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The summatory function of the sum-of-digits
function on polynomial sequences

by

MANFRED PETER (Freiburg)

1. Introduction. Let ¢ be an integer > 1. For n € Ny, let n =
Yo soer(n)q”, with e.(n) € {0,...,q — 1}, be the g-ary representation of n

and
Sq(n) = Z er(n)

r>0

the sum of digits of n in base ¢q. The distribution properties of the function
sq have been investigated from many points of view. Delange [2] showed
that the summatory function of sq can be written in the form

- log N
(1.1) Y sy(n) =2 L Nlog N+ N[ 08
2logq log q
0<n<N

>, N €N,

where F' : R — R is l-periodic, continuous and nowhere differentiable.
Shiokova [20] proved that

(1.2) Y slp) = +— N+0NWW N>1
’ a\p 2logq log N ’ -

p<N

where p runs through prime numbers. Heppner [8] generalized this result to
arbitrary subsets of N whose counting function has a certain asymptotics.

Since s, can be seen as the sum of the “independent random variables”
er, r > 0, the central limit theorem gives

sl N2 )

hm —#{O <n<2V \/_/2
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Under the density hypothesis for the Riemann zeta function, Katai and
Mogyorddi [10] proved an analogous result where n is restricted to primes.
Under the same hypothesis, Kétai [9] proved that the kth absolute moments
of the left hand distribution functions converge to the kth absolute moment
of the standard normal distribution. Kirschenhofer [12] proved an analogue
of (1.1) for the summatory function of sZ. In [7] higher powers of s, were
investigated with several different methods.

There are results analogous to (1.1) for number systems other than the
g-ary (see, e.g., [3], [14]) and for the summatory function of A(w,-) where
A(w,n) gives the number of occurrences of the word w among the sequence
of digits of n (see, e.g., [11], [13], [14]). It is also possible to prove (1.1) over
certain number fields (see, e.g., [6], [21]). Mean value formulae like (1.1) have
applications to the average running time analysis of certain algorithms (see
[4] for references to the literature).

Restricting s, to subsequences of Ny generally comes with a loss of preci-
sion (see (1.2)). In the present paper, the function s, is averaged over polyno-
mial sequences and an asymptotic formula of type (1.1) is proved. Mauduit
and Rivat [17] already showed that on sequences of the form ([n¢]),>; the
function s, is uniformly distributed in residue classes and « - s, is uniformly
distributed modulo 1 (where « is an irrational) if 1 < ¢ < 4/3 (the case
¢ =1 goes back to Gelfond [5]). Related results were obtained by Mauduit
and Sarkozy [18], [19]. They investigated the pseudorandom behaviour of
the function x defined by x(z) = 1 for 0 < {z} < 1/2, x(x) = —1 for
1/2 < {x} < 1, on sequences (an®),>1.

For x € R, let [z] be the floor of x, [z] the ceiling of z, {z} := x — [2]
the fractional part of x and ¥ (z) := {z} — 1/2. Define

Jok(@) = \(qv(t) — v(gt))t'/*1at, x>0, ¢,k€eN,

O ey B

1 — —-n n—
F(t) = - g {t/k Z q /k:quk(q 1+{t})
n>0

y 10—, ter

THEOREM. Let ¢,k € N\ {1}, and a =1 or a > 0 an irrational of finite
type. There are ¢ € R and € > 0 such that
log(aN¥)

qg—1
Z sq([an*]) = 5 N " +cN
0<n<N 84

log(aN)k

+ NF, k(
’ log q

> +O(N'Y™9), N>1.
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For k =1, the functions F, ; and F in (1.1) are the same. So apart from
the term cN and the error term O(N'~¢), the above theorem is a straightfor-
ward generalization of (1.1) (but in the proof below we must assume k > 2).

The essential parts of the proof are contained in Lemmas 2.1-2.3. There
the summatory function of e,.([an*]) is evaluated asymptotically depending
on the size of r. For r small and @ = 1 number-theoretic fluctuations in
the distribution of n* in residue classes give the term ¢N. The proof is
straightforward and elementary. For o > 0 of finite type a result of van der
Corput and Vinogradov about the discrepancy of an® modulo 1 is used.
In this case ¢ = 0. For r in a middle range there are no fluctuations and
an exponential sum estimate of van der Corput is sufficient. For large r a
transformation formula from lattice point theory is applied. Thus a second
oscillating main term is isolated. This technique is well known in the case
where lattice points are counted in large planar sets with zeros of curvature
on the boundary.

Acknowledgements. I would like to thank Prof. Dr. D. Wolke for
bringing this problem to my attention.

2. Reduction to lattice-sums and lattice-integrals. Set f(x) :=
az®. For > 0 and r € Ny, we have

=) 15 () ()

This gives
21) SN = Y s([fm)= >, TAN), N=>1,

N<n<2N 0<r<Rn

where Ry := [log(a(2N)¥)/logq] and
T.(N):= Y elf(n)])
N<n<2N
qg—1

(2.2) = L= N+ qU,(N) = Ur—a (N) + O(1),

n= 3 w18,

N<n<2N

In the following three lemmas 7).(N) is evaluated asymptotically depending
on how large ¢” is in relation to N.

LEMMA 2.1. Forr € Ny and N > 1 with ¢" < N'/2, we have

T,(N) = —"= N + O(N'~9)

q?”
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with constants ¢, = ¢,(a) and § = 6(a) > 0. Furthermore,

-1
cr = —= 5 g+ O(qTe_‘ST), r € Np.

Proof. First we handle o = 1. Since n — e,(n*) is ¢"*!-periodic, we
have

T,(N)= > (") > 1

0<l<qgrtt N<n<2N:n=l(mod ¢q"t1)
N
= > er(lk)< T+1+0(1)) T+1N+O(N1/2)
0<l<gr+t?! q q
where
(23) = Y el)= ) e #Ho<i<g M e (") =¢)
0<l<qrt? 1<e<q

= Z e Z #{lmod ¢"*! | I¥ = eq" + a (mod ¢"*1)}.

1<e<q 0<a<q™

Denote the last cardinality by c.(e,a). Let 1 < e < ¢q, 0 < a < ¢". Let
q= H;t:lpfi with eq,...,e; > 1 be the prime decomposition of g. Then

(2.4) cr(e,a) = Hc”(e a

by the Chinese Remainder Theorem, where

(2.5) cri(e,a) = #{z mod p?i(rﬂ) | 2% = eq" 4+ a (modpfi(T+1))}.

If ord,, (a) > r/2 for some 1 < i < ¢ (where ord,, (0) := co0) and z is counted
n (2.5) then 2% = (modp[r/ 1) and thus ord,, (z) > r/(2k). Consequently,
we have

(2.6) > cr(e, a)

0<a<q":ordy, (a)>r/2 for some 1<i<t

< Z Z #{1 mod ¢" 1| 1* = e +a (mod ¢'+1), 1 = 0 (mod pl"/¥)1)}

1<i<t 0<a<q™
< qr2—r/(2k) ]

Now assume b; := ord,, (a) < /2 for 1 < i < t. Set a; := ap; ", 1 < i < t.
If x is counted in (2.5) then zF = 0 (modp?) and thus = = ( /Hy, y € Z.
Therefore p( i/ KTh=bs k= eq'p; "+ a (modpe’(TH) bi 9. Slnce pita; and
pilqd"p; b we have k | b;. Therefore from now on we assume that k| b; for
1 <¢<t. Then

eri(e,a) = #{y mod pZ TV |k = eqrpti g, (mod p¢t T TP
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For 1 <i <t let k= p; ki pitki u; € No Assume that r > 4u; + 2¢; for

1<i<tIfy =y (modpl ™" 0 then gy = yo + zpS T 7w
and
Yb = b ket DT e ) 2ui2be
= y5 (modp; cilrin)- b.
Thus
(2.7) crile,a) = p i+bi—b; /kc, (e,a),
where
ci(e; a)
= #{y mod p{* "I TN b = eqp " 4 a; (mod pf TV,
Now
crile,a) = > cli(e a,y),
zmod p§i" T i sk =a,; (mod piiT )
where
¢ (e a,y) = #{y mod pi’ TV |y = 2 (mod T,

Yk = eqrpl +a; (modpeZ(TH) bi 9}

Fix z. Set y —z—i—tper ui=bi Then
r e;(r b;
yk = eq pZ "+ a; (modp;, (r+1)— )

i

= kizk Ly = (ai _ Zk)p;(eir*bi) + 6qrp;ez (modpfi).

Since p; 1k;z"~! the last congruence has exactly one solution in ¢+ modulo
pi*. Thus ¢/ (e, a,y) = 1 and

(28) C/T‘, ( ) #{Z mod pe ir—ui—b; | zk’ =aq; (modpel'r b; )}
Equations (2.4) and (2.6)(2.8) now give

t

Z CT(S,CL) _ Z Hpiuri-bi—bi/k Z

0<a<qr 0<b; <r/2, k[b; (1<i<t) i=1 0<a’<qm Ttz, p; ":(a q)=1

#{z mod pgi" wi—b; ‘ (Hpb /k) (mod p&™~ bi )}+O(qT27T/(2k))

—.

=1

for r > maxi<;<¢(4u; + 2e;) =: 9. For 1 < i < t the ith factor in the
second product is #{z mod pf" "% | 2¥ = ¢’ (mod p¥"~%)}. The Chinese
Remainder Theorem gives
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t

Z CT(E,(I) _ Z Hp;teri*bi/k Z

0<a<qm 0<b; <r/2, k|b; (1<i<t) i=1 0<a’ <ITt_, p5i" (e sq)=1

t
Hp;ui {z mod Hpe ir=b;
=1
¢ t
= Z Hpi)i(l—l/k) Hp?-rfbi H (1 _ pi) + O(qu—r/(zk))

0<b;<r/2, klb; (1<i<t) i=1 i=1 i=1 v
— qr +O(qr277’/(2k)).

Plugging this result into (2.3) gives ¢, = (g — 1)g" /2 + O(q"27"/(2k)),
Next we handle the case of an irrational « of finite type. Define

ank
Tr(N) = Y. [q{ ’"“H’ reNy, N>1.
1<n<N q

Then T,.(N) = T)(2N) — T*(N). Koksma’s inequality ([16, Theorem 5.1])
gives

Jo (mod p&"™ b)}+0(qr2—T/(2k))

1

L 72(N) - [ lafa}] de
0

o5 K

< Dy

where DY . is the star-discrepancy of the sequence (ag™"~ 1nk)l<n< ~ mod-

ulo 1. Since « is of finite type there are n > 2 and C' > 0 such that
oo —a/b] > Cq" for all @ € Z, b € N. Now let r € Ny and N > 1
with ¢" <« N'/2. Dirichlet’s Approximation Theorem shows that there are
a € Z and b € N with (a,b) =1, b < N*~! such that

ak!  a < 1 < 1
¢+t b| T bNR-L T 2
Now we need a lower bound for b. Since

r+1
aq < q
E'o | = KlbNk-1’
we get b > (NF~1g=)1/(=1) A theorem of Vinogradov and van der Cor-
put [1] now shows that Dy . < N —9 for some constant § > 0. From
(2.9) it follows that T*(N)/N = (¢ — 1)/2 + O(N~=°) and thus T,(N) =
(q—1)N/2+O(N*°). u

LEMMA 2.2. Forr € Ny and N > 1 with NY/? < ¢" < N*=1, we have

1
T,(N) = qT N + O(N'9)

r+1

(B1D) ™" < |a —

with some constant 6 = §(a) > 0.
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Proof. Set g(z) := ¢ " 'f(x),a:= N, b:=2N, K :=2% \:= ¢ "Nk
For x € [a,b] and 2 < k < k, we have

9" ()| = |¢" tak(k—1) ... (k— k+ 1)2" "] < ¢ TR < Xa 7"

Furthermore, a < A\ by assumption. A classical exponential sum estimate
([15, Theorem 2.8]) now gives

Ur(N) = Z Y(g(n)) < (afKF 1INV E-D  y1-1/E=1),

a<n<b
Together with (2.2) this proves the lemma. m

The above two lemmas show that as long as ¢" < N*~1, the function
T,(N) has a smooth main term with no oscillations. For the range N*~! «
q" < NP this is no longer true. Since 1 is oscillating and has mean value 0
one expects the sum U, (NN) to be small in comparison to the length of the
summation range. Sums of this type are well known in lattice point theory
where they occur in the asymptotic evaluation of the cardinality

#{(%y)GNQ N<x§2N70<y§@}.

qr+1

Here z is far away from 0 but since ¢” > N*~1 the high order of the zero of
f(x) at 0 creates a problem. The usual way is to interchange = and y and
count lattice points below the graph of x = f~1(¢"T1y). The singularity of
d(f~1)/dy at 0 now creates an additional main term, and the remainder can
be estimated much better since the order of the singularity of d?(f~1)/dy?
is about 2 and thus almost fixed. For » € Ng and N > 1, define

g " ra(2N)k

I.(N) := | 2y (z) da.
g-T—1laN*k
LEMMA 2.3. Forr € Ny and N > 1 with N¥~! « ¢" < N*, we have
-1 1
To(N) = L0 N 4 3o EU YL (N) — /T (N)) 4 O(NP),

Proof. The essence of the above idea is contained in Theorem 1.5 of [15].
Applying this transformation formula for ¢-sums to U, (N) gives

(210) U.(N)= > (g "' f([2N] = n)) +O(1)

0<n<N
N

= —q 7 () f([2N] — t) dt
0

T 3 G(2N] - £ (g m))

g~ "1 f([2N]=N)<m<q="=1 f([2N])
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g "THF([2N))
+qr+1 S
g "1 f(2N]-N)

P(t)

Pl i) @ oW

For z € R, define ¢1(z) := {4 (t)dt. The function ¢; is continuous,
bounded and piecewise continuously differentiable. Integration by parts gives
for the first integral in (2.10) the estimate

N
(2.11)  ak [ () ([2N] - t)F " at
0

N
= aky1 (8)([2N] — 1)+ ak(k — 1) [ a () (2N] — 1) 2 dt < N5,
0

Define g(t) := [2N] —a~VkqUr+D/kg/k + > 0. For g7~ 1 f(2N] = N) <t <
¢ ""Lf([2N]), we have t < ¢~ ""1N* and thus

|g”(t)‘ - q(’r‘+1)/kt1/k—2 = q2(T+1)N1_2k.

A van der Corput estimate (e.g. [15, Theorem 2.3]) now gives for the ¢)-sum
in (2.10) the bound

Z @Z)(g(m))<<q_(r+1)/3N(k+1)/3+ q—r—lNk—l/Q
g " (2N]=N)<m<q= "1 f([2N])
< N?/3,
Together with (2.10) and (2.11) we get
(2.12) U.(N) = O0(qg " IN*=1) + O(N%/?3)
a” "M f([2N])

1
+ o Vkgr+D)/k | Y)Y dt + 0(1).
g~ 1f([2N]-N)

The integral in (2.12) equals

q—r-—laNk q—r—la(2N)k
I.(N) + | ()Rt dt — | W) dt.
g="=la([2N]-N)k g~ la[2N]*

The trivial estimate 1)(t) < 1 shows the last two integrals are O(q~("+1)/),
Thus (2.12) becomes

1
U.(N) = Ea_l/’“q(’”“)/klr(N) + O(N?/3).

Plugging this into (2.2) proves the lemma. m
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3. Evaluation of the second main term. Our goal now is to give
the second main term a shape as in [2]. For z > 0, define
I(z) = {w()t" /" dt.
0
Then for x > 0, we have

xT

J(2) = qI(x) — g " 1(qz) = {(q(t) — P(gt)t"/* " dt.
0
Integration by parts gives for x > 1 the estimate
I(z) = ¢ ()t /F T — §w1(t) (% - 1) k=2 g4 4+ iw(t)tl/k_l dt < 1;
1 0
for 0 < x < 1 this estimate can be seen immediately. Thus

(3.1) Jz)<1l, x>0.

For N > 1 and r € Ny, we have I.(N) = I(¢"" 1a(2N)*) — I(¢"""LaN¥).
Therefore

(32) > (¢UTVML(N) — ¢ /Ry (N))

0<r<Rn
— Z q(r+1)/kj(q—r—1a(2N)k) - Z q(r+1)/kJ(q—r—1aNk)
0<r<Rn 0<r<Rn

= Sl(N)—SQ(N), NZ]_

Define
y*i=log(ay*)/logg, y>0, H(y):=>Y q "¢ ?), yeRr
n>0
Then
SiN) = Y TR (gr T la(2N)F)
0<n<Rn
— a/aNgAR R ENI N S e p(@N) ) /2y
0<n<Rn

From (3.1) it follows that the sum differs from H (¢)((2V)*)) by

O( > q*”/’“) =O(N)

n>RN
and thus

(8:3)  Si(N) = al/FangEVENIRH(y((2N)") + O(1).
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Furthermore,
N
Ry/2<r<Rn

For Ry/o <1 < Ry, we have ¢ " taN* < 1/q. For 0 < z < 1/q, we have

”” 1 1 —1
J(x) ZS (q(t - 5) - (qt — §>>t1/’f—1dt = —qT katl*.
0

Thus (3.3) and (3.4) give
(3.5)  Sa(N) = ol /ENgU 2V E (1 ()
- q%l ka'/*N(Ry — Ryja) + O(1).
Integration by parts shows that for r € Ng and N > 1, we have
(3.6) I,(N) < g1 VR I+ N1k,

Now everything is put together. From (2.1) and Lemmas 2.1-2.3 it follows
that

-1 Cr -1
(3.7) S(N):NqT IR ET Y (qTH—QT)

0<r<Rn gr<N1/2

+ a—l/k Z (q(r—i—l)/k—i—lIT(N) _ qr/klrfl(N))

1
k

0<r<Ry
1

o - a—l/k Z (q(r+1)/k+IIT(N) o qT/klrfl(N))

q"r‘SNkfl
+ O(N'°log N).
The first sum equals Ry +1 = [(2N)*] + 1. From Lemma 2.1 it follows that

. Cr qg—1
=3 (-4

r>0

is absolutely convergent and that the second sum in (3.7) equals
c+0( 3 ) =cro(N /s,
qT'>N1/2
From (3.2), (3.3) and (3.5) it follows that the third sum in (3.7) is
al/kQNq(l/Q*d’(@N)*))/kH(w((QN)*)) — al/qu(l/%w(N*))/kH(w(N*))

1
n qT ko ¥ N(Ry — Ry s) + O(1).
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Finally, (3.6) shows that the last sum in (3.7) is O(1). Consequently, there
is some constant € > 0 such that

S(N) = %1 IN[(2N)] — %1 NINY]

1 _ * *
- EQNQWQ WEND/RH (4((2N)*))
1 CW(NT .
-7 Ng(t/2=¢ (N ))/kH(@b(N )

-1 -1
+2N<c+qT>—N<c+qT)+O(N16), N >1.

Summing up over N =2z, 1 <1i < logx/log?2, gives, for z > 1,

S sent)= 3 S@ @) +0()

0<n<z 1<i<log z /log 2

- 1 1 *
= L=l + L aq 2 R ()

+ <c+ %) +O0(z' 7).

This proves the Theorem. m

[10]
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