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1. Introduction. Let p be an odd positive integer, write d = p2+4, and
assume that d is squarefree. Let K = Q(

√
d), where Q is the rational field.

We prove the conjecture of Yokoi (see [Y]) that h(d) (i.e. the class number
of K) is greater than 1 if p > 17. This conjecture is one of the real analogues
of the famous problem (solved by Heegner, Stark and Baker) of finding all
imaginary quadratic fields with class number 1. Since the fundamental unit
of K is small, it follows from the ineffective theorem of Siegel (similarly to
the imaginary case) that there are only finitely many p for which the special
real quadratic field K has class number 1. So the problem is to find an
effective upper bound for p assuming h(d) = 1. We will prove the following
theorem.

Theorem. If d is squarefree, h(d) = 1 and d = p2 + 4 with some odd
integer p, then d is a square for at least one of the following moduli : q =
5, 7, 41, 61, 1861 (that is, (d/q) = 0 or 1 for at least one of the listed values
of q).

Combining this with the well-known fact that if h(d) = 1 then d is a
quadratic nonresidue modulo any prime r with 2 < r < p (for the sake of
completeness, we will prove it, see our Fact B stated in Section 2), we obtain
our main result:

Corollary. If d is squarefree, and d = p2 + 4 with some integer p >
1861, then h(d) > 1.

It is easy to prove on the basis of the above-mentioned Fact B that h(d) >
1 if 17 < p ≤ 1861 (see the end of Section 2; this statement follows also from
[Z]), so we have a full solution of Yokoi’s conjecture. Note that there are six
exceptional fields where h(d) = 1, belonging to p = 1, 3, 5, 7, 13, 17.
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The same proof with minor modifications works for Chowla’s conjecture,
which is a similar class number one problem (see [C-F]). We will present that
proof in a forthcoming paper. But it seems that the present proof works only
for the class number one problem, the class number two problem (for exam-
ple) remains open. The harder problem of giving an effective lower bound
tending to infinity for h(p2 +4) (the similar statement in the imaginary case
was proved by Goldfeld, Gross, Zagier, see [G] and [G-Z]) is also open. We
mentioned above that the fundamental unit is small (hence Siegel’s theorem
is applicable), but its logarithm is as large as log p, so it is large enough to
cause a problem if one wants to apply the Goldfeld–Gross–Zagier method.

The starting point of our proof is an idea of J. Beck’s paper [B]. In that
work he excluded some residue classes for p, i.e. he gave effective upper
bounds for p in the class number one case provided p belongs to certain
residue classes. He combined elementary number theory with formulas for
special values of zeta functions related to K and certain quadratic Dirichlet
characters. In this paper, we use zeta functions related to nonquadratic
Dirichlet characters; this leads us to elementary algebraic number theory.
Using also new elementary ingredients, we are able to exclude all residue
classes modulo a given concrete modulus, hence to prove the conjecture.

Until this proof, only quadratic characters have been used in the proof as
“parameters”. I mean that in the cited paper of Beck, and also in the classical
work of Gelfond–Linnik–Baker in the imaginary case, besides the quadratic
Dirichlet character belonging to the given quadratic field K, there are other
Dirichlet characters, and one can consider them as parameters, since one
tries to choose them in a way which is most useful for the proof. Now, in the
present proof these parameter characters are not quadratic. This provides
a lot of new possibilities for excluding residue classes for p. The use of
such characters was made possible by proving our Lemma 1 (see Section 2),
which gives a useful expression for the value at 0 of some zeta functions.
The proof of Lemma 1 given here is based on the method of Shintani (see
[S1]). Originally I proved this lemma without knowing Shintani’s work, by
a different (and more complicated) method. I am grateful to S. Egami for
drawing the paper [S1] to my attention.

We will give a more detailed sketch of the proof in the next section.
The proof requires also computer work. We emphasize that the results

of the computations made by the computer program given in Section 5 are
important for the proof of the Theorem (which is a theoretical result). So
we think that this program belongs to the proof, and consequently, for the
sake of completeness it is necessary to give its details. However, if one is
willing to accept the results of the computer work, one can skip Section 5.

The structure of the paper is the following. In Section 2 we give the plan
of the proof, in Section 3 we prove the important Lemma 1 and Fact B
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mentioned above, in Section 4 we fix the numerical parameters, in Section
5 we give a BASIC program. Finally, in Section 6 we give the results of this
computer program and conclude the proof of the Theorem.

I am grateful to A. Granville for his many valuable remarks on my origi-
nal manuscript. These remarks simplified the arguments at some points and
made the exposition clearer. I am also grateful to M. Simonovits, who helped
me to simplify the first version of my computer program.

2. Outline of the proof. We introduce some notations. Let R be the
ring of algebraic integers of K; denote by I(K) the set of nonzero ideals
of R and by P (K) the set of nonzero principal ideals of R. Let N(a) be
the norm of an a ∈ I(K), i.e. its index in R. Let q > 2 be an integer
with (q, d) = 1 (remember that d = p2 + 4), and let χ be an odd (i.e. we
assume χ(−1) = −1) primitive character with conductor q. (This will be
the parameter character.) For <s > 1 define

ζK(s) =
∑

a∈I(K)

1
N(a)s

, ζK(s, χ) =
∑

a∈I(K)

χ(N(a))
N(a)s

,

ζP (K)(s, χ) =
∑

a∈P (K)

χ(N(a))
N(a)s

.

It is well known (see e.g. [W, Theorems 4.3 and 3.11]) that

(2.1) ζK(s) = ζ(s)L(s, χd),

where

χd(n) =
(
n

d

)

is a Jacobi symbol; moreover, if h(d) = 1, then d is a prime (see Fact B
below), so this is a Legendre symbol. It follows easily that

ζK(s, χ) = L(s, χ)L(s, χχd).

It is also well known (see e.g. [W, Theorem 4.2] and [D, Chapter 9]) that
for a primitive character ψ with ψ(−1) = −1 and with conductor f one has

L(0, ψ) = − 1
f

f∑

a=1

aψ(a) 6= 0.

Consequently, since χχd is a primitive character with conductor qd by our
conditions, and χd(−1) = 1 because d is congruent to 1 modulo 4, it follows
that

(2.2) ζK(0, χ) =
1
q2d

( q∑

a=1

aχ(a)
)( qd∑

b=1

bχ(b)χd(b)
)
.
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Now, if h(d) = 1, then

(2.3) ζK(s, χ) = ζP (K)(s, χ)

by definition. In the next section we will prove

Lemma 1. If d = p2 +4 is squarefree, q > 2 is an integer with (q, d) = 1,
and χ is a primitive character modulo q with χ(−1) = −1, then ζP (K)(s, χ)
extends meromorphically in s to the whole complex plane and

ζP (K)(0, χ) =
1
q
Aχ(p),

where for any integer a we write (dte being the least integer not smaller
than t)

Aχ(a) =
∑

0≤C,D≤q−1

χ(D2 − C2 − aCD)d(aC −D)/qe(C − q).

Note that qd divides the sum

Σ =
d−1∑

x=0

(l + xq)χd(l + xq)

for any fixed 1 ≤ l ≤ q. Indeed, the numbers l + xq give a complete system
of residues modulo d, so

Σ ≡ l
∑

ymod d

χd(y) ≡ 0 (mod q), Σ ≡
∑

ymod d

yχd(y) ≡ 0 (mod d),

since χd is an even nonprincipal character modulo d. Now,
qd∑

b=1

bχ(b)χd(b) =
q∑

l=1

χ(l)
d−1∑

x=0

(l + xq)χd(l + xq),

so using (2.2), (2.3), Lemma 1 and the last remark, we obtain the following

Fact A. If d = p2 + 4 is squarefree, h(d) = 1, q is an integer with
q > 2, (q, d) = 1, and χ is a primitive character modulo q with χ(−1) = −1,
then, writing

mχ =
q∑

a=1

aχ(a),

we have mχ 6= 0, and Aχ(p)m−1
χ is an algebraic integer.

We will prove that the Theorem follows from Fact A.
First we introduce the following notation. If m is an odd positive integer,

we denote by Um the set of rational integers a satisfying
(
a2 + 4
r

)
= −1



Yokoi’s conjecture 89

for every prime divisor r of m. Observe that Um is a union of certain residue
classes modulo m.

We assume that h(d) = 1. We will use Fact A in the following way.
Denote by Lχ the field generated over Q by the values χ(a) (1 ≤ a ≤ q),
and take a prime ideal I of Lχ such that

(2.4) mχ ∈ I.
Let

(2.5) p = Pq + p0 with 0 ≤ p0 < q.

Then it is easy to see that

(2.6) Aχ(p) = PBχ(p0) + Aχ(p0),

where for any integer a we write

(2.7) Bχ(a) =
∑

0≤C,D≤q−1

χ(D2 − C2 − aCD)C(C − q).

From (2.4), (2.6) and Fact A we then obtain

(2.8) PBχ(p0) + Aχ(p0) ≡ 0 (mod I).

Assume that q is odd, and that p ∈ Uq (equivalently p0 ∈ Uq). Ob-
serve that this already determines the ideal generated by Bχ(p0). Indeed, if
a1, a2 ∈ Uq, then

(2.9) (Bχ(a1)) = (Bχ(a2)),

i.e. Bχ(a1) and Bχ(a2) generate the same ideal in the ring of integers of Lχ.
We will show this statement at the end of this section. (Note that (2.9) is
not important for the proof, but we think it is worth remarking.) Assume
also that the positive integers q and r satisfy the following condition:

Condition (∗). The integer q is odd , r is an odd prime, and there is
an odd primitive character χ with conductor q and a prime ideal I of Lχ
lying above r such that mχ ∈ I, but I does not divide the ideal generated by
Bχ(a) in the ring of integers of Lχ, if a is any rational integer with a ∈ Uq.

Then, since p0 ∈ Uq, we deduce from (2.8) that

P ≡ −Aχ(p0)
Bχ(p0)

(mod I),

where we divide in the residue field of I (i.e. in R/I). Combining it with
(2.5), we see that

(2.10) p ≡ p0 − q
Aχ(p0)
Bχ(p0)

(mod I).

Let q and p0 be fixed. Note that in principle it may happen, if the residue
field of I is not the prime field (in our concrete applications, the residue field
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will always be the prime field), that there is no rational integer p satisfying
(2.10); but anyway, if there are solutions, then all the solutions belong to a
unique residue class modulo r, since I lies above r. This implies that if we
know q and p0, then we can specify a congruence class modulo r such that
p must belong to this class.

Summing up: let h(d) = 1, and let q and r satisfy Condition (∗). Then, if
p is in a given congruence class modulo q such that p ∈ Uq, this forces p to be
in a certain residue class modulo r; then we can test whether p ∈ Ur or not.
This is our key new elementary tool, and our Theorem follows by several
applications of this tool. The technicalities are very roughly as follows.

Denote by q → r that q and r satisfy Condition (∗) above. We could say
that we have defined a directed graph (with the positive integers as vertices)
in this way. We will use a certain triangle in this graph. To be specific, we
will use the arrows:

175→ 61, 175→ 1861, 61→ 1861.

There are 40 residue classes modulo 175 = 52 · 7 contained in U175, so we
may assume that p belongs to one of these classes. For 20 of these classes,
the arrow 175 → 61 forces p into a residue class modulo 61 which is not
contained in U61. The arrow 175 → 1861 similarly eliminates 10 of the
remaining residue classes, so 10 possible residue classes remain for p modulo
175.

Next we also apply the arrow 61 → 1861, and we find that for eight of
the remaining residue classes modulo 175, different residue classes modulo
1861 are prescribed for p by consecutive application of the two arrows

175→ 61, 61→ 1861,

and by the arrow 175 → 1861. This contradiction eliminates these classes.
We are left with

p ≡ ±13 (mod 175 · 61 · 1861).

We then use a new arrow

61→ 41,

and this finally forces p into residue classes modulo 41 which are not con-
tained in U41. This will prove the Theorem.

We explain briefly how we found the triangle 61,175,1861. It is clear that
if q and r satisfy Condition (∗), then there is an odd primitive character χ
with conductor q such that r divides the norm of mχ (this is a necessary, but
not sufficient condition for (∗)). Now, such divisibility relations can be found
by the table on pp. 353–360 of [W]: this table lists relative class numbers of
cyclotomic fields, and in view of Theorem 4.17 of [W], relative class numbers
are closely related to the norms of such numbers mχ.
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To deduce the Corollary we use the following

Fact B. If d = p2 + 4 is squarefree and h(d) = 1, then d is a prime,
and if 2 < r < p is also a prime, then

(
d

r

)
= −1

(Legendre symbol).

We prove it in the next section.
The small values of p, i.e. the cases 1 ≤ p ≤ 1861, are easily handled by

Fact B. In fact, it can be checked by an easy calculation that if 1 ≤ p ≤ 1861
is an odd integer and p 6= 1, 3, 5, 7, 13, 17, then there is a prime 3 ≤ r ≤ 31
such that r < p and (

p2 + 4
r

)
6= −1.

Hence Yokoi’s conjecture is proved.
Examining the proof, we see that Yokoi’s conjecture follows from Facts

A and B by elementary algebraic number theory and a finite amount of
computation. I think that the present way is not the only one to prove the
conjecture on the basis of these two facts.

We also see that in order to get the linear congruence (2.8), it was very
important that once χ, its conductor q and the residue of p modulo q are
fixed, then ζP (K)(0, χ) depends linearly on p (see Lemma 1, (2.5) and (2.6)).
In the case of quadratic characters χ, this linear dependence was proved by
Beck in [B].

Finally, we prove formula (2.9). By (2.7), we have

(2.11)
χ(4)

χ(a2
1 + 4)

Bχ(a1) =
∑

0≤C,D≤q−1

χ

(
(2D − a1C)2

a2
1 + 4

− C2
)
C(C − q),

where dividing by a2
1 + 4 means multiplying by its inverse modulo q (which

exists by the assumption that a1 ∈ Uq). Now, if C is fixed, then (2D− a1C)
runs over a complete residue system modulo q. A similar formula is valid
for a2 in place of a1. Since (a2

2 + 4)(a2
1 + 4)−1 is the square of a reduced

residue class modulo q if a1, a2 ∈ Uq, the right-hand side of (2.11) remains
unchanged if we replace a1 by a2, hence (2.9) is proved. In fact one can say
more about the numbers Bχ(a), especially if q is a prime, but we do not
need it, so we do not analyze it any further.

3. Proof of Lemma 1 and Fact B. Before proving these two impor-
tant results stated in Section 2, we introduce some further notations. Let α
be the positive root of the equation x2 +px = 1. It is easily seen that 1, α−1

is an integral basis of R, and 1, α is also an integral basis. On the other



92 A. Biró

hand, α−1 is the fundamental unit of K; this is true because the fundamen-
tal solution of X2 − (p2 + 4)Y 2 = −4 is (X,Y ) = (p, 1). Hence the units of
R are ±αj with integer j. For β ∈ R, denote by β the algebraic conjugate
of β, and let

Q(C,D) = D2 − C2 − pCD.
It is easy to verify that for β = C +Dα−1 with integers C, D one has

(3.1) ββ = −Q(C,D).

Proof of Lemma 1. Suppose that (γ) is a principal ideal of R. If γ < 0,
then replace γ by −γ. If, then, γ < 0, replace γ by γα−1, which is positive,
and its conjugate, γ(α)−1, is also positive. Therefore, without loss of gen-
erality, we may assume that γ > 0 and γ > 0. The units of R which are
positive and whose conjugate are also positive are (α2)j with integer j. So
there is a unique β ∈ R such that (γ) = (β) and

β > 0, β > 0, 1 ≤ β/β < α−4.

Since α−2 is irrational, we can write any element of K as a Q-linear combi-
nation of 1 and α−2, say

β = X + Y α−2.

Now
1 ≤ β/β ⇔ β ≤ β ⇔ Y (α−2 − α2) ≥ 0 ⇔ Y ≥ 0.

Similarly

β/β < α−4 ⇔ β < βα−4 ⇔ X(α−4 − 1) > 0 ⇔ X > 0.

We deduce that every principal ideal of R can be written in a unique way
in the form (β), where

β ∈ R, β = X + Y α−2 with some rationals X > 0, Y ≥ 0.

Next write X = qx + qn1 and Y = qy + qn2 for some nonnegative integers
n1 and n2 and real numbers 0 < x ≤ 1, 0 ≤ y < 1 which can be done in a
unique way. Then β ∈ R if and only if

q(x+ yα−2) ∈ R,
since, evidently, q(n1 + n2α

−2) ∈ qR.
Now, since C + Dα−1 with integers 0 ≤ C,D ≤ q − 1 form a complete

system of representatives of R/qR, we can uniquely select an integer pair
0 ≤ C,D ≤ q − 1 such that

q(x+ yα−2) ∈ C +Dα−1 + qR.

Therefore

(3.2) x+ yα−2 − C +Dα−1

q
∈ R.
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Tracing this back gives

X + Y α−2 ≡ C +Dα−1 (mod qR),

and since for the principal ideal a generated by X + Y α−2 we have

N(a) = (X + Y α−2) (X + Y α−2)

because X > 0, Y ≥ 0, it follows that

N(a) ≡ (C +Dα−1) (C +Dα−1) ≡ −Q(C,D) (mod q),

where we used (3.1). Therefore, using also (3.2), if we partition the β ∈ R
according to the associated values for C and D we obtain the following
formula of Shintani (p. 595 of [S2]):

(3.3) ζP (K)(s, χ)

=
−1
q2s

q−1∑

C,D=0

χ(Q(C,D))
∑

(x,y)∈R(C,D)

ζ

(
s,

(
1 α−2

1 α2

)
, (x, y)

)

with the following notations: R(C,D) denotes the set
{

(x, y) ∈ Q2 : 0 < x ≤ 1, 0 ≤ y < 1, x+ yα−2 − C +Dα−1

q
∈ R

}
,

and for a matrix
(
a b

c d

)
with positive entries and x > 0, y ≥ 0 we write

ζ

(
s,

(
a b
c d

)
, (x, y)

)

for the function
∞∑

n1,n2=0

(a(n1 + x) + b(n2 + y))−s (c(n1 + x) + d(n2 + y))−s .

The key result we quote is easily deduced from the Corollary to Propo-
sition 1 of [S1]:

Proposition (Shintani). For any a, b, c, d, x > 0 and y ≥ 0 the function

ζ

(
s,

(
a b
c d

)
, (x, y)

)
,

which is absolutely convergent for <s > 1, extends meromorphically in s to
the whole complex plane, and the special value

ζ

(
0,
(
a b
c d

)
, (x, y)

)

equals

B1(x)B1(y) +
1
4

(
B2(x)

(
c

d
+
a

b

)
+B2(y)

(
d

c
+
b

a

))
,
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where B1 and B2 are the Bernoulli polynomials

B1(z) = z − 1/2, B2(z) = z2 − z + 1/6.

We thus can substitute the result of this proposition into (3.3) to evaluate
ζP (K)(0, χ). Using the fact that α−2 + α2 = p2 + 2, we obtain

(3.4) ζP (K)(0, χ) = −
∑

0≤C,D≤q−1

χ(Q(C,D))ΣC,D,

where ΣC,D denotes the sum

∑

(x,y)∈R(C,D)

(
−p

2

2
xy − p2 + 4

4
(x+ y) +

p2 + 2
4

(x+ y)2 +
p2 + 5

12

)
.

To investigate ΣC,D for a fixed pair 0 ≤ C,D ≤ q − 1, we observe that
for any m,n we have

mα−1 + n

q
=

(
n− m

p

)
+ m

p α
−2

q
,

and so it is easy to see that the possibilities for (m,n) having (x, y) ∈
R(C,D) with

(x, y) =
(

1
q

(
n− m

p

)
,

1
q
· m
p

)

are

mj = D + jq, nj = C + q

[
1 +

j

p
− (pC −D)/q

p

]

with any integer 0 ≤ j ≤ p− 1. This is so because the possible values of m
are obviously these p values, and once m is fixed, n is unique.

One has

0 < 1 +
j

p
− (pC −D)/q

p
< 2,

so

nj =
{
C for 0 ≤ j < A,
C + q for A ≤ j < p,

where we put A = d(pC −D)/qe, and clearly 0 ≤ A ≤ p.
So we have

ΣC,D =
p−1∑

j=0

(
− p2

2q2

(
nj −

mj

p

)
mj

p
− p2 + 4

4q
nj +

p2 + 2
4q2 n2

j +
p2 + 5

12

)
.

By the description of nj and mj above, if we consider separately the cases
0 ≤ j < A and A ≤ j < p, and use the summation formulas for

∑N
j=0 j and∑N

j=0 j
2 (for any integer N ≥ 0), straightforward (but tedious) calculations
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give

(3.5) ΣC,D = A

(
1− C

q

)
+

p

4q2Σ
(1)
C,D −

1
4q
Σ

(2)
C,D,

where
Σ

(1)
C,D = 2C2 +D2 + (D − pC + qA)2,

Σ
(2)
C,D = 2pC + (p− 2)D + (p+ 2)(D − pC + qA).

Remember that A depends on C and D, but for brevity we do not denote
it.

We show that
∑

0≤C,D≤q−1

χ(Q(C,D))Σ(j)
C,D = 0

for j = 1, 2. To this end we introduce the transformation T ((C,D)) = (Ĉ, D̂)
with

Ĉ = D − pC − q[(D − pC)/q], D̂ = C

(here we used lower integer part). We will also use the notation

T 2 ((C,D)) = ( ̂̂C, ̂̂D).

Note that Ĉ (similarly to ̂̂
C, D̂ and ̂̂

D) depends on the pair (C,D). The
transformation T is a permutation of the set of the pairs (C,D) with 0 ≤
C,D ≤ q − 1.

Now, observe that
qA = pC −D + Ĉ.

Using this relation, and C = D̂, Ĉ = ̂̂
D, we obtain the identities

Σ
(1)
C,D = (D2 + (D̂)2) + ((D̂)2 + ( ̂̂D)2),

Σ
(2)
C,D = (p− 2)(D + D̂) + (p+ 2)(D̂ + ̂̂

D).

It is easy to verify that Q(Ĉ, D̂) ≡ −Q(C,D) (mod q), hence χ(Q(Ĉ, D̂))
= −χ(Q(C,D)), since χ is odd. Consequently, any orbit of T (where χ is
not 0) has an even number of elements, and the value of χ(Q(C,D)) changes
to its negative at each step by T . Our last identities then show that in fact,
when we substitute (3.5) into (3.4), the terms Σ(1)

C,D, Σ
(2)
C,D give 0 after the

summation over C, D (since they give 0 on each orbit). Lemma 1 is proved.

For the proof of Fact B, we need the following lemma.

Lemma 2. If 0 6= β ∈ R, and |ββ| < p, then β is associated in R to a
rational integer.
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Proof. Let β = cα − d with integers c and d. We may assume that
α ≤ |β| ≤ 1 and c > 0 (since for c = 0 we are done). Then

|β| =
∣∣∣∣c

1
α

+ d

∣∣∣∣ =
∣∣∣∣c
(
α+

1
α

)
− β

∣∣∣∣ ≥ c
(
α+

1
α

)
− 1,

hence
p > |ββ| ≥ c− α.

The right-hand side is greater than p − 1 for c ≥ p, so we have 1 ≤ c < p.
Then 0 < cα < 1, and by |β| ≤ 1 we can assume d = 1, because in the case
d = 0 the proof is complete. Then

p > |ββ| = 1− c2 + pc,

which is impossible for c in the given range, and the lemma is proved.

Proof of Fact B. Assume that d is not a prime (but, by our assumptions,
it is odd and squarefree). Let t be the least prime divisor of d. Since (p, d) =
1, and (p+1)2 > d, we have 2 < t < p. The discriminant of K is d, hence the
prime t is ramified in K, so the ideal generated by t in R is a square of an
ideal, say (t) = a2. The class number is 1, so a = (β) with some 0 6= β ∈ R,
and this implies that

|ββ| = N(a) = t,

hence |ββ| < p and |ββ| is not a square, which is a contradiction by Lemma 2.
So we know that d is a prime; it is obviously congruent to 1 modulo 4,

and by quadratic reciprocity it is enough to prove that
(
r
d

)
= −1. Assume

that
(
r
d

)
= 1. It is well known (and we can see it from (2.1)) that the ideal

(r) is then a product of two prime ideals in R; both must have norm r.
Since the class number is 1, it follows that there is a 0 6= β ∈ R such that
|ββ| = r, and since r < p and r is not a square, this contradicts Lemma 2,
just as above. Fact B is proved.

4. Fixing the parameters. We will use the notations introduced in
Section 2.

We will use Fact A for three concrete characters χ, denote them by χ1,
χ2 and χ3. The character χ1 has conductor 175 = 52 · 7, while χ2 and χ3

have conductor 61. Since 2 is a primitive root modulo 25, and 3 is a primitive
root modulo 7, the character χ1 is well defined by

χ1 = χ
(25)
1 χ

(7)
1 ,

where χ(25)
1 is a character modulo 25, χ(7)

1 is a character modulo 7, and

χ
(25)
1 (2) = iξ, χ

(7)
1 (3) = ω,
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where ξ is a primitive fifth root of unity, i is the usual primitive fourth root
of unity, and ω is a primitive third root of unity. It is easily seen that χ1 is
a primitive character modulo 175 and χ1(−1) = −1.

Since 2 is a primitive root modulo 61, the characters χ2 and χ3 are well
defined by

χ2(2) = iωξ, χ3(2) = iξ.

These are obviously primitive characters modulo 61, and

χ2(−1) = χ3(−1) = −1.

Clearly

Lχ =
{
Q(ξ60) for χ = χ1 and χ = χ2,
Q(ξ20) for χ = χ3,

where ξn denotes a primitive nth root of unity.
Before giving the concrete examples we will work with, we quote a well-

known general fact on the factorization of rational primes in cyclotomic
fields. Let r be a rational prime and assume that

(4.1) r ≡ 1 (modn).

Then, in the ring of algebraic integers of Q(ξn), the ideal (r) is a product of
φ(n) distinct prime ideals, and these prime ideals have the form

(4.2) (r, ξn − a),

where a runs over the rational integers 1 ≤ a ≤ r with

(4.3) or(a) = n,

and or(a) denotes the order of a modulo r. (See [W, pp. 14–15].) What we
actually need is the fact that in the case of (4.1), the ideal (4.2) is prime for
every rational integer a satisfying (4.3).

We now give our four examples. These examples correspond to the four
arrows

175→ 61, 175→ 1861, 61→ 1861, 61→ 41,

respectively, mentioned in Section 2.

Example 1. Here q = 175, r = 61, χ = χ1, Lχ = Q(ξ60), and we choose
I = (61, iωξ − 10). Since o61(10) = 60, this is a prime ideal. We then have

χ
(25)
1 (2) = (iωξ)21 ≡ 1021 ≡ 8 (mod I),

χ
(7)
1 (3) = (iωξ)40 ≡ 1040 ≡ 47 (mod I).

Consequently, for rational integers a,

if a ≡ 2s (mod 25), then χ
(25)
1 (a) ≡ 8s (mod I),(4.4)

if a ≡ 3t (mod 7), then χ
(7)
1 (a) ≡ 47t (mod I).(4.5)
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Example 2. Here q = 175, r = 1861, χ = χ1, Lχ = Q(ξ60), and we
choose I = (1861, iωξ − 173). Since o1861(173) = 60, this is a prime ideal.
We then have, just as above,

χ
(25)
1 (2) ≡ 17321 ≡ 380 (mod I), χ

(7)
1 (3) ≡ 17340 ≡ 1406 (mod I).

Consequently, for rational integers a,

if a ≡ 2s (mod 25), then χ
(25)
1 (a) ≡ 380s (mod I),(4.6)

if a ≡ 3t (mod 7), then χ
(7)
1 (a) ≡ 1406t (mod I).(4.7)

Example 3. Here q = 61, r = 1861, χ = χ2, Lχ = Q(ξ60), and we
choose I = (1861, iωξ− 1833). Since o1861(1833) = 60, this is a prime ideal.
We then have, for rational integers a,

(4.8) if a ≡ 2s (mod 61), then χ(a) ≡ 1833s (mod I).

Example 4. Here q = 61, r = 41, χ = χ3, Lχ = Q(ξ20), and we choose
I = (41, iξ − 33). Since o41(33) = 20, this is a prime ideal. We then have,
for rational integers a,

(4.9) if a ≡ 2s (mod 61), then χ(a) ≡ 33s (mod I).

It is clear that using formulas (4.4)–(4.9), we can verify whether Condi-
tion (∗) (see Section 2) is valid for these four (q, r) pairs or not (with the
given χ and I). For this we will use the computer program of the next sec-
tion; we will find that the condition is satisfied in each case. Then we will
be able to apply the arguments of Section 2, in particular, formula (2.10).

5. The computer program. The aim of the algorithm of this section
is to compute mχ modulo I, and also Aχ(p0), Bχ(p0) modulo I for every
relevant residue class p0 modulo q (see Section 2 for these notations). We
will compute these quantities with the concrete parameters of the examples
of Section 4, i.e. we compute them in four separate cases. Since I lies above
r, and |R/I| = r, the computation modulo I is in practice a computation
with rational integers modulo r.

Before giving the BASIC program itself, we say a few words about it. We
will apply the program for the four examples given in the previous section.
We have to set the value of q, and then of r. These two values already
identify the example, and the program then works with the other data (i.e.
χ and I) of that example. The program uses data from a file depending on
(q, r). Each data file contains 20 numbers; we write the interesting values
of p0 followed by zeros if there are less than 20 interesting values. See the
contents of the data files below. It will turn out in Section 6 that indeed
these are the interesting values of p0. Firstly, the program computes the
values of our characters modulo the ideal I, based on equations (4.4)–(4.9).
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If q = 175, we have

d(n, 0) ≡ χ(25)
1 (n) (mod I), d(n, 1) ≡ χ(7)

1 (n) (mod I).

If q = 61, we have
d(n, 2) ≡ χ(n) (mod I).

We use two subroutines. The first one (at line 20) is used only if q = 175.
If 1 ≤ g ≤ 3 is fixed, and the integers J , Z and s(g) are given, this subroutine
adds χ(J)Z to s(g) (modulo the ideal I, of course). The second subroutine
(at line 30) is the same as the previous one, but it is used when q = 61.

After computing the values of the characters, the program computes mχ

(we get it in result1.txt), then Aχ(p0) (we get in result2.txt) and Bχ(p0)
(result3.txt) modulo I for every interesting value of p0.

We now give the data files. In the consecutive lines, we write the contents
of data0.txt, data1.txt, data2.txt, and data3.txt:

3, 8, 13, 17, 18, 22, 27, 32, 38, 43, 48, 52, 53, 57, 62, 67, 73, 78, 83, 87;

8, 13, 18, 22, 32, 38, 43, 53, 67, 78, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;

6, 10, 24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;

13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.

Here is the QBasic program:
DEFDBL A−Z
IF q = 175 AND r = 61 THEN OPEN ”data0.txt” FOR INPUT AS #1
IF q = 175 AND r = 1861 THEN OPEN ”data1.txt” FOR INPUT AS #1
IF q = 61 AND r = 1861 THEN OPEN ”data2.txt” FOR INPUT AS #1
IF q = 61 AND r = 41 THEN OPEN ”data3.txt” FOR INPUT AS #1
OPEN ”result1.txt” FOR OUTPUT AS #2
OPEN ”result2.txt” FOR OUTPUT AS #3
OPEN ”result3.txt” FOR OUTPUT AS #4
DIM d(60, 2): DIM s(3)
REM ======= WE COMPUTE THE VALUES OF THE CHARACTERS
p = 1: d(1, 0) = 1: FOR J = 1 TO 19
v = p: p = (2 ∗ p) MOD 25
IF r = 61 THEN d(p, 0) = (8 ∗ d(v, 0)) MOD r
IF r = 1861 THEN d(p, 0) = (380 ∗ d(v, 0)) MOD r
NEXT J
p = 1: d(1, 1) = 1: FOR J = 1 TO 5
v = p: p = (3 ∗ p) MOD 7
IF r = 61 THEN d(p, 1) = (47 ∗ d(v, 1)) MOD r
IF r = 1861 THEN d(p, 1) = (1406 ∗ d(v, 1)) MOD r
NEXT J
p = 1: d(1, 2) = 1: FOR J = 1 TO 59
v = p: p = (2 ∗ p) MOD 61
IF r = 1861 THEN d(p, 2) = (1833 ∗ d(v, 2)) MOD r
IF r = 41 THEN d(p, 2) = (33 ∗ d(v, 2)) MOD r
NEXT J
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GOTO 40
REM ======= IF q = 175, THIS SUBROUTINE ADDS χ(J)Z
20 IF J MOD 5 = 0 OR J MOD 7 = 0 THEN GOTO 25
s = d(((J MOD 25) + 25) MOD 25, 0): L = d(((J MOD 7) + 7) MOD 7, 1)
w = (s ∗ L) MOD r
s(g) = (((s(g) + w ∗ Z) MOD r) + r) MOD r
25 RETURN
REM ======= IF q = 61, THIS SUBROUTINE ADDS χ(J)Z
30 IF J MOD 61 = 0 THEN GOTO 35
s = d(((J MOD 61) + 61) MOD 61, 2)
s(g) = (((s(g) + s ∗ Z) MOD r) + r) MOD r
35 RETURN
REM ======= WE COMPUTE mχ (AS s(1))
40 g = 1: FOR J = 1 TO q − 1
Z = J: IF q = 175 THEN GOSUB 20
IF q = 61 THEN GOSUB 30
NEXT J
REM ======= p(a) ARE THE POSSIBLE VALUES OF p0
DIM p(20): FOR a = 1 TO 20: INPUT #1, p(a)
IF p(a) = 0 THEN GOTO 70
REM ======= WE COMPUTE Aχ(p0) (AS s(2)) AND Bχ(p0) (AS s(3))
FOR c = 0 TO q − 1: FOR d = 0 TO q − 1
J = d ∗ d − c ∗ c − p(a) ∗ c ∗ d
g = 2: Z = (q − c) ∗ INT((d − p(a) ∗ c) / q)
IF q = 175 THEN GOSUB 20
IF q = 61 THEN GOSUB 30
g = 3: Z = (c − q) ∗ c
IF q = 175 THEN GOSUB 20
IF q = 61 THEN GOSUB 30
NEXT d: NEXT c
REM ======= WE PRINT THE RESULTS
FOR g = 1 TO 3: IF a > 1 AND g = 1 THEN GOTO 60
IF g > 1 THEN PRINT #(g + 1), ” for ”; p(a); ” we get ”; s(g)
IF g = 1 THEN PRINT #(g + 1), ” we get ”; s(g)
s(g) = 0
60 NEXT g
70 NEXT a
CLOSE #1: CLOSE #2: CLOSE #3: CLOSE #4

6. Concluding the proof. Firstly, we show that a residue class and
its negative always behave in the same way during our proof. We can spare
half of the computations by this observation.

Recall the definitions of Aχ(j) and Bχ(j) from Section 2.

Lemma 3. Let q be a positive integer , χ a character modulo q and j an
integer with (j, q) = 1. Then

(i) Bχ(q − j) = Bχ(j);
(ii) Aχ(q − j) + Aχ(j) =Bχ(j).
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Proof. Let (t)q denote the least nonnegative residue of t modulo q. Then,
replacing D by (q−D)q in the definition of Bχ(q− j), we get (i). The same
reasoning shows that the left-hand side of (ii) equals

q−1∑

C,D=0

χ(D2 − C2 − jCD)
(⌈

(q − j)C − (q −D)q
q

⌉
+
⌈
jC −D

q

⌉)
(C − q).

If D 6= 0, then
⌈

(q − j)C − (q −D)q
q

⌉
+
⌈
jC −D

q

⌉
=
{
C − 1 if D ≡ jC (mod q),
C otherwise,

since the sum of the arguments of the upper integer parts is C−1. If D = 0,
then the sum is 1 larger. Thus, using (j, q) = 1, the left-hand side of (ii)
equals

Bχ(j)−
∑

1≤C,D≤q−1
D≡jC

χ(−C2)(C − q) +
∑

1≤C≤q−1
D=0

χ(−C2)(C − q)

(the congruence in the first sum is meant modulo q), which proves (ii).

Proof of the Theorem. Since our program in Section 5 applied for the four
(q, r) pairs given in the examples of Section 4 gives 0 for mχ (mod I), but
gives nonzero results for Bχ(p0) (mod I) (i.e. the results are rational integers
not divisible by r) for certain values of p0 ∈ Uq (hence for all p0 ∈ Uq, see
(2.9)), we see that these four (q, r) pairs satisfy Condition (∗). Hence we can
apply (2.10), and we can follow the steps outlined in Section 2. Note that
if two rational integers are congruent modulo I, then they are congruent
modulo r, so (2.10) gives us the value of p modulo r.

By Lemma 3, we have

(6.1) j − q Aχ(j)
Bχ(j)

≡ −
(

(q − j)− q Aχ(q − j)
Bχ(q − j)

)

modulo I for every (j, q) = 1, so (see (2.10)) a residue class contained in
Uq and its negative determine residue classes modulo r which are again
negatives of each other.

We first consider Example 1 of Section 4. In the first column of Table 1
we list the 20 values of p0 (see (2.5) for its meaning) for which

0 < p0 < 175/2, p0 ≡ ±2 (mod 5), p0 ≡ ±1,±3 (mod 7).

These are the elements of U175 in the given range (for p0 6∈ U175 we are
done, p2 + 4 is a square modulo 5 or 7). In the second and third columns we
give Aχ(p0) and Bχ(p0) modulo I, respectively (obtained by the program);
the fourth column gives p modulo 61, and it is computed from the first
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three columns, using (2.10). The fifth column is determined by the fourth
column: if p2 + 4 is a square modulo 61, then we write a number n into the
fifth column such that n2 ≡ p2 + 4 (mod 61); otherwise we leave the fifth
column empty.

Table 1

p0 Aχ(p0) Bχ(p0) p mod r
√
p2 + 4 mod r

3 0 51 3 14
8 0 33 8

13 0 24 13
17 0 26 17 7
18 34 44 2
22 34 53 49
27 24 50 4 9
32 1 44 10
38 40 30 8
43 46 23 59
48 20 50 39 0
52 14 32 25 18
53 13 51 6
57 54 23 36 18
62 42 24 15 30
67 28 26 24
73 6 32 44 7
78 27 53 51
83 32 33 39 0
87 19 30 27 1

We use the parameters of Example 1, in particular
q = 175, r = 61. The second and third columns are
meant modulo I.

Table 2

p0 Aχ(p0) Bχ(p0) p mod r
√
p2 + 4 mod r

8 0 1121 8 505
13 0 1498 13
18 1254 1060 285 385
22 60 1588 1492 263
32 135 1060 1107
38 1633 1397 321 760
43 1294 1102 1685 748
53 1275 1389 1058
67 1773 1720 1634
78 344 1588 1062

We use the parameters of Example 2, in particular
q = 175, r = 1861. The second and third columns
are meant modulo I.
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For the 10 values of p0 where the fifth column of Table 1 is empty, we
apply the program with the parameters of Example 2 (in particular, q = 175
and r = 1861). The results are summarized in Table 2, which is completely
analogous to Table 1.

We know from (6.1) that if we replace a particular p0 by 175 − p0 in
the first column of Table 1 or Table 2, then in the fourth column we ob-
tain the negative of the residue class belonging to p0 in the fourth column.
Consequently, p2 + 4 modulo 61 (or modulo 1861 in the case of Table 2)
is unchanged. Hence, if the fifth column is nonempty at the row of a p0

in Table 1 or in Table 2, then p0 and 175 − p0 are excluded in the sense
that for p ≡ ±p0 (mod 175), p2 + 4 is a square modulo 61 or modulo 1861.
The remaining possibilities are summarized in Table 3, where we mean that
either the plus or the minus sign is valid inside a row, and one of the rows
must be valid for our p.

Table 3

p mod 175 p mod 61 p mod 1861

±13 ±13 ±13
±32 ±10 ±1107
±53 ±6 ±1058
±67 ±24 ±1634
±78 ±51 ±1062

For p ≡ 6, 10 or 24 modulo 61 we apply the program with the parameters
of Example 3. The result is Table 4, which is completely analogous to Tables
1 and 2, but we do not need the fifth column, so we omit it.

Table 4

p0 Aχ(p0) Bχ(p0) p mod r

6 957 1000 612
10 1150 616 881
24 173 663 460

We use the parameters of Example 3,
in particular q = 61, r = 1861. The
second and third columns are meant
modulo I.

Since

612 6≡ ±1058, 881 6≡ ±1107, 881 6≡ ±1062, 460 6≡ ±1634

modulo 1861, we see that, by (6.1), Tables 3 and 4 show that the only
possible values for p modulo 61 are ±13 (since otherwise p would belong to
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two different residue classes modulo 1861, which is a contradiction). Hence,
if we consider Example 4 (q = 61, r = 41), the only possibilities for p0 are
13 and 61− 13 = 48. For p0 = 13 we apply the program to obtain

Aχ(p0) ≡ 0 (mod I) and Bχ(p0) ≡ 13 (mod I).

Hence (2.10) gives
p ≡ 13 (mod 41).

By (6.1), we know that then p0 = 48 gives

p ≡ −13 (mod 41).

In both cases, we have

p2 + 4 ≡ 173 ≡ 32 (mod 41),

so the Theorem is proved.
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