On the Waring-Goldbach problem with small non-integer exponent

by
M. Z. Garaev (Taipei)

1. Introduction. I. I. Piatetski-Shapiro [6] considered the following variant of the Waring-Goldbach problem. Let $c>1$ be non-integer and denote by $H(c)$ the least k such that the inequality

$$
\left|p_{1}^{c}+p_{2}^{c}+\ldots+p_{k}^{c}-N\right|<\varepsilon
$$

has a solution in prime numbers $p_{1}, p_{2}, \ldots, p_{k}$ for every $\varepsilon>0$ and $N>$ $N_{0}(c, \varepsilon)$. It is proved in [6] that

$$
\limsup _{c \rightarrow \infty} \frac{H(c)}{c \log c} \leq 4
$$

Piatetski-Shapiro also proved that if $1<c<3 / 2$ then $H(c) \leq 5$.
In this paper we sharpen the last result and prove the following theorem:
Theorem. If $1<c \leq(\sqrt{5}+1) / 2$ then $H(c) \leq 5$.
It should be pointed out that if c is near to unity then $H(c) \leq 3$. More precisely D. I. Tolev [7] showed that if $1<c<15 / 14$ then $H(c) \leq 3$. Afterwards several authors sharpened Tolev's result improving on the range for c (see [1], [3], [5]). The best improvement to date is due to A. Kumchev [3]; he proved that $H(c) \leq 3$ for $1<c<61 / 55$. Note that from the result of A. Kumchev and M. B. S. Laporta [4] it follows that $H(c) \leq 4$ for $1<$ $c<6 / 5$ and for almost all $c \in(1,2)$ (in the sense of Lebesgue measure). We also refer the readers to [8].
2. Auxiliary lemmas. Set $A=\left\{n \in \mathbb{Z}: P^{c-1} / 2 \leq n \leq P^{c-1}\right\}$, $B=\{n \in \mathbb{Z}: P / 10 \leq n \leq P / 5\}$.

Lemma 1. Let $1<c \leq(\sqrt{5}+1) / 2$. Then for any real N_{1} the number of solutions of the inequality

[^0]\[

$$
\begin{equation*}
\left|x^{c}+y^{c}-u^{c}-v^{c}-N_{1}\right|<1, \quad x, u \in A, y, v \in B \tag{1}
\end{equation*}
$$

\]

is $O\left(P^{c} \log P\right)$.
Proof. For any given integer k the number I_{k} of solutions of the equation

$$
\left[x^{c}\right]+\left[y^{c}\right]=\left[u^{c}\right]+\left[v^{c}\right]+k, \quad x, u \in A, y, v \in B
$$

satisfies

$$
I_{k}=\int_{0}^{1}\left|\sum_{x \in A} \sum_{y \in B} e^{2 \pi i \alpha\left(\left[x^{c}\right]+\left[y^{c}\right]\right)}\right|^{2} e^{-2 \pi i \alpha k} d \alpha
$$

Hence $I_{k} \leq I_{0}$. Furthermore, for any solution x, y, u, v of (1), one has

$$
\left[x^{c}\right]+\left[y^{c}\right]=\left[u^{c}\right]+\left[v^{c}\right]+N_{1}+4 \theta
$$

where $|\theta| \leq 1$, and $N_{1}+4 \theta$ is an integer. Therefore, if we prove that the number J of solutions of the equation

$$
\left[x^{c}\right]+\left[y^{c}\right]=\left[u^{c}\right]+\left[v^{c}\right], \quad x, u \in A, y, v \in B
$$

is $O\left(P^{c} \log P\right)$ then we are done. To do that we follow our work [2].
Obviously

$$
\begin{equation*}
J<P^{c}+2 \sum_{1 \leq l<P^{c-1}} J_{l} \tag{2}
\end{equation*}
$$

where J_{l} denotes the number of solutions of the equation

$$
\left[x^{c}\right]+\left[y^{c}\right]=\left[(x+l)^{c}\right]+\left[z^{c}\right], \quad x, x+l \in A, y, z \in B .
$$

In order to estimate J_{l} we fix $x=x_{0}=x_{0}(l)$ such that $J_{l}<P^{c-1} J_{l}^{\prime}$ where J_{l}^{\prime} denotes the number of solutions of the equation

$$
\left[x_{0}^{c}\right]+\left[y^{c}\right]=\left[\left(x_{0}+l\right)^{c}\right]+\left[z^{c}\right], \quad y, z \in B
$$

in variables y, z. It then follows that

$$
y^{c}-z^{c}<\left(x_{0}+l\right)^{c}-x_{0}^{c}+2
$$

Since $x_{0}+l \in A, z \in B$, we have

$$
0<(y-z) P^{c-1}<c_{1} l P^{(c-1)^{2}}, \quad \text { i.e. } \quad 0<y-z<c_{1} l P^{c^{2}-3 c+2}
$$

Therefore

$$
\begin{equation*}
J_{l}<P^{c-1} \sum_{m<c_{1} l P^{c^{2}-3 c+2}} J_{l}^{\prime}(m) \tag{3}
\end{equation*}
$$

where $J_{l}^{\prime}(m)$ denotes the number of solutions in z of the equation

$$
\begin{equation*}
\left[(z+m)^{c}\right]-\left[z^{c}\right]=a, \quad z, z+m \in B \tag{4}
\end{equation*}
$$

where $a=a(m, P)$ is some fixed integer.
Suppose that z_{0} is the smallest solution of (4). Then for any other solution z of (4),

$$
(z+m)^{c}-z^{c}<\left(z_{0}+m\right)^{c}-z_{0}^{c}+4
$$

This inequality can be written as

$$
c(c-1) \int_{z_{0}}^{z} \int_{0}^{m}(\phi+\psi)^{c-2} d \phi d \psi<4
$$

Hence

$$
0 \leq c_{2}\left(z-z_{0}\right) m P^{c-2}<4, \quad \text { i.e. } \quad J_{l}^{\prime}(m) \leq c_{3}\left(1+P^{2-c} m^{-1}\right)
$$

In view of (3) we obtain

$$
J_{l}<_{c} l P^{c^{2}-2 c+1}+P \log P
$$

and therefore in view of (2),

$$
J<_{c} P^{c^{2}-1}+P^{c} \log P
$$

Since $c \leq(\sqrt{5}+1) / 2$, the result follows.
For the proof of the following three lemmas see [6].
Lemma 2. Let s be a positive integer,

$$
\delta>0, \quad \Delta>s \delta, \quad \Phi_{s}(\xi)=\frac{\sin (\Delta \xi) \sin ^{s}(\delta \xi)}{\delta^{s} \xi^{s+1}}
$$

and

$$
\phi_{s}(y)=\frac{1}{\pi} \int_{-\infty}^{\infty} \Phi_{s}(\xi) e^{i \xi y} d \xi
$$

Then

$$
\phi_{s}(y)= \begin{cases}0 & \text { if }|y| \geq \Delta+s \delta \\ 1 & \text { if }|y| \leq \Delta-s \delta\end{cases}
$$

and also

$$
0<\phi_{s}<1 \quad \text { if } \Delta-s \delta<|y|<\Delta+s \delta
$$

Furthermore, if $k \geq 0$ is an integer and $s \geq k+2$, then

$$
g(y)=\int_{-\infty}^{\infty}\left|\Phi_{s}(\xi) \xi^{k}\right| e^{-i \xi y} d \xi=O\left(y^{-2}\right) \quad \text { as } y \rightarrow \infty
$$

Define

$$
S(\xi)=\sum_{P / 2<p \leq 2 P} e^{i \xi p^{c}}
$$

Lemma 3. Let $H=e^{\sqrt{\log P}}, P^{c} / 2<N_{1}<P^{c}$. Then under the assumptions of Lemma 2 we have

$$
\frac{1}{\pi} \int_{|\xi|<H P^{-c}} \Phi_{s}(\xi) S(\xi) e^{-i \xi N_{1}} d \xi \gg \frac{P^{1-c}}{\log P}
$$

Lemma 4. For any fixed m,

$$
\max _{H P^{-c}<\xi<\log P}|S(\xi)| \ll \frac{P}{\log ^{m} P}
$$

3. Proof of the Theorem. The proof is similar to one in [6]. Let $N>N_{0}(c, \varepsilon)$ be a large enough real number, $P=N^{1 / c}$. We shall prove that the inequality

$$
\begin{equation*}
\left|p^{c}+p_{1}^{c}+p_{2}^{c}+p_{3}^{c}+p_{4}^{c}-N\right|<\varepsilon \tag{5}
\end{equation*}
$$

is solvable in prime numbers subject to

$$
P / 2<p<2 P, \quad p_{1}, p_{3} \in A, p_{2}, p_{4} \in B
$$

Set $\Delta=\varepsilon / 2, \delta=\varepsilon / 50, s=20$ and $\Phi(\xi)=\Phi_{20}(\xi)$. From Lemma 2 it follows that the number J of solutions of inequality (5) satisfies

$$
J \geq \frac{1}{\pi} \int_{-\infty}^{\infty} \Phi(\xi) S_{A}^{2}(\xi) S_{B}^{2}(\xi) S(\xi) e^{-i \xi N} d \xi
$$

where

$$
S_{A}(\xi)=\sum_{p \in A} e^{i \xi p^{c}}, \quad S_{B}(\xi)=\sum_{p \in B} e^{i \xi p^{c}}
$$

Therefore

$$
\begin{equation*}
\pi J>J_{1}+J_{2}+J_{3} \tag{6}
\end{equation*}
$$

where

$$
\begin{aligned}
J_{1} & =\int_{|\xi|<H P^{-c}} \Phi(\xi) S_{A}^{2}(\xi) S_{B}^{2}(\xi) S(\xi) e^{-i \xi N} d \xi \\
J_{2} & =\int_{H P^{-c}<|\xi|<\log P} \Phi(\xi) S_{A}^{2}(\xi) S_{B}^{2}(\xi) S(\xi) e^{-i \xi N} d \xi \\
J_{3} & =\int_{|\xi|>\log P} \Phi(\xi) S_{A}^{2}(\xi) S_{B}^{2}(\xi) S(\xi) e^{-i \xi N} d \xi
\end{aligned}
$$

From now on, all constants implicit in the Vinogradov symbols \ll and \gg may depend on c and ε.

We estimate J_{1} from below using Lemma 3. If $N_{1}=N-p_{1}^{c}-\ldots-p_{4}^{c}$ then $P^{c} / 2<N_{1}<P^{c}$. Hence

$$
J_{1}=\sum_{p_{1}, p_{3} \in A} \sum_{p_{2}, p_{4} \in B} \int_{|\xi|<H P^{-c}} \Phi(\xi) S(\xi) e^{-i \xi N_{1}} d \xi \gg\left(\frac{P^{c-1}}{\log P}\right)^{2}\left(\frac{P}{\log P}\right)^{2} \frac{P^{1-c}}{\log P}
$$

i.e.

$$
\begin{equation*}
J_{1} \gg \frac{P^{c+1}}{\log ^{5} P} \tag{7}
\end{equation*}
$$

Now we shall obtain upper bounds for J_{2}, J_{3}. Since

$$
\sum_{p_{1}, p_{3} \in A} \sum_{p_{2}, p_{4} \in B} e^{i \xi\left(p_{1}^{c}+p_{2}^{c}-p_{3}^{c}-p_{4}^{c}\right)}
$$

is a non-negative real number for any real ξ, Lemma 4 (with $m=10$) yields

$$
J_{2} \ll \frac{P}{\log ^{10} P} \sum_{p_{1}, p_{3} \in A} \sum_{p_{2}, p_{4} \in B} \int_{-\infty}^{\infty}|\Phi(\xi)| e^{i \xi\left(p_{1}^{c}+p_{2}^{c}-p_{3}^{c}-p_{4}^{c}\right)} d \xi
$$

Now we make use of Lemma 1. For any integer j there exists $t_{j} \in(j-1, j+1)$ such that

$$
J_{2} \ll \frac{P}{\log ^{10} P} P^{c} \log P \sum_{j}\left|\int_{-\infty}^{\infty}\right| \Phi(\xi)\left|e^{i \xi t_{j}} d \xi\right|
$$

Therefore from the second part of Lemma 2 we derive

$$
\begin{equation*}
J_{2} \ll \frac{P^{c+1}}{\log ^{9} P} \tag{8}
\end{equation*}
$$

For J_{3} we use the trivial estimation of $S(\xi)$:

$$
\begin{aligned}
J_{3} & \leq P \int_{|\xi|>\log P}\left|\Phi(\xi) S_{A}^{2}(\xi) S_{B}^{2}(\xi)\right| d \xi \\
& \leq \frac{P}{\log ^{10} P} \int_{|\xi|>\log P}\left|\xi^{10} \Phi(\xi) S_{A}^{2}(\xi) S_{B}^{2}(\xi)\right| d \xi
\end{aligned}
$$

i.e.

$$
J_{3} \leq \frac{P}{\log ^{10} P} \sum_{p_{1}, p_{3} \in A} \sum_{p_{2}, p_{4} \in B} \int_{-\infty}^{\infty}\left|\xi^{10} \Phi(\xi)\right| e^{i \xi\left(p_{1}^{c}+p_{2}^{c}-p_{3}^{c}-p_{4}^{c}\right)} d \xi
$$

Now as in the case of J_{2} we obtain

$$
\begin{equation*}
J_{3} \ll \frac{P^{c+1}}{\log ^{9} P} \tag{9}
\end{equation*}
$$

Thus from (6)-(9) we obtain $J \gg P^{c+1} / \log ^{5} P$.
The Theorem is proved.
Acknowledgements. The author would like to thank the referee for several corrections.

References

[1] Y.-C. Cai, On a diophantine inequality involving prime numbers, Acta Math. Sinica 39 (1996), 733-742 (in Chinese).
[2] M. Z. Garaev, On lower bounds for the L_{1}-norm of exponential sums, Math. Notes 68 (2000), 713-720.
[3] A. Kumchev, A diophantine inequality involving prime powers, Acta Arith. 89 (1999), 311-330.
[4] A. Kumchev and M. B. S. Laporta, On a binary diophantine inequality involving prime powers, in: Number Theory for the Millennium II, A K Peters, 2002, 307-329.
[5] A. Kumchev and T. Nedeva, On an equation with prime numbers, Acta Arith. 83 (1998), 117-126.
[6] I. I. Piatetski-Shapiro, On a variant of Waring-Goldbach's problem, Mat. Sb. 30 (1952), 105-120 (in Russian).
[7] D. I. Tolev, On a diophantine inequality involving prime numbers, Acta Arith. 61 (1992), 289-306.
[8] -, On a system of two diophantine inequalities with prime numbers, ibid. 69 (1995), 387-400.

Institute of Mathematics
Academia Sinica
Taipei 11529, Taiwan
Republic of China
E-mail: garaev@math.sinica.edu.tw

Received on 13.3.2002
and in revised form on 29.10.2002

[^0]: 2000 Mathematics Subject Classification: 11P05, 11P32.

