Jl < P c−1J ′l where
J ′l denotes the number of solutions of the equation

[xc0] + [yc] = [(x0 + l)c] + [zc], y, z ∈ B,
in variables y, z. It then follows that

yc − zc < (x0 + l)c − xc0 + 2.

Since x0 + l ∈ A, z ∈ B, we have

0 < (y − z)P c−1 < c1lP
(c−1)2

, i.e. 0 < y − z < c1lP
c2−3c+2.

Therefore

Jl < P c−1
∑

m<c1lP c
2−3c+2

J ′l (m)(3)

where J ′l (m) denotes the number of solutions in z of the equation

[(z +m)c]− [zc] = a, z, z +m ∈ B,(4)

where a = a(m,P ) is some fixed integer.
Suppose that z0 is the smallest solution of (4). Then for any other solu-

tion z of (4),
(z +m)c − zc < (z0 +m)c − zc0 + 4.
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This inequality can be written as

c(c− 1)
z�

z0

m�

0

(φ+ ψ)c−2 dφ dψ < 4.

Hence

0 ≤ c2(z − z0)mP c−2 < 4, i.e. J ′l (m) ≤ c3(1 + P 2−cm−1).

In view of (3) we obtain

Jl �c lP
c2−2c+1 + P logP

and therefore in view of (2),

J �c P
c2−1 + P c logP.

Since c ≤ (
√

5 + 1)/2, the result follows.

For the proof of the following three lemmas see [6].

Lemma 2. Let s be a positive integer ,

δ > 0, ∆ > sδ, Φs(ξ) =
sin(∆ξ) sins(δξ)

δsξs+1

and

φs(y) =
1
π

∞�

−∞
Φs(ξ)eiξy dξ.

Then

φs(y) =
{

0 if |y| ≥ ∆+ sδ,

1 if |y| ≤ ∆− sδ,
and also

0 < φs < 1 if ∆− sδ < |y| < ∆+ sδ.

Furthermore, if k ≥ 0 is an integer and s ≥ k + 2, then

g(y) =
∞�

−∞
|Φs(ξ)ξk|e−iξy dξ = O(y−2) as y →∞.

Define
S(ξ) =

∑

P/2<p≤2P

eiξp
c
.

Lemma 3. Let H = e
√

logP , P c/2 < N1 < P c. Then under the assump-
tions of Lemma 2 we have

1
π

�

|ξ|<HP−c
Φs(ξ)S(ξ)e−iξN1 dξ � P 1−c

logP
.
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Lemma 4. For any fixed m,

max
HP−c<ξ<logP

|S(ξ)| � P

logm P
.

3. Proof of the Theorem. The proof is similar to one in [6]. Let
N > N0(c, ε) be a large enough real number, P = N 1/c. We shall prove that
the inequality

|pc + pc1 + pc2 + pc3 + pc4 −N | < ε(5)

is solvable in prime numbers subject to

P/2 < p < 2P, p1, p3 ∈ A, p2, p4 ∈ B.
Set ∆ = ε/2, δ = ε/50, s = 20 and Φ(ξ) = Φ20(ξ). From Lemma 2 it

follows that the number J of solutions of inequality (5) satisfies

J ≥ 1
π

∞�

−∞
Φ(ξ)S2

A(ξ)S2
B(ξ)S(ξ)e−iξN dξ

where
SA(ξ) =

∑

p∈A
eiξp

c
, SB(ξ) =

∑

p∈B
eiξp

c
.

Therefore
πJ > J1 + J2 + J3(6)

where
J1 =

�

|ξ|<HP−c
Φ(ξ)S2

A(ξ)S2
B(ξ)S(ξ)e−iξN dξ,

J2 =
�

HP−c<|ξ|<logP

Φ(ξ)S2
A(ξ)S2

B(ξ)S(ξ)e−iξN dξ,

J3 =
�

|ξ|>logP

Φ(ξ)S2
A(ξ)S2

B(ξ)S(ξ)e−iξN dξ.

From now on, all constants implicit in the Vinogradov symbols � and
� may depend on c and ε.

We estimate J1 from below using Lemma 3. If N1 = N − pc1 − . . . − pc4
then P c/2 < N1 < P c. Hence

J1 =
∑

p1,p3∈A

∑

p2,p4∈B

�

|ξ|<HP−c
Φ(ξ)S(ξ)e−iξN1 dξ�

(
P c−1

logP

)2( P

logP

)2P 1−c

logP
,

i.e.

J1 �
P c+1

log5 P
.(7)
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Now we shall obtain upper bounds for J2, J3. Since
∑

p1,p3∈A

∑

p2,p4∈B
eiξ(p

c
1+pc2−pc3−pc4)

is a non-negative real number for any real ξ, Lemma 4 (with m = 10) yields

J2 �
P

log10 P

∑

p1,p3∈A

∑

p2,p4∈B

∞�

−∞
|Φ(ξ)|eiξ(pc1+pc2−pc3−pc4) dξ.

Now we make use of Lemma 1. For any integer j there exists tj ∈ (j−1, j+1)
such that

J2 �
P

log10 P
P c logP

∑

j

∣∣∣
∞�

−∞
|Φ(ξ)|eiξtj dξ

∣∣∣.

Therefore from the second part of Lemma 2 we derive

J2 �
P c+1

log9 P
.(8)

For J3 we use the trivial estimation of S(ξ):

J3 ≤ P
�

|ξ|>logP

|Φ(ξ)S2
A(ξ)S2

B(ξ)| dξ

≤ P

log10 P

�

|ξ|>logP

|ξ10Φ(ξ)S2
A(ξ)S2

B(ξ)| dξ,

i.e.

J3 ≤
P

log10 P

∑

p1,p3∈A

∑

p2,p4∈B

∞�

−∞
|ξ10Φ(ξ)|eiξ(pc1+pc2−pc3−pc4) dξ.

Now as in the case of J2 we obtain

J3 �
P c+1

log9 P
.(9)

Thus from (6)–(9) we obtain J � P c+1/log5 P.
The Theorem is proved.
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