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0. Introduction. We investigate the distribution of non-negative mul-
tiplicative functions on arithmetic progressions. More precisely, we are mo-
tivated by the following problem. When does the inequality

∑

n≤x
n≡a (mod q)

f(n)� 1
ϕ(q)

∑

n≤x
(n,q)=1

f(n)

hold, where f is a non-negative multiplicative function and ϕ is Euler’s
totient function? Note that such an inequality is an analogue of the Brun–
Titchmarsh inequality in the theory of the distribution of prime numbers.
The following conjecture appears to have been first formulated in [Ba1].
Here and throughout the paper we use the letter p to denote a prime.

Conjecture. Fix ε, 0 < ε ≤ 1/2. Let x ≥ 3 and a and q be integers
(not necessarily coprime) with 1 ≤ q ≤ x1−ε. Then

(0.1)
∑

n≤x
n≡a (mod q)

f(n)�ε
1

ϕ(q)

∑

n≤x
(n,q)=1

f(n),

uniformly for all multiplicative functions f satisfying 0 ≤ f ≤ 1 and

(0.2)
∑

p≤x

f(p)
p
≥ ε log log x.

Our new results represent only a modest step in this direction but they
do provide some evidence in support of this conjecture. In particular, we
obtain a logarithmic form of (0.1) (Theorem 1) and show that, in a certain
sense, the conjecture is true on average (Theorem 2). Furthermore, there is
at least one interesting application (please see below) where our results can
be used successfully in place of (0.1).
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Before stating our new results we give a brief discussion of what is known
on this topic (we refer the reader to [Ba1] for a more thorough discussion).
Asymptotic results of the form

∑

n≤x
n≡a (mod q)

g(n) ∼ 1
ϕ(q)

∑

n≤x
(n,q)=1

g(n),

where (a, q) = 1 and g is a complex-valued multiplicative function satisfying
|g| ≤ 1, have been obtained by A. Hildebrand [Hi] and in a series of papers
by P. D. T. A. Elliott. The best such result is due to Elliott and is found in
the latest paper of this series [El]. As one might expect, this is a very difficult
problem and such asymptotic formulae are known to hold in rather limited
ranges. For the sake of brevity we refrain from giving the exact statement of
Elliott’s result and simply mention that it does not imply (0.1) unless the
function f and modulus q satisfy

∑

n≤x
f(n)� x

(
log log x+ log q

log x

)1/8

.

Given a non-negative multiplicative function f set

S(x) = S(f ;x) =
∑

p≤x

f(p)
p

,(0.3)

Sq(x) =
∑

p≤x
(p,q)=1

f(p)
p
.(0.4)

Furthermore, let F denote the class of multiplicative functions f satisfying
0 ≤ f ≤ 1. The best-known result in the direction of (0.1) is due to P. Shiu
[Sh], a special case of which is the following estimate (see Lemma 2 for the
full strength of what was proved in [Sh]). Given ε, 0 < ε ≤ 1/2, we have

(0.5)
∑

x−y<n≤x
n≡a (mod q)

f(n)�ε
y

ϕ(q) logx
eSq(x),

uniformly for all f ∈ F and all x ≥ 3, y, a and q satisfying

(a, q) = 1, 1 ≤ q ≤ y1−ε, xε ≤ y ≤ x.
This estimate is sharp in the sense that there are functions f ∈ F for which
(0.5) holds with� replaced by�. Furthermore, (0.5) implies (0.1) for those
functions f ∈ F which satisfy

(0.6)
∑

n≤x
(n,q)=1

f(n) � x

log x
eSq(x),
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in view of an estimate of R. R. Hall [Ha] which shows that (0.6) with �
replaced by � is always true.

It is worth emphasizing that while (0.5) holds uniformly for all f ∈ F ,
the assumption (0.2) is certainly necessary for the validity of (0.1). To see
this, take f to be a completely multiplicative function whose value on primes
is given by f(p) = 1 if p ≡ 1 (mod q), and 0 otherwise, and take a = 1 on
the left-hand side of (0.1). We further remark that finding a useful general
criterion which implies (0.6) is itself an interesting problem. Assuming that
f is supported on a positive proportion of primes in the sense of (0.2) is
certainly not sufficient. To see this take f = fy to be a characteristic function
of y-smooth numbers, i.e., a completely multiplicative function with values
on primes given by f(p) = 1 or 0, as p ≤ y or > y. In fact, we believe that
this function is a good test function for our conjecture. It is of note that
even though this function has been extensively investigated (please see the
excellent survey [HT]), it is not even known if the claim of the conjecture is
true with this choice of the function f (see discussion in [Ba1], and [Gr] for
the best-available estimate in this special case).

1. Statement of results. In view of the somewhat technical nature of
our main result Theorem 0, we begin with some of its applications. A loga-
rithmic form of (0.1) was obtained by the author in [Ba1]. A special case of
that result gives the bound

(1.1)
∑

n≤x
n≡a (mod q)

f(n)
n
�ε

1
ϕ(q)

∑

n≤x
(n,q)=1

f(n)
n

,

uniformly for all f ∈ F satisfying (0.2) and (a, q) = 1 with

(1.2) q ≤
∑

n≤x

f(n)
n

.

This result is best possible since (1.1) may not hold unless both (0.2)
and (1.2) are satisfied. The example of the previous section we used to show
that (0.1) may fail if (0.2) is not satisfied also shows that (1.1) may fail in
this case. The severe restriction on the size of q (1.2) is seen to be necessary
simply because otherwise the first term on the left-hand side of (1.1) could
already be larger than the entire right-hand side of (1.1). Thus for large q
one should consider instead a more interesting problem of obtaining bounds
of the form

(1.3)
∑

x0≤n≤x
n≡a (mod q)

f(n)
n
� 1

ϕ(q)

∑

n≤x
(n,q)=1

f(n)
n

,

with x0 ≥ q. Our first result gives such an estimate with x0 = q1+ε. In fact,
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this and the following results are applicable to a larger class of functions
than the class F , a class which we now define. For any real numbers A ≥ 1
and γ ≥ 0, let FA,γ be the class of non-negative multiplicative functions f
satisfying

(1.4)
{
f(pν) ≤ Aν for all primes p and ν = 1, 2, . . . ,
f(n) ≤ Anγ for all natural numbers n.

Theorem 1. Fix ε, 0 < ε ≤ 1/2. Then
∑

q1+ε≤n≤x
n≡a (mod q)

f(n)
n
�ε

1
ϕ(q)

∑

n≤x
(n,q)=1

f(n)
n

,

uniformly for all x ≥ q1+ε, arbitrary a, and all functions f ∈ F satisfying

(1.5) S(x)− S(q) =
∑

q<p≤x

f(p)
p
≥ ε

∑

q<p≤x

1
p
.

Furthermore, if the residue a is assumed to be coprime with q, then there
exists a constant γε > 0, depending only on ε, such that the same inequality
holds, with �ε replaced by �A,ε, uniformly for all f ∈ FA,γε.

Our second result shows that (0.1) is true on average. To this end let us
introduce the following notation. Given a function f and a modulus q we
set

M(y) =
1
y

∑

n≤y
(n,q)=1

f(n),(1.6)

Mq(y) = max
a (mod q)

1
y

∑

n≤y
n≡a (mod q)

f(n).(1.7)

According to the conjecture we expect that if y ≥ q1+ε and if f is supported
on the positive proportion of primes up to y, then Mq(y)�M(y)/ϕ(q). We
will prove

Theorem 2. Fix ε, 0 < ε ≤ 1/2. Then

(1.8)
∑

q1+ε≤2i≤x
Mq(2i)�ε

1
ϕ(q)

∑

2i≤x
M(2i),

uniformly for all x ≥ q1+ε and all functions f ∈ F satisfying (1.5). Further-
more, if we restrict the definition of Mq(y) by taking the maximum in (1.7)
only over (a, q) = 1, then there exists a constant γε > 0, depending only on
ε, such that the same inequality holds, with �ε replaced by �A,ε, uniformly
for all f ∈ FA,γε .
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Theorems 1 and 2 provide some evidence in support of the conjecture,
although they obviously fall well short of the mark. Even the logarithmic
form of (0.1) is not entirely settled. In particular, it seems that the estimate

∑

q<n≤q2

n≡a (mod q)

f(n)
n
� 1

ϕ(q)

∑

n≤q2

(n,q)=1

f(n)
n

ought to be true for those functions f ∈ F satisfying S(q) � log log q, but
this remains an open problem.

We now turn to our main result of which the first two theorems are
simple corollaries.

Theorem 0. Let an arbitrary natural number q and a triple of real
numbers τ ≥ 3, b > 1 and ε > 0 be given. Then for any two sequences of
real numbers xi and yi, 1 ≤ i ≤ κ, satisfying the conditions

(1.9) y1 ≥ (qτ)1+ε, yi+1 ≥ byi, and yi ≤ xi ≤ τyi,
and an arbitrary sequence of integers ai, we have

(1.10)
∑

1≤i≤κ

1
yi

∑

xi−yi<n≤xi
n≡ai (mod q)

f(n)

�ε,b min
(

1,
∑

1≤i≤κ

1
log xi

)
1

ϕ(q)

(
eSq(x1)

(
log xκ
log x1

)ε
+ eSq(xκ)

)
,

uniformly for all f ∈ F . Furthermore, if the sequence ai is assumed to be
coprime with q, then there exists a constant γε > 0, depending only on ε,
such that the same inequality holds, with �ε,b replaced by �A,ε,b, uniformly
for all f ∈ FA,γε .

For the subclasses of F and FA,γ consisting of functions f supported
on the positive proportion of primes in the interval (x1, xκ] we immediately
obtain the following corollary. Here and below we use log2 as an abbreviation
for log log.

Corollary 3. If all the hypotheses of Theorem 0 hold , then

(1.11)
∑

1≤i≤κ

1
yi

∑

xi−yi<n≤xi
n≡ai (mod q)

f(n)�ε,b min
(

1,
∑

1≤i≤κ

1
log xi

)
1

ϕ(q)
eSq(xκ),

uniformly for all the functions f ∈ F satisfying

S(xκ)− S(x1) = Sq(xκ)− Sq(x1)(1.12)

=
∑

x1<p≤xκ

f(p)
p
≥ ε(log2 xκ − log2 x1).
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Furthermore, if the sequence ai is assumed to be coprime with q, then there
exists a constant γε > 0, depending only on ε, such that the same inequality
holds, with �ε,b replaced by �A,ε,b, uniformly for all f ∈ FA,γε.

Next we make several remarks focusing on the cleaner estimate of the
corollary. Basically, Corollary 3 is a more general form of Theorem 2 showing
that the conjecture is true on average. In fact, Theorem 2 is equivalent to
Corollary 3 with b = 2 and yi = xi = 2i0+i, 1 ≤ i ≤ κ, where i0 =
blog q1+ε/log 2c and κ � log q, as is readily apparent from the proof of
that theorem. Since it is obvious that there are examples for which (1.8)
holds with � replaced by �, it is then immediate that the same is true
for (1.11). In fact, one can give such examples with functions f satisfying
S(x) = λ log2 x+O(1), for any 0 < λ ≤ 1.

To note some quantitative aspects of (1.11) let us now assume, for sim-
plicity, that f ∈ F . Then estimating sums over n on the left-hand side of
(1.11) by yi/q yields the trivial bound κ/q. Furthermore, by (1.9), each sum
over n on the left-hand side of (1.11) can be estimated by Shiu’s bound (0.5)
yielding

∑

1≤i≤κ

1
yi

∑

xi−yi<n≤xi
n≡ai (mod q)

f(n)�ε
1

ϕ(q)

∑

1≤i≤κ

1
log xi

eSq(xi)(1.13)

� 1
ϕ(q)

eSq(xκ)
∑

1≤i≤κ

1
log xi

,

by (0.4) and (1.9). Thus, if log xκ � log x1, then we obtain in this way the
bound

∑

1≤i≤κ

1
yi

∑

xi−yi<n≤xi
n≡ai (mod q)

f(n)�ε
1

ϕ(q)
· κ

log xκ
eSq(xκ)(1.14)

� κ

q
exp
(
−

∑

p≤xκ
(p,q)=1

1− f(p)
p

)
,

by (0.4) and Mertens’s formula. In this form the savings over the trivial
bound are immediately apparent and in general this bound is optimal.

The condition log xκ � log x1 translates into the sum over i being
“short” and “dense”. For longer sums (1.13) gives only the estimate which
is by a factor (log2 xκ − log2 x1) worse than (1.11). In view of the fact that
Sq(xκ) ≤ log2 xκ + O(1), this loss, which could be of size log2 xκ, is quite
substantial. An obvious strategy for additional savings is to take advantage
of the fact that for typical i < j we have Sq(xi) < Sq(xj). This, however,
appears to be a non-trivial matter and the argument of the present paper
exploiting this fact is somewhat lengthy.
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If κ �b log xκ, i.e., if summation over i is “long” and “dense”, then (1.11)
is equivalent to (1.14). In this case too our estimate is in general optimal,
as we already observed by relating it to Theorem 2.

Thus we have seen that if the ratios yi+1/yi or, equivalently, xi+1/xi are,
on average, not too large, i.e., the sum over i is “dense” (short or long), then
our estimate is equivalent to (1.14).

It is then natural to ask if (1.14) holds in general. The answer is no.
For example, let us take κ = 2 and log x2 = (log x1)2. One can then readily
construct examples of functions f for which (1.13) holds with � replaced
by �. It now follows that, in this case, (1.14) fails. This construction easily
generalizes to arbitrary κ and sufficiently sparse sequences xi.

Finally, we note that aside from providing evidence in support of the con-
jecture these results can be used in place of it for the purpose of estimating
certain exponential sums. More precisely, set

G(x, α) =
∑

n≤x
g(n)e2πiαn,

where α is real and g is a complex-valued multiplicative function.
The problem of providing estimates for G(x, α) valid uniformly for large

classes of functions g, e.g., |g| ≤ 1, has been initiated by H. Daboussi and
H. Delange [Da], [DD1] and [DD2]. The best-known result here is due to
H. L. Montgomery and R. C. Vaughan [MV], a special case of which is as
follows. Suppose that |α − s/r| ≤ 1/r2 and 2 ≤ R ≤ r ≤ x/R for some
coprime integers s and r. Then we have

G(x, α)� x

log x
+

x√
R

(logR)3/2,

uniformly for all |g| ≤ 1. Using Corollary 3 we can now strengthen this
estimate to

G(x, α)�λ
x

log x
+

x√
R

exp
(
−
∑

p≤x

1− |g(p)|
p

)
(logR)1/2(log2R)3/2,

valid uniformly for all |g| ≤ 1 satisfying
∑

p≤x

|g(p)|
p
≥ λ log2 x (λ > 0).

We refer the reader to [Ba2] for a more thorough discussion of this topic
as well as for several other variants of the latter result. The proofs of our
exponential sums estimates will be contained in the forthcoming paper [Ba3].

2. Preliminaries. In this section we collect various lemmas needed for
the proofs of our main results.
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Lemma 1. We have
∑

n≤x
(n,q)=1

f(n)
n
�A eSq(x),

uniformly for all f ∈ FA,1/3, x ≥ 3, and all natural numbers q.

Proof. A related result was obtained in [Ba1, Lemma 1] where it was
shown that the claim of this lemma holds true for all multiplicative functions
h satisfying the Wirsing condition

(2.1) 0 ≤ h(pν) ≤ λ1λ
ν−1
2 (ν = 1, 2, . . .),

where λ1 ≥ 1 and 1 ≤ λ2 < 2, with the implied constant depending only on
λ1 and λ2. We now show how our lemma follows from that result.

Let h1 and h2 be multiplicative functions defined by

h1(pν) =
{
f(p) if ν = 1,
0 if ν ≥ 2,

h2(pν) =
{

0 if ν = 1,
f(pν) if ν ≥ 2.

Then

(2.2) h1(n) ≤ f(n) ≤ h1 ∗ h2 (n).

By definition (1.4) of FA,1/3,
∞∑

n=1

h2(n)
n

=
∏

p

(
1 +

h2(p2)
p2 +

h2(p3)
p3 + . . .

)
=
∏

p

(
1 +OA

(
1
p4/3

))
�A 1.

Therefore (2.2) yields
∑

n≤x
(n,q)=1

f(n)
n
�A

∑

n≤x
(n,q)=1

h1(n)
n

.

But h1 satisfies (2.1) with λ1 = A and λ2 = 1 and

Sq(x) =
∑

p≤x
(p,q)=1

f(p)
p

=
∑

p≤x
(p,q)=1

h1(p)
p

.

Hence, the desired estimate follows from the afore-mentioned result [Ba1,
Lemma 1].

Our next lemma, a special case of which was mentioned in the introduc-
tion, is due to Shiu [Sh].

Lemma 2. Let ε, 0 < ε ≤ 1/2, be fixed. Then the inequality
∑

x−y<n≤x
n≡a (mod q)

f(n)�ε
y

ϕ(q) log x
eSq(x)
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holds uniformly for all f ∈ F , x ≥ 3, xε ≤ y ≤ x, 1 ≤ q ≤ y1−ε, and all
integers a. Furthermore, if we assume in addition that (a, q) = 1, then there
exists a constant γε > 0, depending only on ε, such that the same inequality
holds, with �ε replaced by �A,ε, uniformly for all f ∈ FA,γε.

Proof. Let us first consider the second claim of the lemma. Although this
result is stronger than what is stated by Shiu in [Sh], one readily verifies
that his argument certainly applies to give the result stated here with γε =
ε2/100, say.

Shiu considered only the case (a, q) = 1, but the general case can be
deduced from this. In particular, the first claim of our lemma was derived
in such a way in [Ba4, Lemma 3.2]. We remark that the latter result was
stated with S(x) in place of Sq(x), but the argument given there does give
the estimate stated here.

We also need the following extension of Lemma 2.

Lemma 3. Let real numbers ε, 0 < ε ≤ 1/2, and C ≥ 1 be fixed. Then
there exists a constant zε,C such that for all z ≥ zε,C the inequality

∑

x−y<n≤x
n≡a (mod q), p|n⇒p≤z

f(n)�ε,C
y

ϕ(q) logx
exp
(
Sq(z)− C log x

log z

)

holds uniformly for all f ∈ F , x ≥ 3, xε ≤ y ≤ x, 1 ≤ q ≤ y1−ε,
and all integers a. Furthermore, if we assume in addition that (a, q) = 1,
then there also exists a constant γε > 0, depending only on ε, such that
the same inequality holds, with �ε,C replaced by �A,ε,C , uniformly for all
f ∈ FA,γε.

Proof. This estimate is contained in a recent work of M. Nair and
G. Tenenbaum [NT]. Arguments of that paper are intended to prove much
more general results, of which Lemma 3 is a special case, and are rather
involved. Alternatively, a much simpler argument for this estimate may be
constructed as follows.

Analogously to the situation in Lemma 2, the first claim of this lemma is
readily seen to follow from the second claim by the argument given in [Ba4,
Proof of Lemma 3.2]. The second claim, with γε = ε2/200 and zε,C = e2C/γ2

,
say, is readily deduced from Lemma 2 by the Rankin–Tenenbaum method
(see [Te, III.5.1, Proof of Theorem 1]).

3. Proof of Theorems 1 and 2. In this and the remaining two sections
we will find it convenient to suppress the dependence of various estimates
on the quantities A, ε and b, e.g., we will write � in place of �A,ε,b.
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We begin by observing that both theorems follow from the estimate

(3.1)
∑

q1+ε≤2i≤x
Mq(2i)�

1
ϕ(q)

eSq(x).

Indeed, Sq(x) = Sq(x/2) +O(1), by Lemma 1 and definition (1.6) we have

eSq(x) � eSq(x/2) �
∑

n≤x/2
(n,q)=1

f(n)
n

(3.2)

≤
∑

1≤2i≤x

∑

2i−1<n≤2i
(n,q)=1

f(n)
n
�
∑

2i≤x
M(2i),

and Theorem 2 is proved. For Theorem 1 we write
∑

q1+ε≤n≤x
n≡a (mod q)

f(n)
n
≤

∑

q1+ε≤2i≤2x

∑

2i−1<n≤2i
n≡a (mod q)

f(n)
n
�

∑

q1+ε≤2i≤2x

Mq(2i),

by definition (1.7), and the desired estimate follows from (3.1) and (3.2)
(with x replaced by 2x).

By Mertens’s formula there is a constant c = cε ≥ 2 depending only on
ε such that if x ≥ qc, then the validity of (1.5) implies the validity of (1.12)
with xκ = x, x1 equal to the smallest 2i occurring in the sum (3.1) and
with ε replaced by ε/2 (we assume, as we may, that q ≥ 2). Therefore, if
x ≥ qc, then (3.1) follows from Corollary 3. If, on the other hand, x < qc,
then (3.1) follows by applying Lemma 2 to each of the terms Mq(2i) in (3.1).
This completes the proof of Theorems 1 and 2.

4. Proof of Theorem 0; reductions, principal estimate. We will
prove in detail only the first claim of the theorem. The second claim follows
easily by making obvious modifications to the argument below (the resulting
argument is in fact slightly simpler than the one given here).

Our first two reductions are trivial consequences of Lemma 2. As we
already observed in Section 1, by (1.9) each sum over n on the left-hand
side of (1.10) can be estimated by Lemma 2 yielding the bound (1.13).
Thus it only remains to obtain (1.10) with min(1,

∑
1≤i≤κ 1/log xi) replaced

by 1. Furthermore, replacing the range 1 ≤ i ≤ κ in (1.13) by the range
i : (qτ)1+ε ≤ yi < (qτ)2, shows, by (1.9), that the sum over the latter
range can be estimated by � eSq(xκ)/ϕ(q). Whence we may assume that
y1 ≥ (qτ)2.

Next we introduce some conventions. Let us assume, as we may, that
q ≥ 2 and that 1 < b ≤ 2, and let the function f ∈ F be given. Furthermore,
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let i− be the smallest integer satisfying

(4.1) bi− ≥ (qτ)2,

and define sequences xi, yi and ai, i− ≤ i ≤ i+, in terms of the function f
as follows. For each i we set

(4.2)
1
yi

∑

xi−yi<n≤xi
n≡ai (mod q)

f(n) = max
(x,y,a)

1
y

∑

x−y<n≤x
n≡a (mod q)

f(n),

where the maximum is taken over x, y and a satisfying

(4.3) bi−1 < y ≤ bi, y ≤ x ≤ τy
and a arbitrary (not necessarily coprime with q). It is readily seen that it
suffices to prove the theorem with this choice of the sequences xi, yi and ai
(defined over the range i− ≤ i ≤ i+ in place of the range 1 ≤ i ≤ κ as in the
statement of the theorem). Moreover, set

Fi =
1
yi

∑

xi−yi<n≤xi
n≡ai (mod q)

f(n),(4.4)

Si =
∑

p≤yi
(p,q)=1

f(p)
p

,(4.5)

for i− ≤ i ≤ i+. Observe that, with these conventions, the statement of the
theorem follows from the bound

(4.6)
∑

i−≤i≤i+
Fi �

1
ϕ(q)

(
eSi−

(
i+
i−

)ε
+ eSi+

)
,

since by Mertens’s formula, (4.3) and (4.1), we have

(4.7)
∑

p≤xi
(p,q)=1

f(p)
p
−

∑

p≤yi
(p,q)=1

f(p)
p
≤

∑

yi<p≤xi

1
p
� 1.

Since our proof of (4.6) is somewhat involved, we now give, for the con-
venience of the reader, a brief sketch highlighting the main points of our
argument. We begin by noting that if the range of summation i− ≤ i ≤ i+
is sufficiently large with respect to i−, let us say i+ ≥ 2i−, then we regard
the estimate

(S.1)
∑

i−≤i≤i+
Fi �

1
ϕ(q)

eSi+

as the expected bound. This estimate is certainly best possible, and it is not
at all difficult to construct functions f ∈ F (with S(x) = λ log2 x + O(1),
0 < λ ≤ 1) for which (S.1) holds with � replaced by �. On the other
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hand, estimating each Fi by Lemma 2 apparently leads to the “extra” log i+
term (corresponding to log2 xκ in the original notation) in the event that
log(i+/i−) � log i+, viz.

∑

i−≤i≤i+
Fi �

1
ϕ(q)

∑

i−≤i≤i+

1
i
eSi � 1

ϕ(q)
eSi+ log

i+
i−
,

as we already noted in Section 1. Our new idea that enables us to get (S.1)
for those functions f ∈ F which are supported on the positive proportion
of primes in the interval (x−, x+], i.e., f satisfying

(S.2) Si+ − Si− � log
i+
i−
,

consists of three parts:

(i) Fix a positive parameter δ. The assumption (S.2) implies that the
entire range of summation i− ≤ i ≤ i+ contains “good sub-ranges” i′ < i ≤
i′′, i.e., ranges over which both

(S.3)
∑

i′<i≤i′′
Fi �

1
ϕ(q)

∑

i′<i≤i′′

1
i
eSi � 1

ϕ(q)
eSi′′

and

(S.4) Si′′ − Si′ ≥ δ.
(ii) Take i′′ of part (i) as large as possible. Instead of directly estimating

Fi by Lemma 2 (as in (S.3)) in the “unfavorable range” i′′ < i ≤ i+, estimate
the sum over this range by the sum over i− ≤ i ≤ i′′ to get the bound

(S.5)
∑

i′′<i≤i+
Fi ≤ (ceSi+−Si′′ − 1)

∑

i−≤i≤i′′
Fi + Acceptable Error Term,

for some parameter c.
(iii) By applying (i) and (ii), reduce proving (S.1) to proving that (S.1)

holds with i′ in place of i+. Now proceed inductively.

To illustrate this method let us perform two iterations. By (S.5),
∑

i−≤i≤i+
Fi =

∑

i−≤i≤i′′
Fi +

∑

i′′<i≤i+
Fi ≤ ceSi+−Si′′

∑

i−≤i≤i′′
Fi,

where, for the sake of simplicity, we ignore the “Acceptable Error Term”.
This, (S.3) and (S.4) yield

∑

i−≤i≤i+
Fi ≤ ceSi+−Si′′

( ∑

i−≤i≤i′
Fi +O

(
1

ϕ(q)
eSi′′

))

≤ ce−δeSi+−Si′
∑

i−≤i≤i′
Fi +O

(
c

ϕ(q)
eSi+

)
.
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Iterating this argument the second time we obtain the bound
∑

i−≤i≤i+
Fi ≤ (ce−δ)2eSi+−Si′

∑

i−≤i≤i′
Fi +O

(
c

ϕ(q)
eSi+ (1 + ce−δ)

)
,

where the value of i′ in the last display is different and strictly smaller
than the value of i′ in the penultimate display. It is now plain that further
iterations of this argument yield, essentially,

∑

i−≤i≤i+
Fi �

c

ϕ(q)
eSi+

∞∑

j=0

(ce−δ)j � 1
ϕ(q)

eSi+ ,

as desired, by a suitable choice of parameters c and δ.
In the remainder of this section we will obtain two estimates for the sum

(4.8)
∑

i′<i≤i′′
Fi (i− − 1 ≤ i′ < i′′ ≤ i+),

which will then be used in the next section to deduce (4.6). We give these
estimates in two lemmas below.

Lemma 4. We have
∑

i′<i≤i′′
Fi �

1
ϕ(q)

eSi′′ log
i′′

i′
.

Proof. We simply observe that, by (4.4), (4.3) and (4.1), each term Fi
can be estimated by Lemma 2. This yields the bound

∑

i′<i≤i′′
Fi �

1
ϕ(q)

∑

i′<i≤i′′

1
log xi

eSq(xi) � 1
ϕ(q)

eSq(xi′′ ) log
i′′

i′
,

and the lemma follows by (4.5) and (4.7).

Our second estimate for (4.8) is more complicated. It takes a recursive
form of providing an estimate for this sum in terms of itself, but over the
preceding range i− ≤ i ≤ i′.

Lemma 5. We have∑

i′<i≤i′′
Fi ≤ (ceSi′′−Si′ − 1)

∑

i−≤i≤i′
Fi

+O

(
1

ϕ(q)
eSi′′

(
1 + eSi−−Si′ log

i′′

i′

))
,

for some absolute constant c ≥ 2.

Proof. Let N be an arbitrary natural number. Then for i′ ≤ N we have,
by (4.4), (4.3) and (4.1), ∑

i′<i≤N
Fi �N

1
q
.
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Furthermore, if i′ ≤ 3i−, then for any j ≤ 3i− + 1 we have, by Lemma 4,
∑

i′<i≤j
Fi �

1
ϕ(q)

eSj .

This shows that we may assume in what follows that i′, and hence yi′ , is
sufficiently large and that, in particular, it satisfies the condition

(4.9) i′ > 3i−.

For the rest of the proof of this lemma we adopt the following notation.
We let m denote natural numbers free of prime factors greater than yi′

and we let l denote natural numbers all of whose prime factors lie in the
interval (yi′ , xi′′ ], i.e.,

(4.10) p |m ⇒ p ≤ yi′ and p | l ⇒ yi′ < p ≤ xi′′ .
Observe that any natural number n ≤ xi′′ can be written in a unique way
in the form n = ml. This permits us to split the sum (4.8) as follows, we
write

(4.11)
∑

i′<i≤i′′
Fi =

∑

i′<i≤i′′

1
yi

∑

xi−yi<ml≤xi
ml≡ai (mod q)

f(ml)

=
( ∑

m≤yi−

+
∑

yi−<m≤yi′
+

∑

yi′<m≤xi′′

)
f(m)

∑

i′<i≤i′′

1
yi

∑

(xi−yi)/m<l≤xi/m
ml≡ai (mod q)

f(l)

=
∑

1
+
∑

2
+
∑

3
,

say. We will proceed somewhat differently in order to estimate each of the
three sums on the right-hand side of (4.11), but each of these estimates will
ultimately rest on an application of a Shiu-type bound, namely Lemmas 2
and 3.

We estimate
∑

1 by applying Lemma 2 to its innermost sum. To this end
we first observe that by (4.1), (4.3) and (4.9) the conditions of Lemma 2 are
satisfied. Indeed, we have

yi
m
≥ yi
yi−

> bi− > q2 and τm ≤ τyi− < b2i− < yi,

from which it follows that

yi
m

=

√
y2
i

m2 >

√
yiτ

m
≥
√
xi
m
.

Furthermore, we note that by definition of l (see (4.10)) and (4.1) we have
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(l, q) = 1. We thus obtain
∑

1
=
∑

d|q

∑

m≤yi−
(m,q)=d

f(m)
∑

i′<i≤i′′
(ai,q)=d

1
yi

∑

(xi−yi)/m<l≤xi/m
ml≡ai (mod q)

f(l)

�
∑

d|q

1
ϕ(q/d)

∑

m≤yi−
(m,q)=d

f(m)
m

∑

i′<i≤i′′
(ai,q)=d

1
log(xi/m)

eSq(xi/m)−Sq(yi′ ),

by (4.10). Letting d0 denote the value of d which maximizes the quantity

1
ϕ(q/d)

∑

m≤yi−
(m,q)=d

f(m)
m

,

we get, by (4.5), (4.7), (4.3) and (4.9),
∑

1
� 1

ϕ(q/d0)

∑

m≤yi−
(m,q)=d0

f(m)
m

∑

i′<i≤i′′

1
i
eSi−Si′(4.12)

� 1
ϕ(q/d0)

eSi′′−Si′ log
i′′

i′
∑

m≤yi−
(m,q)=d0

f(m)
m

.

Now set
d0 = d1d2 and q = d1D2q

′

where

(d0, q
′) = 1,

(
d1,

q

d1

)
= 1 and p | d2 ⇒ p

∣∣∣ D2

d2
.

With this notation and by definition of m (see (4.10)) the sum on the right-
hand side of (4.12) is certainly bounded by

∑

m≤yi−
(m,q)=d0

f(m)
m
≤ f(d2)

d2

∑

1≤k≤∞
p|k⇒p|d1

f(d1k)
d1k

∑

m≤yi−
(m,q)=1

f(m)
m

.

Estimating the sum over k trivially and the last sum over m by Lemma 1,
we obtain

∑

m≤yi−
(m,q)=d0

f(m)
m
� 1

d2
· 1
d1

∏

p|d1

(
1− 1

p

)−1

eSi− =
1
d2
· 1
ϕ(d1)

eSi− .

Substituting this into (4.12) finally gives

(4.13)
∑

1
� 1

ϕ(q)
eSi′′ eSi−−Si′ log

i′′

i′
.
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Next we estimate
∑

3. Let us rewrite this sum in the form

(4.14)
∑

3
≤
∑

l≤xi′′
f(l)

∑

i′<i≤i′′
xi>yi′ l

1
yi

∑

(xi−yi)/l<m≤xi/l
ml≡ai (mod q)

f(m).

Observe that, by (4.1), (4.3) and (4.9), the parameters of the innermost sum
on the right-hand side of (4.14) satisfy the inequalities

τ l < τ
xi
yi′
≤ yi

τ2

yi′
< yi,

and hence
yi
l
>

√
τyi
l
≥
√
xi
l
,

as well as
yi
l
>
yiyi′

xi
≥ yi′

τ
> q2.

These and the definition of m (see (4.10)) shows that we may apply Lem-
ma 3, with ε = 1/2, C = 1 and z = yi′ , to the innermost sum on the
right-hand side of (4.14), provided only that yi′ is larger than some absolute
constant, as we may assume. Recalling also that (l, q) = 1, we thus obtain

(4.15)
∑

3
� 1

ϕ(q)

∑

l≤xi′′

f(l)
l

∑

i′<i≤i′′
xi>yi′ l

1
log(xi/l)

exp
(
Si′ −

log(xi/l)
log yi′

)
.

But, by (4.3) and (4.1), we have

(4.16)
∑

i′<i≤i′′
xi>yi′ l

1
log(xi/l)

exp
(
− log(xi/l)

log yi′

)

<
1

log yi′

( ∑

yi′ l/τ<yi≤yi′ l
1 +

∑

yi>yi′ l

exp
(
− log(yi/l)

log yi′

))
� 1,

while, by Lemma 1, (4.10) and (4.7),

(4.17)
∑

l≤xi′′

f(l)
l
� eSi′′−Si′ .

Therefore, by (4.15)–(4.17) we finally obtain the bound

(4.18)
∑

3
� 1

ϕ(q)
eSi′′ .

We now turn to
∑

2. We can provide a satisfactory estimate for this
term only by means of an iterative bound. To this end we now split this
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sum further and write
∑

2
=
∑

l≤xi′′
f(l)(4.19)

×
( ∑

i′<i≤i′′
yi≤lyi−

+
∑

i′<i≤i′′
lyi−<yi≤lyi′

+
∑

i′<i≤i′′
yi>lyi′

) 1
yi

∑

(xi−yi)/l<m≤xi/l
ml≡ai (mod q)
yi−<m≤yi′

f(m)

=
∑

21
+
∑

22
+
∑

23
,

say. The main difficulty here is in estimating
∑

22. So let us dispose of the
other two terms first.

Our method for estimating
∑

21 is analogous to our method for estimat-
ing

∑
3. In the first place we have, by (4.3),
∑

21
≤
∑

l≤xi′′
f(l)

∑

i′<i≤i′′
lyi−/τ<yi≤lyi−

1
yi

∑

(xi−yi)/l<m≤xi/l
ml≡ai (mod q)

f(m).

Computations analogous to the ones performed prior to estimating the inner-
most sum on the right-hand side of (4.14) show that we can apply Lemma 2
to the last sum over m. This yields the following analogue of (4.15)

(4.20)
∑

21
� 1

ϕ(q)

∑

l≤xi′′

f(l)
l

∑

i′<i≤i′′
lyi−/τ<yi≤lyi−

eSi′

log(xi/l)

(for the present estimate it suffices to appeal to Lemma 2 whereas we needed
Lemma 3 to estimate

∑
3). But, by (4.3) and (4.1), we have

(4.21)
∑

lyi−/τ<yi≤lyi−

1
log(xi/l)

<
1

log(yi−/τ)

∑

lyi−/τ<yi≤lyi−

1� 1.

Thus, by (4.20), (4.21) and (4.17), we obtain

(4.22)
∑

21
� 1

ϕ(q)
eSi′′ .

To estimate
∑

23 we first write

∑
23
≤
∑

l≤xi′′
f(l)

∑

i′<i≤i′′
yi>lyi′

1
yi

∑

m≤yi′
ml≡ai (mod q)

f(m).

Familiar-by-now computations resting on Lemma 2, (4.3) and (4.17) now
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yield
∑

23
� 1

ϕ(q)
· yi′

log yi′
eSi′

∑

l≤xi′′
f(l)

∑

i′<i≤i′′
yi>lyi′

1
yi

(4.23)

� 1
ϕ(q)

eSi′
∑

l≤xi′′

f(l)
l
� 1

ϕ(q)
eSi′′ .

Finally, to estimate
∑

22 we write

(4.24)
∑

22
≤

∑

1<l≤xi′′

f(l)
l

∑

i′<i≤i′′
lyi−<yi≤lyi′

1
yi/l

∑

(xi−yi)/l<m≤xi/l
lm≡ai (mod q)

f(m).

Recalling that (l, q) = 1, we observe that for each l the summation over i
on the right-hand side of (4.24) is bounded by 2

∑
i−≤i≤i′ Fi, by definitions

of Fi and the sequences xi, yi and ai (see (4.2)–(4.4)). This and (4.17) yield
the inequality

(4.25)
∑

22
≤ (ceSi′′−Si′ − 1)

∑

i−≤i≤i′
Fi,

with c = 2c′, where c′ ≥ 1 is the absolute constant implicit in (4.17).
Therefore, by (4.19), (4.22), (4.23) and (4.25), we get the estimate

(4.26)
∑

2
≤ (ceSi′′−Si′ − 1)

∑

i−≤i≤i′
Fi +O

(
1

ϕ(q)
eSi′′

)
.

Finally, combining (4.11), (4.13), (4.18) and (4.26) gives the desired estimate
and completes the proof of the lemma.

5. Proof of Theorem 0; conclusion. Recall that the proof of the
theorem was reduced to establishing (4.6).

Our first task here is to dispose of two easy cases, cases when either the
quantity i+/i− or the quantity Si+ − Si− are small. In both of these cases
(4.6) follows immediately from Lemma 4. Indeed, if i+/i− ≤ 10, say, then
Lemma 4 yields ∑

i−≤i≤i+
Fi �

1
ϕ(q)

eSi+ ,

establishing (4.6) in this case. As for the second case, we first fix our notion
of what we mean by saying that the quantity Si+ − Si− is small so as to
be convenient for our later considerations. To this end, let us now fix a
sufficiently large (in an absolute sense) real number δ satisfying

(5.1) δ ≥ 2 log c,
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where c is the absolute constant from Lemma 5, and assume that Si+−Si− ≤
2δ. Then Lemma 4 yields

∑

i−≤i≤i+
Fi �

1
ϕ(q)

eSi+ log
i+

i− − 1
� 1

ϕ(q)
eSi− log

(
2
i+
i−

)
,

establishing (4.6) in this case as well. Thus it only remains to consider the
case when

i+
i−

> 10 and Si+ − Si− > 2δ,

which is what we assume from now on.
Next, let us introduce the sequence ik, 0 ≤ k ≤ K, defined as follows.

We set i0 = 5i−, and then proceed recursively by letting ik, 1 ≤ k ≤ K, be
the smallest integer i for which the inequality

(5.2) Si − Sik−1 ≥ δ
holds, where, in addition, we let iK ≤ i+ be the unique integer satisfying

(5.3) Si+ − SiK < δ.

Observe that the sequence ik is well defined, provided δ is chosen sufficiently
large, for by Mertens’s formula, (4.3) and (4.1) we have

Si0 − Si− ≤
∑

yi−<p≤yi0

1
p

= log2 yi0 − log2 yi− +O

(
1

log yi−

)
(5.4)

≤ log
i0

i− − 1
+O(1) < δ,

since the constant implicit by the O symbol in (5.4) is absolute. As will be
seen shortly, our argument will consider two different subcases depending
on the growth conditions of the sequence ik. But before we get into these
considerations, let us establish a fact, equation (5.5) below, which will be
used in both subcases. We show that the relation

(5.5) Si+ = Si− +Kδ +O(1)

holds. To this end we first observe that the sequence ik increases very rapidly
and that, in particular, it certainly satisfies the growth condition

(5.6) ik > eδ/2ik−1,

provided δ is sufficiently large. Indeed, (5.6) follows readily from definition
(5.2) of ik which gives

δ ≤ Sik − Sik−1 ≤
∑

yik−1<p≤yik

1
p

= log2 yik − log2 yik−1 +O

(
1

log yik−1

)
= log

ik
ik−1

+O

(
1

log yik−1

)
,
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by Mertens’s formula and (4.3). Secondly, we note that the relation

(5.7) Sik − Sik−1 = δ +O

(
1
ik

)

holds. To see this we, once again, appeal to (5.2), Mertens’s formula and
(4.3) to get

δ ≤ Sik − Sik−1 < δ + Sik − Sik−1 ≤ δ +
∑

yik−1<p≤yik

1
p

= δ + log2 yik − log2 yik−1 +O

(
1

log yik−1

)
= δ +O

(
1
ik

)
.

Now, by (5.3), (5.4) and (5.7), we have

Si+ −Si− = Si0 −Si− +
K∑

k=1

(Sik −Sik−1)+Si+ −SiK = Kδ+O

(
1+

K∑

k=1

1
ik

)
.

From this (5.5) follows by (5.6).
As we have already indicated, we will split the case presently under

consideration into two different subcases depending on the growth conditions
of the sequence ik. To this end let us now assume, as we may, that the
parameter ε appearing in the statement of the theorem satisfies 0 < ε < 1,
and introduce another parameter

(5.8) ∆ = e2δ/ε.

We consider two subcases as follows:
ik
ik−1

> ∆ for all k,(i)

ik
ik−1

≤ ∆ for some k.(ii)

Our argument in subcase (i) is much simpler, resting entirely on an appli-
cation of Lemma 4, so we dispose of this case first.

We have, by Lemma 4 and (5.5),

(5.9)
∑

i−≤i≤i+
Fi �

1
ϕ(q)

eSi−+Kδ log
i+
i−
.

But, in subcase (i),

(5.10) K <
log(i+/i−)

log∆
,

since
i+
i−

>
iK
i0

> ∆K .
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Using this in (5.9) together with (5.8) yields

∑

i−≤i≤i+
Fi �

1
ϕ(q)

eSi−
(
i+
i−

)ε/2
log

i+
i−
� 1

ϕ(q)
eSi−

(
i+
i−

)ε
.

We have thus established the validity of (4.6) for subcase (i), and it only
remains to consider subcase (ii).

We start our argument for (ii) by introducing a subsequence of all those
members of the sequence ik for which (ii) holds. Let us temporarily use the
natural notation ikt , 1 ≤ t ≤ T , to denote this subsequence, i.e., ikt is the
tth member of the sequence ik for which ikt/ikt−1 ≤ ∆, and T ≥ 1 denotes
the number of such elements of the sequence ik. This notation clearly suffers
from the problem of “mounting subscripts”, and we only use it as an aid
for introducing simpler notation. We now let jt and j′t, 1 ≤ t ≤ T , be two
sequences defined by

jt = ikt and j′t = ikt−1.

Thus we have

(5.11) jt/j
′
t ≤ ∆

and, by (5.2),

(5.12) Sjt − Sj′t ≥ δ.
Furthermore, since jt ≥ it, we also have

(5.13) Sjt ≥ Sit ≥ Si− + tδ,

by (5.2).
We are now ready for the final assault. We begin by appealing to Lem-

ma 5 to get
∑

jT<i≤i+
Fi ≤ (ceSi+−SjT − 1)

∑

i−≤i≤jT
Fi(5.14)

+O

(
1

ϕ(q)
eSi+

(
1 + eSi−−SjT log

i+
jT

))
.

This yields the bound
∑

i−≤i≤i+
Fi ≤ ceSi+−SjT

∑

i−≤i≤jT
Fi(5.15)

+O

(
1

ϕ(q)
eSi+

(
1 + eSi−−SjT log

i+
jT

))
.

But by Lemma 4, (5.11) and (5.8) we have

(5.16)
∑

j′T<i≤jT
Fi �

1
ϕ(q)

eSjT log
jT
j′T
� 1

ϕ(q)
eSjT ,
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since the constants c and δ are absolute. Using (5.16) in (5.15) gives
∑

i−≤i≤i+
Fi ≤ ceSi+−SjT

∑

i−≤i≤j′T

Fi(5.17)

+O

(
1

ϕ(q)
eSi+

(
1 + eSi−−SjT log

i+
jT

))
.

Furthermore, by (5.12), (5.1) and (5.13), we now obtain
∑

i−≤i≤i+
Fi ≤ e−δ/2eSi+−Sj′T

∑

i−≤i≤j′T

Fi(5.18)

+O

(
1

ϕ(q)
eSi+

(
1 + e−Tδ log

i+
jT

))
.

Next we repeat estimates (5.14)–(5.18) with i+, jT and j′T replaced by
j′T , jT−1 and j′T−1 respectively. This gives the bound

∑

i−≤i≤j′T

Fi ≤ e−δ/2e
Sj′T
−Sj′T−1

∑

i−≤i≤j′T−1

Fi

+O

(
1

ϕ(q)
e
Sj′T

(
1 + e−(T−1)δ log

j′T
jT−1

))
.

We remark that our estimates make perfect sense in all possible cases, in-
cluding the case when i+ = jT or j′T = jT−1. Substituting our last estimate
into (5.18) we obtain

∑

i−≤i≤i+
Fi ≤ (e−δ/2)2e

Si+−Sj′T−1
∑

i−≤i≤j′T−1

Fi(5.19)

+O

{
1

ϕ(q)
eSi+

(
1 + e−Tδ log

i+
jT

+ e−δ/2
(

1 + e−(T−1)δ log
j′T
jT−1

))}

= (e−δ/2)2e
Si+−Sj′T−1

∑

i−≤i≤j′T−1

Fi

+O

{
1

ϕ(q)
eSi+

(
(1 + e−δ/2)

+ e−Tδ/2
(
e−Tδ/2 log

i+
jT

+ e−(T−1)δ/2 log
j′T
jT−1

))}
.

We continue estimating
∑

i−≤i≤i+ Fi inductively with each step being the
appropriate analogue of going from (5.18) to (5.19). Omitting the interme-
diate steps we proceed directly to the final outcome. To this end, let E1 and
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E2 denote the quantities given by

(5.20) E1 =
T−1∑

t=0

e−tδ/2

and

(5.21) E2 = e−Tδ/2
(
e−Tδ/2 log

i+
jT

+
T−1∑

t=1

e−(T−t)δ/2 log
j′T−t+1

jT−t
+ log

j′1
i−

)
.

One then readily verifies that the final outcome of our inductive process is
the estimate

∑

i−≤i≤i+
Fi ≤ e−Tδ/2eSi+−Sj′1

∑

i−≤i≤j′1

Fi(5.22)

+O

{
1

ϕ(q)
eSi+

(
E1 +E2 − e−Tδ/2 log

j′1
i−

)}
.

Furthermore, estimating the sum over i on the right-hand side of (5.22) by
Lemma 4 gives

(5.23)
∑

i−≤i≤i+
Fi �

1
ϕ(q)

eSi+ (E1 + E2).

But, by (5.20), E1 � 1, while, by (5.21) and the fact that jt > j′t,

E2 < e−Tδ/2
(

log
i+
jT

+
T−1∑

t=1

log
j′T−t+1

jT−t
+ log

j′1
i−

)
< e−Tδ/2 log

i+
i−
.

Using these estimates on the right-hand side of (5.23) we finally obtain

(5.24)
∑

i−≤i≤i+
Fi �

1
ϕ(q)

eSi+
(

1 + e−Tδ/2 log
i+
i−

)
.

We complete our estimate of
∑

i−≤i≤i+ Fi in the present case by consid-
ering two possibilities. First, (5.24) immediately gives the bound

(5.25)
∑

i−≤i≤i+
Fi �

1
ϕ(q)

eSi+ ,

unless T satisfies

(5.26) Tδ < 2 log2
i+
i−
.

In the latter case, by (5.5), we get

(5.27) Si+ = Si− +Kδ +O(1) < Si− + (K − T )δ + 2 log2
i+
i−

+O(1).
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We now recall that by definition of the sequences ik and jt and the quantities
K and T there are exactly K−T members of the sequence ik, with 1 ≤ k ≤
K, which satisfy the inequality

ik
ik−1

> ∆.

This yields, analogously to (5.10), the bound

(5.28) K − T <
log(i+/i−)

log∆
.

Hence, by (5.24), (5.27), (5.28) and (5.8), the assumption (5.26) leads to the
estimate

∑

i−≤i≤i+
Fi �

1
ϕ(q)

eSi+ log
i+
i−

(5.29)

� 1
ϕ(q)

eSi−
(
i+
i−

)ε/2(
log

i+
i−

)3

� 1
ϕ(q)

eSi−
(
i+
i−

)ε
.

Combining (5.25) and (5.29) establishes (4.6) in the present case and thus
completes the proof of the theorem.
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