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Factors of a perfect square
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1. Introduction and main result. In [ErdRos], Erdős and Rosenfeld
considered the differences between the divisors of a positive integer n. They
exhibited infinitely many integers with four “small” differences and posed
the question whether any positive integer can have at most a bounded num-
ber of “small” differences. Specifically, they asked

Question 1.1. Is there an absolute constant K such that, for every c,
the number of divisors of n between

√
n− c 4

√
n and

√
n+ c 4

√
n is at most K

for n > n0(c)?

They also mentioned a conjecture of Ruzsa which is a stronger question:

Question 1.2. Given ε > 0, is there a constant Kε such that, for any
positive integer n, the number of divisors of n between n1/2 − n1/2−ε and
n1/2 + n1/2−ε is at most Kε?

In this paper, we consider both questions when n is a perfect square. In
particular, we have

Theorem 1.3. For every c ≥ 3, any perfect square n = N2 can have
at most five divisors between

√
n − c 4

√
n and

√
n + c 4

√
n for n > eCc

6(log c)5

where C is some sufficiently large constant independent of c.

Corollary 1.4. Any sufficiently large perfect square n = N2 has at
most five divisors between

√
n− 4
√
n (log n)1/7 and

√
n+ 4
√
n (log n)1/7.

Proof. When n = N2 is sufficiently large (in terms of C), we have n >

eCc
6(log c)5 with c = (log n)1/7 ≥ 3. Pick this c for Theorem 1.3. Then the

theorem implies Corollary 1.4.

Theorem 1.3 answers Question 1.1 for perfect squares with K = 5 while
Corollary 1.4 shows that we can take the range for the divisors to be slightly
longer than 4

√
n. Based on the proof of Theorem 1.3, every perfect square n
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with five divisors between
√
n−c 4

√
n and

√
n+c 4

√
n comes from solutions to

Pell equations. For example, consider the Pell equation X2−2Y 2 = 2. It has
integral solutions (Xk, Yk) generated byXk+

√
2Yk = (3+2

√
2)k(2+

√
2). We

can verify by induction that Xk are even, Yk are odd and (Xk−2)(Xk+2) =
2(Yk−1)(Yk+1). Now consider the perfect square n = (Xk−2)2(Xk+2)2 =
4(Yk − 1)2(Yk + 1)2. It has divisors 2(Yk − 1)2, (Xk − 2)2, (Xk − 2)(Xk + 2),
(Xk + 2)2, 2(Yk + 1)2 that are between

√
n − 5 4

√
n and

√
n + 5 4

√
n. This

shows that the constant K = 5 is best possible for Question 1.1 restricted
to perfect squares.

2. Proof of Theorem 1.3. Throughout the proof, we assume that n >
eCc

6(log c)5 for some C > 4. We will specify C at the end of the proof. Suppose
N2 = (N −d1)(N + e1) = (N −d2)(N + e2) = · · · = (N −dr)(N + er) where
N,N−di, N+ej are all the divisors of N2 that lie in [N−cN1/2, N+cN1/2],
where 1 ≤ d1 < d2 < · · · < dr ≤ cN1/2 and 1 ≤ e1 < e2 < · · · < er ≤ cN1/2

are positive integers. As N2 = (N − di)(N + ei), 0 < eidi = (ei − di)N . So
we must have ei > di, say li := ei − di for some positive integer li. From
(di + li)di = liN , we have

(2.1) li =
d2i

N − di
≤ c2N

N − cN1/2
≤ 2c2

for N ≥ 4c2 (which is true when n > eCc
6(log c)5).

As (N − di)(N + ei) = N2 is a perfect square, N − di and N + ei have
the same squarefree part. Hence

N − di = aix
2
i , N + ei = aiy

2
i , N = aixiyi,

where ai is some squarefree integer. Adding the first two equations and
subtracting twice the third one, we get

(2.2) li = ei − di = ai(xi − yi)2,

which gives 1 ≤ ai ≤ li ≤ 2c2. Similarly, by adding the first two equations
and twice the third one, we get

(2.3) 4N + li = ai(xi + yi)
2.

Suppose n = N2 has more than five divisors in the interval [
√
n − c 4

√
n,√

n+ c 4
√
n]. Then r ≥ 3 and (2.3) is true for i = 1, 2, 3. Subtracting among

these three equations and letting zi = xi + yi, we arrive at a pair of Pell
equations:

(2.4)

{
a1z

2
1 − a2z22 = l1 − l2,

a1z
2
1 − a3z23 = l1 − l3.

Here we need a result of Turk [Tur] on simultaneous Pell equations:
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Theorem 2.1. Let a, b, c, d be squarefree positive integers with a 6= b
and c 6= d and let e and f be any integers. If af = ce then we also assume
that abcd is not a perfect square. Then every positive integer solution of{

ax2 − by2 = e,

cx2 − dz2 = f

satisfies

max(x, y, z) < eCα
2(logα)3γ log γ

where α = max(a, b, c, d), β = max(|e|, |f |, 3), γ = max(α logα, log β) and
C is a large absolute constant.

From (2.3) and ai ≤ 2c2, we have zi ≥
√
N/c > 2c2 if N > 4c6 (which is

true if n > eCc
6(log c)5). If a1 = a2, then (2.4) gives a1|z21−z22 | = |l1−l2| ≤ 2c2.

Clearly z1 6= z2, for otherwise l1 = l2, which forces x1 = x2 and y1 = y2
after substituting l1 = l2 into (2.2) and (2.3). Hence z1, z2 ≤ |z1 + z2| ≤
a1|z1 − z2| |z1 + z2| ≤ 2c2, which contradicts zi > 2c2. Therefore this case
cannot happen. Similarly, a1 = a3 cannot happen. Now if a1a2a1a3 is a per-
fect square, then a2 = a3 since they are all squarefree numbers. Subtracting
the two equations in (2.4), we get a2z

2
2 − a2z

2
3 = l2 − l3, which implies

z2, z3 ≤ 2c2 by a similar argument to the above. This contradicts zi > 2c2.
Therefore we can apply Theorem 2.1 to (2.4) with α ≤ 2c2, β ≤ 2c2,

γ ≤ 6c2 log c and get zi < eC
′c6(log c)5 for some sufficiently large absolute con-

stant C ′, which contradicts zi≥
√
N/c>eC

′c6(log c)5 if n = N2>e3C
′c6(log c)5 .

This proves Theorem 1.3 with absolute constant C = max(3C ′, 5).
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