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1. Introduction. In [4] the complete set of positive integer solutions
to the equation of the title is described in the case n = 4, which clearly
includes all n divisible by 4. If 4 -n then any n ≥ 3 must have an odd prime
factor p, and so it suffices to consider only n = p, an odd prime, which we
shall do except in the final statement of results without further mention.

Nagell [7, Theorem 25] has proved

Theorem 1. Let D = c2d with d squarefree. Then the equation of the
title has no solution with x odd except perhaps if n is a factor of the class
number h of the quadratic field Q[

√
−d ], the sole exceptions being the solu-

tion x = 3, p = 5 when D = 2 or 242.

For any given D, h is easily calculated, and is less than D, which reduces
the problem to a small finite set of values of n, all of which are themselves
small. In Section 2 we prove an entirely different result which achieves this
for x even too.

It has also been shown in [2] that, without reference to the parity of x,
for p = 3 there can be no solution unless D possesses a prime factor ≡ 1
(mod p). One of the consequences of the result in Section 2 is that for x even
this remains true for all p. In Section 3 we show that it also holds for x odd
when p = 5 except if D = 2.

Finally, we attempt to deal with the cases D ≤ 100.
Incidentally, Nagell’s result has the following rather striking

Corollary 1. Given positive integers a, and odd n, let c2d=(2a+1)n−1
with d squarefree. Then the class number of the quadratic field Q[

√
−d ] is

divisible by n except if a = 1 and n = 5.

2. Even values of x. Nagell’s method employed the factorisation of
the equation of the title in the quadratic field Q[

√
−d ], to obtain xp =
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(1 + cy
√
−d)(1 − cy

√
−d) where the principal ideals [1 + yc

√
−d ] and

[1 − yc
√
−d ] are coprime and hence [1 + yc

√
−d ] = πp for some ideal π

in the field. Then πh is a principal ideal, and if p -h, [1 + yc
√
−d ]h = (πh)p

leads to 1 + yc
√
−d = εαp for some unit ε and element α of the field, from

which he deduces his result. This applies only when x is odd, and when x
is even, which of course could occur only if D ≡ 7 (mod 8), this is no longer
the case, and we should obtain instead

(2.1) 2p−2
(

1
2
x

)p
=
(

1 + cy
√
−d

2

)(
1− cy

√
−d

2

)

which appears quite intractable without a knowledge of p. We prove

Theorem 2.1. There can be a solution to the equation xp = Dy2 + 1
with x even only if D has at least one prime factor ≡ 1 (mod p).

This is proved for the case p = 3 in [2] and follows for larger p from

Theorem 2.2. Let p > 3. Then there can be a solution to the equation
xp = Dy2 + 1 with x even only if D = D1D2, D2 > 1, every prime factor of
D2 is congruent to 1 modulo p and either x− 1 = D1a

2, (xp − 1)/(x− 1) =
D2b

2 or x− 1 = pD1a
2, (xp − 1)/(x− 1) = pD2b

2.

Denoting the Jacobi symbol by (r|s), we prove

Lemma 2.1. For each positive integer x ≡ 0 (mod 4) and each pair of
relatively prime positive integers r and s,

(
xr−1
x−1

∣∣xs−1
x−1

)
= 1.

Proof. We use induction on the quantity r + s, the result being trivial
if r + s = 2. Let r + s = k, and suppose that it holds for all values of
r + s < k. For all n, (xn − 1)/(x − 1) ≡ 1 (mod 4) and so there is no loss
of generality in assuming that r > s, and then the result follows from the
identity xr − 1 = xr−s(xs − 1) + (xr−s − 1) yielding

(
xr − 1
x− 1

∣∣∣∣
xs − 1
x− 1

)
=
(
xr−s − 1
x− 1

∣∣∣∣
xs − 1
x− 1

)
.

Lemma 2.2. Let p > 3 denote a prime. Then there are no solutions with
x even to the equation (xp − 1)/(x− 1) = py2.

Proof. For any solution x ≡ 1 (mod p) since otherwise (xp−1)/(x−1) ≡ 1
(mod p).

If p ≡ 1 (mod 4), then for x even, py2 = xp−1 +xp−2 + . . .+x+1 implies
that 4 |x. Suppose that x = 1+λpr where p -λ. Then if (p, q) = 1 we obtain,
using the previous lemma,

1 =
(
xp − 1
x− 1

∣∣∣∣
xq − 1
x− 1

)
=
(
py2

∣∣∣∣
xq − 1
x− 1

)
=
(
p

∣∣∣∣
xq − 1
x− 1

)
=
(
xq − 1
x− 1

∣∣∣∣p
)
.
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However,
xq − 1
x− 1

=
(λpr + 1)q − 1

λpr
≡ q (mod p),

and this yields a contradiction on taking q to be a quadratic non-residue
modulo p.

If p ≡ 3 (mod 4), then py2 = xp−1 + xp−2 + . . . + x + 1 with x even
implies that 2 ‖x. Thus there is no solution if p ≡ 7 (mod 8), for then
py2 ≡ 1 (mod (x + 1)), but (p|x + 1) = −(x + 1|p) = −(2|p) = −1 since
x ≡ 1 (mod p).

Finally, if p ≡ 3 (mod 8), then x ≡ 6 (mod 8), and so for any a ≥ 3,
(xa − 1)/(x− 1) ≡ 3 (mod 8), whence

(
x

∣∣∣∣
xa − 1
x− 1

)
= −

(
x

2

∣∣∣∣
xa − 1
x− 1

)
=
(
xa − 1
x− 1

∣∣∣∣
x

2

)
= 1.

But, since xp − 1 = (x(p−1)/2 − 1) + (x(p+1)/2 − 1)x(p−1)/2, we also have as
p > 3,

(
xp − 1
x− 1

∣∣∣∣
x(p+1)/2 − 1

x− 1

)
=
(
x(p−1)/2 − 1

x− 1

∣∣∣∣
x(p+1)/2 − 1

x− 1

)

= −
(
x(p+1)/2 − 1

x− 1

∣∣∣∣
x(p−1)/2 − 1

x− 1

)

= −
(
x(p+1)/2 − x(p−1)/2

x− 1

∣∣∣∣
x(p−1)/2 − 1

x− 1

)

= −
(
x

∣∣∣∣
x(p−1)/2 − 1

x− 1

)(p−1)/2

= −1,

and so (xp − 1)/(x− 1) = py2 gives
(
p

∣∣∣∣
x(p+1)/2 − 1

x− 1

)
= −1 whence

(
x(p+1)/2 − 1

x− 1

∣∣∣∣p
)

= 1.

But, as before, (x(p+1)/2 − 1)/(x− 1) ≡ (p+ 1)/2 (mod p) in view of x ≡ 1
(mod p), and then this is impossible since p ≡ 3 (mod 8). This concludes the
proof of the lemma.

Lemma 2.3. The only solutions of the equation (xn− 1)/(x− 1) = y2 in
positive integers x > 1, y and n > 2 are n = 4, x = 7, y = 20 and n = 5,
x = 3, y = 11.

This result is Sats 1 in [6]. For future reference we note the following

Corollary 2. The equation d2 = x4 + x3 + x2 + x + 1 has only the
solution x = 3, d = 11 in positive integers.
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Proof of Theorem 2.2. From the equation we obtain

Dy2 = (x− 1)
(
xp − 1
x− 1

)
;

it is easily shown that the factors on the right are coprime or have common
factor p precisely, and that the second is not divisible by p2. Thus we must
have either x − 1 = D1a

2, (xp − 1)/(x − 1) = D2b
2 or x − 1 = pD1a

2,
(xp−1)/(x−1) = pD2b

2 where D = D1D2 and p -D2. Here we cannot have
D2 = 1 for x even in the first case by Lemma 2.3, nor in the second by
Lemma 2.2. Thus D2 > 1.

If a prime q divides D2, then certainly it is odd and does not divide
x− 1, so that xp ≡ 1 (mod q) and xq−1 ≡ 1 (mod q) imply that x(p,q−1) ≡ 1
(mod q) and this is possible only if p | (q − 1), i.e. q ≡ 1 (mod p).

This concludes the proof.

Nagell’s result showed that for a given D, in considering the equation of
the title for odd values of x, we could restrict our attention to the finite set of
prime indices dividing the class number, h; the consequence of Theorem 2.1
is that for even values of x we also need consider only a finite set of prime
indices, in this case those dividing q−1 for primes q dividingD. This provides
help with the solution of (2.1), and in view of the theorem of Siegel that for
any given n > 2 there can be only finitely many solutions yields a simple
proof of

Theorem 2.3. For given D, the equation of the title has only finitely
many solutions in positive integers x, y and n ≥ 3.

This is a special case of a deep analytical result; see e.g. [8, Theorem
12.2].

We quote for future reference another result of Ljunggren’s, Satz XVIII
in [5].

Lemma 2.4. For any D, the equation x2 = Dy4 + 1 has at most two
solutions in positive integers x and y.

3. The case p = 5. We extend the result of [2] to the case p = 5,
without restricting x to be even.

Theorem 3.1. The equation x5 = 2y2 + 1 has the single solution x = 3.
If D > 2 and D has no prime factor ≡ 1 (mod 5), then the equation x5 =
Dy2 + 1 has no solution in positive integers.

Lemma 3.1. The equation z2 = x4 + 50x2y2 + 125y4 has no solutions in
integers with y 6= 0.

Proof. Suppose on the contrary that there were solutions in positive
integers and that of all such solutions, x, y, z was one with y minimal. Then
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x, 5y and z must be pairwise coprime, and so z2 = (x2 + 25y2)2 − 500y4

gives
125y4 =

(
1
2 (x2 + 25y2 + z)

)(
1
2 (x2 + 25y2 − z)

)
,

where the two factors on the right must be coprime since any common prime
factor q would have to divide both 5y and z. Thus for some integers a and
b with (a, 5b) = 1 we should obtain

x2 + 25y2 ± z = 2a4, x2 + 25y2 ∓ z = 250b4, y = ab,

and then
x2 = a4 − 25a2b2 + 125b4.

Here a and b cannot both be even, since (a, 5b) = 1, and cannot both be
odd, else x2 ≡ 5 (mod 8). Thus a and b have opposite parity and x is odd
and since x2 + b4 = (a2 − 7b2)(a2 − 18b2), the factors on the right are of
the same sign. If a is even, the first factor must be positive, otherwise the
Jacobi symbol (−1|7b2 − a2) = −1, and if a is odd the second one must be
positive else (−1|18b2 − a2) = −1. Thus in either case a2 > 18b2.

Then

x2 =
(
a2 − 25

2
b2
)2

− 125
4
b4

and now if b = 2c is even, then

125c4 =
(

1
2 (a2 − 50c2 + x)

)(
1
2 (a2 − 50c2 − x)

)

with both factors on the right positive and again coprime, whence c = de,
a2−50c2±x = 2d4 and a2−50c2∓x = 250e4, and then a2 = d4 + 50d2e2 +
125e4, completing the descent since y = ab = 2ade > e. On the other hand,
if b is odd we obtain similarly

125b4 = (2a2 − 25b2 + 2x)(2a2 − 25b2 − 2x)

and then b = de, 2a2−25b2±2x = d4 and 2a2−25b2∓2x = 125e4, yielding
(2a)2 = d4 + 50d2e2 + 125e4, and again the descent is complete since now
y = ab = ade > e unless a = d = 1, which gives no solution. This concludes
the proof of the lemma.

Corollary 3. The equation 5z2 = x4 + x3y + x2y2 + xy3 + y4 has no
solutions in integers other than x = y.

Proof. For a solution, let ξ = x + y, η = x − y. Then 80z2 = 5ξ4 +
10ξ2η2 + η4, and so with η = 5ζ we obtain (4z)2 = ξ4 + 50ξ2ζ2 + 125ζ4.

Proof of Theorem 3.1. From the equation, we obtain

Dy2 = (x− 1)(x4 + x3 + x2 + x+ 1),

where the factors on the right have common factor 1 or 5. Now it is im-
possible that an odd power of a prime q other than 5 divides the second
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factor, for if so we should find that q |D, x 6≡ 1 (mod q) and x5 ≡ 1 (mod q).
But then we should find that 5 | (q − 1), and the hypothesis of the theorem
is that D has no such prime factor. Thus we see that we must have either
x4 +x3 +x2 +x+1 = z2 or 5z2. By Corollary 2, the first implies that x = 3,
giving just D = 2, and by the corollary to Lemma 3.1, the second implies
x = 1, which does not give a solution with y positive.

Although we shall make no use of the fact and omit the proof, we may
show in the same way

Theorem 3.2. The equation x5 = 2y2− 1 has the single solution x = 1.
If D > 2 and D has no prime factor ≡ 1 (mod 5), then the equation x5 =
Dy2 − 1 has no solution in positive integers.

4. Small values of D. In this section we apply results from previ-
ous sections in an attempt to describe the complete set of positive integer
solutions to the equation of the title for all cases with D ≤ 100. At the
outset, we observe that it is enough to consider the cases with D square-
free. By [4] there are solutions with 4 |n for precisely five values of D
given by (D,x, y, n) = (5, 3, 4, 4), (6, 7, 20, 4), (15, 2, 1, 4), (29, 99, 1820, 4)
and (39, 5, 4, 4). There are also eleven values with D ≡ 7 (mod 8) for which
we have to consider even x, and by Nagell’s result, there is the single solu-
tion p = 5, x = 3 when D = 2, and 17 cases in which an odd prime divides
the corresponding class number. These may be categorised as follows:

(a) four cases with p = 3 for which there are known solutions, D =
26, 31, 38 and 61;

(b) eight other cases with p = 3, D = 23, 29, 53, 59, 83, 87, 89 and 92;
(c) four cases with p = 5, D = 47, 74, 79 and 86;
(d) one case, D = 71, with p = 7.

There are no solutions, odd or even, in the eight cases of (b) by the result
of [2], nor in the four cases of (c) by Theorem 3.1. We now consider some of
the remaining equations.

Result 4.1. The only solutions in positive integers of x3 = 26y2 +1 are
y = 1 and 1086.

Proof. We obtain (x − 1)(x2 + x + 1) = 26y2 where the factors on the
left have common factor 1 or 3 and the second is odd; there are therefore
four cases to consider.

Case 1: x− 1 = 26a2, x2 + x+ 1 = b2 with y = ab. Here the second is
impossible as can be seen on completing the square.

Case 2: x− 1 = 6a2, x2 + x+ 1 = 39b2 with y = 3ab. Here the former
implies that x ≡ 1 or −1 (mod 8), both of which are inconsistent with the
latter.
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Case 3: x− 1 = 78a2, x2 + x+ 1 = 3b2 with y = 3ab. Here the second
leads to (2b)2 − 3

(
2x+1

3

)2
= 1, and so

2x+ 1
3

=
(2 +

√
3)k − (2−

√
3)k

2
√

3
= uk,

say. Let vk = ((2 +
√

3)k + (2−
√

3)k)/2. Then we find that 52a2 = uk − 1,
and it is easily verified that uk ≡ 1 (mod 4) implies that k ≡ 1 (mod 4) and
then with k = 4m + 1 we find that 52a2 = u4m+1 − u1 = 2v2m+1u2m and
so 13

(
1
2a
)2

=
(

1
2v2m+1

)(
1
4u2m

)
where the factors on the right are coprime.

Thus we see that either v2m+1 = 2λ2 or u2m = λ2. The former then gives
4λ4 − 3u2

2m+1 = 1, which holds only for λ = 1 as is shown in [2, Lemma 2],
and then k = 1 whence a = 0 and so no solution in positive integers arises.
The latter yields v2

2m = 3λ4 + 1, which holds only for λ = 0, 1 or 2 by
Lemma 2.4. Here λ = 0 leads to y = 0 again, λ = 1 gives no solution
since u2m is even, and λ = 2 gives k = 5, and then a = 2, and x = 313,
y = 1086.

Case 4: x−1 = 2a2, x2 +x+1 = 13b2 with y = ab. Clearly one solution
is x = 3, y = 1; the difficulty is to show that there are no more. We find that
(2x+1)2−52b2 = −3, and so 2x+1+2b

√
13 = (±7+2

√
13)(649+180

√
13)k.

Thus 2x + 1 ≡ ±1 (mod 3) and the lower sign is impossible since it is
incompatible with x− 1 = 2a2. Thus

(4.1) 2x+ 1 + 2b
√

13 = (7 + 2
√

13)(649 + 180
√

13)k,

and our first task is to show that k must be a multiple of 4.
We see that 649+180

√
13 ≡ 4

√
13 (mod 11) and that (649+180

√
13)2 ≡

−1 (mod 11) and so k ≡ 1 (mod 4) is impossible since it would give 2x+1 ≡ 5
(mod 11), inconsistent with x − 1 = 2a2. Similarly 649 + 180

√
13 ≡ 3

√
13

and (649 + 180
√

13)2 ≡ −1 (mod 59), and so k ≡ 3 (mod 4) would give
2x + 1 ≡ −19 (mod 59), whence 2a2 ≡ −11 (mod 59), impossible since
(2|59) = −1, whereas (−11|59) = +1. So k must be even, say k = 2l. We
then find that

2x+ 1 + 2b
√

13 = (7 + 2
√

13)(842401 + 233640
√

13)l,

and arguing similarly modulo 7 we find that l ≡ 3 (mod 4) is impossible, and
modulo 17 that l 6≡ 1 (mod 4). Thus k must be a multiple of 4, say k = 4m.
Then (4.1) gives

2x+ 1 + 2b
√

13 = (7 + 2
√

13)(649 + 180
√

13)4m

= (7 + 2
√

13)
(

3 +
√

13
2

)24m

= (7 + 2
√

13)α24m,

say, and so 4x + 2 = 7Q24m + 26P24m where β is the conjugate of α and
the sequences {Pn} and {Qn} are defined by Pn = (αn − βn)/(α − β) and
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Qn = αn+βn, as in [1, with x = 3], and both satisfy the recurrence relation
wn+2 = 3wn+1 + wn with initial values P0 = 0, P1 = 1, Q0 = 2, Q1 = 3.
Thus we should require 8a2 = 7Q24m+26P24m−6, and here m = 0 gives the
solution a = 1. However for m 6= 0, we may write 24m = 2λt where λ is odd
and t = 2r with r ≥ 2. Now as in [1], we find that Qn+2t ≡ −Qn (modQt)
and Pn+2t ≡ −Pn (modQt) and so 8a2 ≡ −7Q0−26P0−6 = −20 (modQt).
But since Q2s = Q2

s − 2 for any even s, in view of Q4 = 119 ≡ −1 (mod 40)
it follows by induction on r that Qt ≡ −1 (mod 40) for all t = 2r with
r ≥ 2. Thus 2a2 ≡ −5 (modQt) is impossible since (2|Qt) = +1 whereas
(−5|Qt) = −1. This concludes the proof.

Result 4.2. The only solutions of the equation xn = 7y2 +1 in positive
integers x, y and n ≥ 3 are given by y = 1 and y = 3.

It is shown in [9] that there are no solutions apart from those stated if
3 |n, in [4] that there are none for 4 |n, and by Theorem 1 that there are
none for any odd x. The conclusion therefore follows from Theorem 2.1.

Result 4.3. The only solution of the equation xn = 15y2 +1 in positive
integers x, y and n ≥ 3 is given by y = 1.

By [4] the only solution with 4 |n is given by y = 1. If n is an odd prime,
then there is no solution for n = 3 by [2], none with x odd by Theorem 1,
nor for x even by Theorem 2.1.

Result 4.4. The equation xn = 23y2 + 1 has no solution in positive
integers x, y and n ≥ 3.

Here, there are no solutions with 4 |n by [4], none for n = 3 by [2] and
none for other odd values of n and x by Theorem 1. By Theorem 2.2, the
only remaining possibilities for x even are

either x−1 = a2,
x11 − 1
x− 1

= 23b2 or x−1 = 11a2,
x11 − 1
x− 1

= 23 ·11b2.

In the first case, the first equation would imply x ≡ 2 (mod 8) and
(x−1|23) = 1, and the second equation 23b2 ≡ 1 (modx), yielding (x|23) =(
x
2 |23

)
=
(
23|x2

)
= 1, and similarly (x+1|23) = −1 and (x2 +x+1|23) = 1.

It is now easily verified that no x satisfies (x|23) = 1, (x − 1|23) = 1,
(x+ 1|23) = −1, and (x2 + x+ 1|23) = 1, and so this case does not arise.

In the second case (x−1|23) = −1 and since 23|(x11−1), x is a quadratic
residue modulo 23, i.e., (x|23) = 1. Also since x− 1 = 11a2, x ≡ 0 (mod 4)
and then for any odd q not divisible by 11, Lemma 2.1 yields

(
11 · 23

∣∣xq−1
x−1

)

= 1 whence(
xq − 1
x− 1

∣∣∣∣23
)

=
(
xq − 1
x− 1

∣∣∣∣11
)

=
(

(1 + 11a2)q − 1
11a2

∣∣∣∣11
)

= (q|11).
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Putting q = 3 in this gives (x2 + x + 1|23) = 1, and this together with
(x − 1|23) = −1 and (x|23) = 1 implies x ≡ 8 (mod 23). But now q = 7
gives (x6 + x5 + . . .+ 1|23) = −1 and x ≡ 8 (mod 23) does not satisfy this,
concluding the proof.

We have settled all but six of the cases with D ≤ 100 in similar fashion,
and a summary of results follows. I have a set of notes outlining the proofs
of the various cases which I am willing to send to any interested reader.

5. Statement of results for D ≤ 100. There are the following solu-
tions:

D y x n D y x n D y x n

2 11 3 5 20 2 3 4 38 3 7 3
5 4 3 4 24 10 7 4 39 4 5 4
6 20 7 4 26 1 3 3 61 6 13 3

7 1 2 3 26 1086 313 3 63 1 2 6
7 3 2 6 29 1820 99 4 63 1 4 3
7 3 4 3 31 1 2 5 80 1 3 4

15 1 2 4 31 2 5 3 96 5 7 4

The following cases remain open, although it is conjectured that there
are no solutions other than the known ones:

D p Status

31 3 apart from the known solution x = 5 maybe more with x odd
31 5 apart from the known solution x = 2 maybe more with x even
38 3 apart from the known solution x = 7 maybe more with x odd
61 3 apart from the known solution x = 13 maybe more with x odd
71 5 even values of x open
71 7 odd values of x open

There are no solutions at all for any of the remaining values of D.

6. Perfect powers in the associated Pell sequence. The above
methods also provide a solution to another problem. The Pell sequence {Pn}
and its associated sequence {Qn} are defined by the recurrence relation
wn+2 = 2wn+1 + wn with initial values P0 = 0, P1 = 1, Q0 = Q1 = 1.
They generate the general solution of the Pell equation Q2 − 2P 2 = ±1. It
is known [3] that the only perfect powers in the former are 0, 1 and 169. We
can now prove

Theorem 6.1. The only perfect power in the associated Pell sequence
is 1.
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Lemma 6.1. Let x ≡ 0 or 1 (mod 4). Then
(
xr+1
x+1

∣∣xs+1
x+1

)
= 1 for all

relatively prime odd integers r and s.

The proof is exactly similar to that of Lemma 2.1 and is omitted.

Proof of Theorem 6.1. Suppose that Q = xp where p denote a prime. No
solution apart from Q = 1 arises with p = 2 since then P 4±x4 = (P 2±1)2.
For p odd, our equation is x2p = 2y2 ± 1, and with the upper sign there are
no solutions by Theorem 1. The lower sign gives

y2 =
(
x2 + 1

2

)
(x2p−2 − x2p−4 + . . .− x2 + 1),

where the factors on the right have common factor 1 or p. The former would
give

b2 = x2p−2 − x2p−4 + . . .− x2 + 1 =
x2p + 1
x2 + 1

,

and this has no solution with x > 1 by [6]. The latter gives x2 + 1 = 2pa2,

pb2 = x2p−2 − x2p−4 + . . .− x2 + 1 =
x2p + 1
x2 + 1

with x2 ≡ 1 (mod 8), and p ≡ 1 (mod 8). But then for any odd integer r
coprime to p we should find that

(
pb2
∣∣∣∣
x2r + 1
x2 + 1

)
=
(
x2p + 1
x2 + 1

∣∣∣∣
x2r + 1
x2 + 1

)
= 1

by Lemma 6.1, and so
(
x2r+1
x2+1

∣∣p
)

= 1. But

x2r + 1
x2 + 1

=
(2pa2 − 1)r + 1

2pa2 ≡ r (mod p),

and so we have a contradiction on selecting r to be an odd quadratic non-
residue modulo p, concluding the proof.

Added in proof. The author wishes to thank Professor Schinzel for pointing out
that Lemmas 2.1 and 6.1 are particular cases of the more general results contained in
Theorem 2′, 5′′ and 6′ of the paper by A. Rotkiewicz, Applications of Jacobi’s symbol to
Lehmer’s numbers, Acta Arith. 42 (1983), 163–187.
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