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The summatory function of the sum-of-digits
function on polynomial sequences
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1. Introduction. Let q be an integer > 1. For n ∈ N0, let n =∑
r≥0 er(n)qr, with er(n) ∈ {0, . . . , q − 1}, be the q-ary representation of n

and
sq(n) :=

∑

r≥0

er(n)

the sum of digits of n in base q. The distribution properties of the function
sq have been investigated from many points of view. Delange [2] showed
that the summatory function of sq can be written in the form

(1.1)
∑

0≤n<N
sq(n) =

q − 1
2 log q

N logN +NF

(
logN
log q

)
, N ∈ N,

where F : R → R is 1-periodic, continuous and nowhere differentiable.
Shiokova [20] proved that

(1.2)
∑

p≤N
sq(p) =

q − 1
2 log q

N +O

(
N

(
log logN

logN

)1/2)
, N ≥ 1,

where p runs through prime numbers. Heppner [8] generalized this result to
arbitrary subsets of N whose counting function has a certain asymptotics.

Since sq can be seen as the sum of the “independent random variables”
er, r ≥ 0, the central limit theorem gives

lim
N→∞

1
2N

#
{

0 ≤ n < 2N
∣∣∣∣
sq(n)−N/2√

N/2
≤ x

}

=
1√
2π

x�

−∞
e−t

2/2 dt, x ∈ R.
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Under the density hypothesis for the Riemann zeta function, Kátai and
Mogyoródi [10] proved an analogous result where n is restricted to primes.
Under the same hypothesis, Kátai [9] proved that the kth absolute moments
of the left hand distribution functions converge to the kth absolute moment
of the standard normal distribution. Kirschenhofer [12] proved an analogue
of (1.1) for the summatory function of s2

q. In [7] higher powers of sq were
investigated with several different methods.

There are results analogous to (1.1) for number systems other than the
q-ary (see, e.g., [3], [14]) and for the summatory function of A(w, ·) where
A(w, n) gives the number of occurrences of the word w among the sequence
of digits of n (see, e.g., [11], [13], [14]). It is also possible to prove (1.1) over
certain number fields (see, e.g., [6], [21]). Mean value formulae like (1.1) have
applications to the average running time analysis of certain algorithms (see
[4] for references to the literature).

Restricting sq to subsequences of N0 generally comes with a loss of preci-
sion (see (1.2)). In the present paper, the function sq is averaged over polyno-
mial sequences and an asymptotic formula of type (1.1) is proved. Mauduit
and Rivat [17] already showed that on sequences of the form ([nc])n≥1 the
function sq is uniformly distributed in residue classes and α · sq is uniformly
distributed modulo 1 (where α is an irrational) if 1 ≤ c < 4/3 (the case
c = 1 goes back to Gelfond [5]). Related results were obtained by Mauduit
and Sárközy [18], [19]. They investigated the pseudorandom behaviour of
the function χ defined by χ(x) = 1 for 0 ≤ {x} < 1/2, χ(x) = −1 for
1/2 ≤ {x} < 1, on sequences (αnk)n≥1.

For x ∈ R, let [x] be the floor of x, dxe the ceiling of x, {x} := x − [x]
the fractional part of x and ψ(x) := {x} − 1/2. Define

Jq,k(x) :=
x�

0

(qψ(t)− ψ(qt))t1/k−1 dt, x ≥ 0, q, k ∈ N,

Fq,k(t) :=
1
k
q(1−{t})/k∑

n≥0

q−n/kJq,k(qn−1+{t})

+
q − 1

2
(1− {t}), t ∈ R.

Theorem. Let q, k ∈ N\{1}, and α = 1 or α > 0 an irrational of finite
type. There are c ∈ R and ε > 0 such that

∑

0≤n≤N
sq([αnk]) =

q − 1
2

N
log(αNk)

log q
+ cN

+NFq,k

(
log(αN)k

log q

)
+O(N1−ε), N ≥ 1.
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For k = 1, the functions Fq,1 and F in (1.1) are the same. So apart from
the term cN and the error term O(N 1−ε), the above theorem is a straightfor-
ward generalization of (1.1) (but in the proof below we must assume k ≥ 2).

The essential parts of the proof are contained in Lemmas 2.1–2.3. There
the summatory function of er([αnk]) is evaluated asymptotically depending
on the size of r. For r small and α = 1 number-theoretic fluctuations in
the distribution of nk in residue classes give the term cN . The proof is
straightforward and elementary. For α > 0 of finite type a result of van der
Corput and Vinogradov about the discrepancy of αnk modulo 1 is used.
In this case c = 0. For r in a middle range there are no fluctuations and
an exponential sum estimate of van der Corput is sufficient. For large r a
transformation formula from lattice point theory is applied. Thus a second
oscillating main term is isolated. This technique is well known in the case
where lattice points are counted in large planar sets with zeros of curvature
on the boundary.

Acknowledgements. I would like to thank Prof. Dr. D. Wolke for
bringing this problem to my attention.

2. Reduction to lattice-sums and lattice-integrals. Set f(x) :=
αxk. For x ≥ 0 and r ∈ N0, we have

er([x]) =
[
q

{
x

qr+1

}]
=
q − 1

2
+ qψ

(
x

qr+1

)
− ψ

(
x

qr

)
.

This gives

(2.1) S(N) :=
∑

N<n≤2N

sq([f(n)]) =
∑

0≤r≤RN
Tr(N), N ≥ 1,

where RN := [log(α(2N)k)/log q] and

Tr(N) :=
∑

N<n≤2N

er([f(n)])

=
q − 1

2
N + qUr(N)− Ur−1(N) +O(1),(2.2)

Ur(N) :=
∑

N<n≤2N

ψ

(
f(n)
qr+1

)
.

In the following three lemmas Tr(N) is evaluated asymptotically depending
on how large qr is in relation to N .

Lemma 2.1. For r ∈ N0 and N ≥ 1 with qr � N1/2, we have

Tr(N) =
cr
qr+1 N +O(N1−δ)
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with constants cr = cr(α) and δ = δ(α) > 0. Furthermore,

cr =
q − 1

2
qr+1 +O(qre−δr), r ∈ N0.

Proof. First we handle α = 1. Since n 7→ er(nk) is qr+1-periodic, we
have

Tr(N) =
∑

0≤l<qr+1

er(lk)
∑

N<n≤2N :n≡l (mod qr+1)

1

=
∑

0≤l<qr+1

er(lk)
(

N

qr+1 +O(1)
)

=
cr
qr+1 N +O(N1/2),

where

cr :=
∑

0≤l<qr+1

er(lk) =
∑

1≤e<q
e ·#{0 ≤ l < qr+1 | er(lk) = e}(2.3)

=
∑

1≤e<q
e
∑

0≤a<qr
#{l mod qr+1 | lk ≡ eqr + a (mod qr+1)}.

Denote the last cardinality by cr(e, a). Let 1 ≤ e < q, 0 ≤ a < qr. Let
q =

∏t
i=1 p

ei
i with e1, . . . , et ≥ 1 be the prime decomposition of q. Then

(2.4) cr(e, a) =
t∏

i=1

cr,i(e, a)

by the Chinese Remainder Theorem, where

(2.5) cr,i(e, a) := #{x mod pei(r+1)
i | xk ≡ eqr + a (mod pei(r+1)

i )}.
If ordpi(a) ≥ r/2 for some 1 ≤ i ≤ t (where ordpi(0) :=∞) and x is counted
in (2.5) then xk ≡ 0 (mod pdr/2ei ) and thus ordpi(x) ≥ r/(2k). Consequently,
we have

(2.6)
∑

0≤a<qr:ordpi (a)≥r/2 for some 1≤i≤t
cr(e, a)

≤
∑

1≤i≤t

∑

0≤a<qr
#{l mod qr+1 | lk ≡ eqr+a (mod qr+1), l ≡ 0 (mod pdr/(2k)e

i )}

� qr2−r/(2k).

Now assume bi := ordpi(a) < r/2 for 1 ≤ i ≤ t. Set ai := ap−bii , 1 ≤ i ≤ t.
If x is counted in (2.5) then xk ≡ 0 (mod pbii ) and thus x = p

dbi/ke
i y, y ∈ Z.

Therefore pdbi/kek−bii yk ≡ eqrp−bii + ai (mod pei(r+1)−bi
i ). Since pi - ai and

pi | qrp−bii , we have k | bi. Therefore from now on we assume that k | bi for
1 ≤ i ≤ t. Then

cr,i(e, a) = #{y mod pei(r+1)−bi/k
i | yk ≡ eqrp−bii + ai (mod pei(r+1)−bi

i )}.
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For 1 ≤ i ≤ t, let k = puii ki, pi - ki, ui ∈ N0. Assume that r ≥ 4ui + 2ei for
1 ≤ i ≤ t. If y1 ≡ y2 (mod pei(r+1)−ui−bi

i ) then y1 = y2 + zp
ei(r+1)−ui−bi
i

and
yk1 ≡ yk2 + kyk−1

2 zp
ei(r+1)−ui−bi
i + p

2ei(r+1)−2ui−2bi
i (. . .)

≡ yk2 (mod pei(r+1)−bi
i ).

Thus

(2.7) cr,i(e, a) = p
ui+bi−bi/k
i c′r,i(e, a),

where

c′r,i(e, a)

:= #{y mod pei(r+1)−ui−bi
i | yk ≡ eqrp−bii + ai (mod pei(r+1)−bi

i )}.
Now

c′r,i(e, a) =
∑

zmod peir−ui−bii :zk≡ai (mod peir−bii )

c′′r,i(e, a, y),

where

c′′r,i(e, a, y) := #{y mod pei(r+1)−ui−bi
i | y ≡ z (mod peir−ui−bii ),

yk ≡ eqrp−bii + ai (mod pei(r+1)−bi
i )}.

Fix z. Set y := z + tpeir−ui−bii . Then

yk ≡ eqrp−bii + ai (mod pei(r+1)−bi
i )

⇔ kiz
k−1t ≡ (ai − zk)p−(eir−bi)

i + eqrp−eiri (mod peii ).

Since pi - kizk−1 the last congruence has exactly one solution in t modulo
peii . Thus c′′r,i(e, a, y) = 1 and

(2.8) c′r,i(e, a) = #{z mod peir−ui−bii | zk ≡ ai (mod peir−bii )}.
Equations (2.4) and (2.6)–(2.8) now give

∑

0≤a<qr
cr(e, a) =

∑

0≤bi<r/2, k|bi (1≤i≤t)

t∏

i=1

p
ui+bi−bi/k
i

∑

0≤a′<qr ∏ti=1 p
−bi
i :(a′,q)=1

t∏

i=1

#
{
z mod peir−ui−bii

∣∣∣ zk ≡ a′
(∏

j 6=i
p
bj/k
j

)k
(mod peir−bii )

}
+O(qr2−r/(2k))

for r ≥ max1≤i≤t(4ui + 2ei) =: r0. For 1 ≤ i ≤ t the ith factor in the
second product is #{z mod peir−ui−bii | zk ≡ a′ (mod peir−bii )}. The Chinese
Remainder Theorem gives
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∑

0≤a<qr
cr(e, a) =

∑

0≤bi<r/2, k|bi (1≤i≤t)

t∏

i=1

p
ui+bi−bi/k
i

∑

0≤a′<∏ti=1 p
eir−bi
i :(a′,q)=1

t∏

i=1

p−uii #
{
z mod

t∏

i=1

peir−bii

∣∣∣ zk ≡ a′ (mod peir−bii )
}

+O(qr2−r/(2k))

=
∑

0≤bi<r/2, k|bi (1≤i≤t)

t∏

i=1

p
bi(1−1/k)
i

t∏

i=1

peir−bii

t∏

i=1

(
1− 1

pi

)
+O(qr2−r/(2k))

= qr +O(qr2−r/(2k)).

Plugging this result into (2.3) gives cr = (q − 1)qr+1/2 +O(qr2−r/(2k)).
Next we handle the case of an irrational α of finite type. Define

T ∗r (N) :=
∑

1≤n≤N

[
q

{
αnk

qr+1

}]
, r ∈ N0, N ≥ 1.

Then Tr(N) = T ∗r (2N) − T ∗r (N). Koksma’s inequality ([16, Theorem 5.1])
gives

(2.9)
∣∣∣∣

1
N
T ∗r (N)−

1�

0

[q{x}] dx
∣∣∣∣� D∗N,r,

where D∗N,r is the star-discrepancy of the sequence (αq−r−1nk)1≤n≤N mod-
ulo 1. Since α is of finite type there are η ≥ 2 and C > 0 such that
|α − a/b| ≥ Cq−η for all a ∈ Z, b ∈ N. Now let r ∈ N0 and N ≥ 1
with qr � N1/2. Dirichlet’s Approximation Theorem shows that there are
a ∈ Z and b ∈ N with (a, b) = 1, b ≤ Nk−1, such that

∣∣∣∣
αk!
qr+1 −

a

b

∣∣∣∣ ≤
1

bNk−1 ≤
1
b2
.

Now we need a lower bound for b. Since

(k! b)−η �
∣∣∣∣α−

aqr+1

k! b

∣∣∣∣ ≤
qr+1

k! bNk−1 ,

we get b � (Nk−1q−r)1/(η−1). A theorem of Vinogradov and van der Cor-
put [1] now shows that D∗N,r � N−δ for some constant δ > 0. From
(2.9) it follows that T ∗r (N)/N = (q − 1)/2 + O(N−δ) and thus Tr(N) =
(q − 1)N/2 +O(N1−δ).

Lemma 2.2. For r ∈ N0 and N ≥ 1 with N1/2 � qr � Nk−1, we have

Tr(N) =
q − 1

2
N +O(N1−δ)

with some constant δ = δ(α) > 0.
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Proof. Set g(x) := q−r−1f(x), a := N , b := 2N , K := 2k, λ := q−rNk.
For x ∈ [a, b] and 2 ≤ κ ≤ k, we have

|g(κ)(x)| = |q−r−1αk(k − 1) . . . (k − κ+ 1)xk−κ| � q−rxk−κ � λa−κ.
Furthermore, a � λ by assumption. A classical exponential sum estimate
([15, Theorem 2.8]) now gives

Ur(N) =
∑

a<n≤b
ψ(g(n))� (aK−k−1λ)1/(K−1) � N1−1/(2(K−1)).

Together with (2.2) this proves the lemma.

The above two lemmas show that as long as qr � Nk−1, the function
Tr(N) has a smooth main term with no oscillations. For the range N k−1 �
qr � Nk this is no longer true. Since ψ is oscillating and has mean value 0
one expects the sum Ur(N) to be small in comparison to the length of the
summation range. Sums of this type are well known in lattice point theory
where they occur in the asymptotic evaluation of the cardinality

#
{

(x, y) ∈ N2

∣∣∣∣N < x ≤ 2N, 0 < y ≤ f(x)
qr+1

}
.

Here x is far away from 0 but since qr � Nk−1 the high order of the zero of
f(x) at 0 creates a problem. The usual way is to interchange x and y and
count lattice points below the graph of x = f−1(qr+1y). The singularity of
d(f−1)/dy at 0 now creates an additional main term, and the remainder can
be estimated much better since the order of the singularity of d2(f−1)/dy2

is about 2 and thus almost fixed. For r ∈ N0 and N ≥ 1, define

Ir(N) :=
q−r−1α(2N)k�

q−r−1αNk

x1/k−1ψ(x) dx.

Lemma 2.3. For r ∈ N0 and N ≥ 1 with Nk−1 � qr � Nk, we have

Tr(N) =
q − 1

2
N +

1
k
α−1/k(q(r+1)/k+1Ir(N)− qr/kIr−1(N)) +O(N2/3).

Proof. The essence of the above idea is contained in Theorem 1.5 of [15].
Applying this transformation formula for ψ-sums to Ur(N) gives

Ur(N) =
∑

0<n≤N
ψ(q−r−1f([2N ]− n)) +O(1)(2.10)

= − q−r−1
N�

0

ψ(t) f ′([2N ]− t) dt

+
∑

q−r−1f([2N ]−N)<m≤q−r−1f([2N ])

ψ([2N ]− f−1(qr+1m))
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+ qr+1
q−r−1f([2N ])�

q−r−1f([2N ]−N)

ψ(t)
f ′(f−1(qr+1t))

dt+O(1).

For x ∈ R, define ψ1(x) := � x0 ψ(t) dt. The function ψ1 is continuous,
bounded and piecewise continuously differentiable. Integration by parts gives
for the first integral in (2.10) the estimate

(2.11) αk

N�

0

ψ(t)([2N ]− t)k−1 dt

= αkψ1(t)([2N ]− t)k−1
∣∣N
0 + αk(k − 1)

N�

0

ψ1(t)([2N ]− t)k−2 dt� Nk−1.

Define g(t) := [2N ]−α−1/kq(r+1)/kt1/k, t ≥ 0. For q−r−1f([2N ]−N) ≤ t ≤
q−r−1f([2N ]), we have t � q−r−1Nk and thus

|g′′(t)| � q(r+1)/kt1/k−2 � q2(r+1)N1−2k.

A van der Corput estimate (e.g. [15, Theorem 2.3]) now gives for the ψ-sum
in (2.10) the bound

∑

q−r−1f([2N ]−N)<m≤q−r−1f([2N ])

ψ(g(m))�q−(r+1)/3N (k+1)/3+ q−r−1Nk−1/2

�N2/3.

Together with (2.10) and (2.11) we get

Ur(N) = O(q−r−1Nk−1) +O(N2/3)(2.12)

+
1
k
α−1/kq(r+1)/k

q−r−1f([2N ])�

q−r−1f([2N ]−N)

ψ(t)t1/k−1 dt+O(1).

The integral in (2.12) equals

Ir(N) +
q−r−1αNk�

q−r−1α([2N ]−N)k

ψ(t)t1/k−1 dt−
q−r−1α(2N)k�

q−r−1α[2N ]k

ψ(t)t1/k−1 dt.

The trivial estimate ψ(t)� 1 shows the last two integrals are O(q−(r+1)/k).
Thus (2.12) becomes

Ur(N) =
1
k
α−1/kq(r+1)/kIr(N) +O(N2/3).

Plugging this into (2.2) proves the lemma.
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3. Evaluation of the second main term. Our goal now is to give
the second main term a shape as in [2]. For x ≥ 0, define

I(x) :=
x�

0

ψ(t)t1/k−1 dt.

Then for x ≥ 0, we have

J(x) := qI(x)− q−1/kI(qx) =
x�

0

(qψ(t)− ψ(qt))t1/k−1 dt.

Integration by parts gives for x ≥ 1 the estimate

I(x) = ψ1(t)t1/k−1
∣∣x
1 −

x�

1

ψ1(t)
(

1
k
− 1
)
t1/k−2 dt+

1�

0

ψ(t)t1/k−1 dt� 1;

for 0 ≤ x < 1 this estimate can be seen immediately. Thus

(3.1) J(x)� 1, x ≥ 0.

For N ≥ 1 and r ∈ N0, we have Ir(N) = I(q−r−1α(2N)k)− I(q−r−1αNk).
Therefore

(3.2)
∑

0≤r≤RN
(q(r+1)/k+1Ir(N)− qr/kIr−1(N))

=
∑

0≤r≤RN
q(r+1)/kJ(q−r−1α(2N)k)−

∑

0≤r≤RN
q(r+1)/kJ(q−r−1αNk)

=: S1(N)− S2(N), N ≥ 1.

Define

y∗ := log(αyk)/log q, y > 0, H(y) :=
∑

n≥0

q−n/kJ(qy+n−1/2), y ∈ R.

Then

S1(N) =
∑

0≤n≤RN
q(RN−n+1)/kJ(qn−RN−1α(2N)k)

= α1/k2Nq(1/2−ψ((2N)∗))/k
∑

0≤n≤RN
q−n/kJ(qψ((2N)∗)+n−1/2).

From (3.1) it follows that the sum differs from H(ψ((2N)∗)) by

O
( ∑

n>RN

q−n/k
)

= O(N−1)

and thus

(3.3) S1(N) = α1/k2Nq(1/2−ψ((2N)∗))/kH(ψ((2N)∗)) +O(1).
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Furthermore,

(3.4) S2(N) = S1

(
N

2

)
+

∑

RN/2<r≤RN
q(r+1)/kJ(q−r−1αNk).

For RN/2 < r ≤ RN , we have q−r−1αNk < 1/q. For 0 ≤ x < 1/q, we have

J(x) =
x�

0

(
q

(
t− 1

2

)
−
(
qt− 1

2

))
t1/k−1 dt = −q − 1

2
kx1/k.

Thus (3.3) and (3.4) give

(3.5) S2(N) = α1/kNq(1/2−ψ(N∗))/kH(ψ(N∗))

− q − 1
2

kα1/kN(RN −RN/2) +O(1).

Integration by parts shows that for r ∈ N0 and N ≥ 1, we have

(3.6) Ir(N)� q(1−1/k)(r+1)N1−k.

Now everything is put together. From (2.1) and Lemmas 2.1–2.3 it follows
that

S(N) = N
q − 1

2

∑

0≤r≤RN
1 +N

∑

qr≤N1/2

(
cr
qr+1 −

q − 1
2

)
(3.7)

+
1
k
α−1/k

∑

0≤r≤RN
(q(r+1)/k+1Ir(N)− qr/kIr−1(N))

− 1
k
α−1/k

∑

qr≤Nk−1

(q(r+1)/k+1Ir(N)− qr/kIr−1(N))

+O(N1−δ logN).

The first sum equals RN + 1 = [(2N)∗] + 1. From Lemma 2.1 it follows that

c :=
∑

r≥0

(
cr
qr+1 −

q − 1
2

)

is absolutely convergent and that the second sum in (3.7) equals

c+O
( ∑

qr>N1/2

e−δr
)

= c+O(N−δ/(2 log q)).

From (3.2), (3.3) and (3.5) it follows that the third sum in (3.7) is

α1/k2Nq(1/2−ψ((2N)∗))/kH(ψ((2N)∗))− α1/kNq(1/2−ψ(N∗))/kH(ψ(N∗))

+
q − 1

2
kα1/kN(RN −RN/2) +O(1).
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Finally, (3.6) shows that the last sum in (3.7) is O(1). Consequently, there
is some constant ε > 0 such that

S(N) =
q − 1

2
2N [(2N)∗]− q − 1

2
N [N∗]

+
1
k

2Nq(1/2−ψ((2N)∗))/kH(ψ((2N)∗))

− 1
k
Nq(1/2−ψ(N∗))/kH(ψ(N∗))

+ 2N
(
c+

q − 1
2

)
−N

(
c+

q − 1
2

)
+O(N1−ε), N ≥ 1.

Summing up over N = 2−ix, 1 ≤ i ≤ log x/log 2, gives, for x ≥ 1,
∑

0≤n≤x
sq([αnk]) =

∑

1≤i≤log x/log 2

S(2−ix) +O(1)

=
q − 1

2
x[x∗] +

1
k
xq(1/2−ψ(x∗))/kH(ψ(x∗))

+
(
c+

q − 1
2

)
x+O(x1−ε).

This proves the Theorem.
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