Factors of a perfect square

by
Tsz Ho Chan (Memphis, TN)

1. Introduction and main result. In ErdRos, Erdős and Rosenfeld considered the differences between the divisors of a positive integer n. They exhibited infinitely many integers with four "small" differences and posed the question whether any positive integer can have at most a bounded number of "small" differences. Specifically, they asked

Question 1.1. Is there an absolute constant K such that, for every c, the number of divisors of n between $\sqrt{n}-c \sqrt[4]{n}$ and $\sqrt{n}+c \sqrt[4]{n}$ is at most K for $n>n_{0}(c)$?

They also mentioned a conjecture of Ruzsa which is a stronger question:
Question 1.2. Given $\epsilon>0$, is there a constant K_{ϵ} such that, for any positive integer n, the number of divisors of n between $n^{1 / 2}-n^{1 / 2-\epsilon}$ and $n^{1 / 2}+n^{1 / 2-\epsilon}$ is at most K_{ϵ} ?

In this paper, we consider both questions when n is a perfect square. In particular, we have

Theorem 1.3. For every $c \geq 3$, any perfect square $n=N^{2}$ can have at most five divisors between $\sqrt{n}-c \sqrt[4]{n}$ and $\sqrt{n}+c \sqrt[4]{n}$ for $n>e^{C c^{6}(\log c)^{5}}$ where C is some sufficiently large constant independent of c.

Corollary 1.4. Any sufficiently large perfect square $n=N^{2}$ has at most five divisors between $\sqrt{n}-\sqrt[4]{n}(\log n)^{1 / 7}$ and $\sqrt{n}+\sqrt[4]{n}(\log n)^{1 / 7}$.

Proof. When $n=N^{2}$ is sufficiently large (in terms of C), we have $n>$ $e^{C c^{6}(\log c)^{5}}$ with $c=(\log n)^{1 / 7} \geq 3$. Pick this c for Theorem 1.3. Then the theorem implies Corollary 1.4 .

Theorem 1.3 answers Question 1.1 for perfect squares with $K=5$ while Corollary 1.4 shows that we can take the range for the divisors to be slightly longer than $\sqrt[4]{n}$. Based on the proof of Theorem 1.3 , every perfect square n

[^0]with five divisors between $\sqrt{n}-c \sqrt[4]{n}$ and $\sqrt{n}+c \sqrt[4]{n}$ comes from solutions to Pell equations. For example, consider the Pell equation $X^{2}-2 Y^{2}=2$. It has integral solutions $\left(X_{k}, Y_{k}\right)$ generated by $X_{k}+\sqrt{2} Y_{k}=(3+2 \sqrt{2})^{k}(2+\sqrt{2})$. We can verify by induction that X_{k} are even, Y_{k} are odd and $\left(X_{k}-2\right)\left(X_{k}+2\right)=$ $2\left(Y_{k}-1\right)\left(Y_{k}+1\right)$. Now consider the perfect square $n=\left(X_{k}-2\right)^{2}\left(X_{k}+2\right)^{2}=$ $4\left(Y_{k}-1\right)^{2}\left(Y_{k}+1\right)^{2}$. It has divisors $2\left(Y_{k}-1\right)^{2},\left(X_{k}-2\right)^{2},\left(X_{k}-2\right)\left(X_{k}+2\right)$, $\left(X_{k}+2\right)^{2}, 2\left(Y_{k}+1\right)^{2}$ that are between $\sqrt{n}-5 \sqrt[4]{n}$ and $\sqrt{n}+5 \sqrt[4]{n}$. This shows that the constant $K=5$ is best possible for Question 1.1 restricted to perfect squares.
2. Proof of Theorem 1.3. Throughout the proof, we assume that $n>$ $e^{C c^{6}(\log c)^{5}}$ for some $C>4$. We will specify C at the end of the proof. Suppose $N^{2}=\left(N-d_{1}\right)\left(N+e_{1}\right)=\left(N-d_{2}\right)\left(N+e_{2}\right)=\cdots=\left(N-d_{r}\right)\left(N+e_{r}\right)$ where $N, N-d_{i}, N+e_{j}$ are all the divisors of N^{2} that lie in $\left[N-c N^{1 / 2}, N+c N^{1 / 2}\right]$, where $1 \leq d_{1}<d_{2}<\cdots<d_{r} \leq c N^{1 / 2}$ and $1 \leq e_{1}<e_{2}<\cdots<e_{r} \leq c N^{1 / 2}$ are positive integers. As $N^{2}=\left(N-d_{i}\right)\left(N+e_{i}\right), 0<e_{i} d_{i}=\left(e_{i}-d_{i}\right) N$. So we must have $e_{i}>d_{i}$, say $l_{i}:=e_{i}-d_{i}$ for some positive integer l_{i}. From $\left(d_{i}+l_{i}\right) d_{i}=l_{i} N$, we have
\[

$$
\begin{equation*}
l_{i}=\frac{d_{i}^{2}}{N-d_{i}} \leq \frac{c^{2} N}{N-c N^{1 / 2}} \leq 2 c^{2} \tag{2.1}
\end{equation*}
$$

\]

for $N \geq 4 c^{2}\left(\right.$ which is true when $\left.n>e^{C c^{6}(\log c)^{5}}\right)$.
As $\left(N-d_{i}\right)\left(N+e_{i}\right)=N^{2}$ is a perfect square, $N-d_{i}$ and $N+e_{i}$ have the same squarefree part. Hence

$$
N-d_{i}=a_{i} x_{i}^{2}, \quad N+e_{i}=a_{i} y_{i}^{2}, \quad N=a_{i} x_{i} y_{i}
$$

where a_{i} is some squarefree integer. Adding the first two equations and subtracting twice the third one, we get

$$
\begin{equation*}
l_{i}=e_{i}-d_{i}=a_{i}\left(x_{i}-y_{i}\right)^{2} \tag{2.2}
\end{equation*}
$$

which gives $1 \leq a_{i} \leq l_{i} \leq 2 c^{2}$. Similarly, by adding the first two equations and twice the third one, we get

$$
\begin{equation*}
4 N+l_{i}=a_{i}\left(x_{i}+y_{i}\right)^{2} \tag{2.3}
\end{equation*}
$$

Suppose $n=N^{2}$ has more than five divisors in the interval $[\sqrt{n}-c \sqrt[4]{n}$, $\sqrt{n}+c \sqrt[4]{n}]$. Then $r \geq 3$ and 2.3 is true for $i=1,2,3$. Subtracting among these three equations and letting $z_{i}=x_{i}+y_{i}$, we arrive at a pair of Pell equations:

$$
\left\{\begin{array}{l}
a_{1} z_{1}^{2}-a_{2} z_{2}^{2}=l_{1}-l_{2} \tag{2.4}\\
a_{1} z_{1}^{2}-a_{3} z_{3}^{2}=l_{1}-l_{3}
\end{array}\right.
$$

Here we need a result of Turk Tur on simultaneous Pell equations:

Theorem 2.1. Let a, b, c, d be squarefree positive integers with $a \neq b$ and $c \neq d$ and let e and f be any integers. If $a f=c e$ then we also assume that abcd is not a perfect square. Then every positive integer solution of

$$
\left\{\begin{array}{l}
a x^{2}-b y^{2}=e \\
c x^{2}-d z^{2}=f
\end{array}\right.
$$

satisfies

$$
\max (x, y, z)<e^{C \alpha^{2}(\log \alpha)^{3} \gamma \log \gamma}
$$

where $\alpha=\max (a, b, c, d), \beta=\max (|e|,|f|, 3), \gamma=\max (\alpha \log \alpha, \log \beta)$ and C is a large absolute constant.

From (2.3) and $a_{i} \leq 2 c^{2}$, we have $z_{i} \geq \sqrt{N} / c>2 c^{2}$ if $N>4 c^{6}$ (which is true if $\left.n>e^{C c^{6}(\log c)^{5}}\right)$. If $a_{1}=a_{2}$, then 2.4 gives $a_{1}\left|z_{1}^{2}-z_{2}^{2}\right|=\left|l_{1}-l_{2}\right| \leq 2 c^{2}$. Clearly $z_{1} \neq z_{2}$, for otherwise $l_{1}=l_{2}$, which forces $x_{1}=x_{2}$ and $y_{1}=y_{2}$ after substituting $l_{1}=l_{2}$ into (2.2) and (2.3). Hence $z_{1}, z_{2} \leq\left|z_{1}+z_{2}\right| \leq$ $a_{1}\left|z_{1}-z_{2}\right|\left|z_{1}+z_{2}\right| \leq 2 c^{2}$, which contradicts $z_{i}>2 c^{2}$. Therefore this case cannot happen. Similarly, $a_{1}=a_{3}$ cannot happen. Now if $a_{1} a_{2} a_{1} a_{3}$ is a perfect square, then $a_{2}=a_{3}$ since they are all squarefree numbers. Subtracting the two equations in (2.4), we get $a_{2} z_{2}^{2}-a_{2} z_{3}^{2}=l_{2}-l_{3}$, which implies $z_{2}, z_{3} \leq 2 c^{2}$ by a similar argument to the above. This contradicts $z_{i}>2 c^{2}$.

Therefore we can apply Theorem 2.1 to 2.4 with $\alpha \leq 2 c^{2}, \beta \leq 2 c^{2}$, $\gamma \leq 6 c^{2} \log c$ and get $z_{i}<e^{C^{\prime} c^{6}(\log c)^{5}}$ for some sufficiently large absolute constant C^{\prime}, which contradicts $z_{i} \geq \sqrt{N} / c>e^{C^{\prime} c^{6}(\log c)^{5}}$ if $n=N^{2}>e^{3 C^{\prime} c^{6}(\log c)^{5}}$. This proves Theorem 1.3 with absolute constant $C=\max \left(3 C^{\prime}, 5\right)$.

Acknowledgements. The author would like to thank the referee for suggestions that greatly simplified the proof of the main theorem.

References

[ErdRos] P. Erdős and M. Rosenfeld, The factor-difference set of integers, Acta Arith. 79 (1997), 353-359.
[Tur] J. Turk, Almost powers in short intervals, Arch. Math. (Basel) 43 (1984), 157-166.

Tsz Ho Chan
Department of Arts and Sciences
Victory University
255 N. Highland Street
Memphis, TN 38111, U.S.A.
E-mail: thchan@victory.edu

[^0]: 2010 Mathematics Subject Classification: Primary 11A51; Secondary 11J86.
 Key words and phrases: divisor, perfect square, simultaneous Pell equations.

