Factors of a perfect square

by

TSZ HO CHAN (Memphis, TN)

1. Introduction and main result. In [ErdRos], Erdős and Rosenfeld considered the differences between the divisors of a positive integer n. They exhibited infinitely many integers with four "small" differences and posed the question whether any positive integer can have at most a bounded number of "small" differences. Specifically, they asked

QUESTION 1.1. Is there an absolute constant K such that, for every c, the number of divisors of n between $\sqrt{n} - c\sqrt[4]{n}$ and $\sqrt{n} + c\sqrt[4]{n}$ is at most K for $n > n_0(c)$?

They also mentioned a conjecture of Ruzsa which is a stronger question:

QUESTION 1.2. Given $\epsilon > 0$, is there a constant K_{ϵ} such that, for any positive integer n, the number of divisors of n between $n^{1/2} - n^{1/2-\epsilon}$ and $n^{1/2} + n^{1/2-\epsilon}$ is at most K_{ϵ} ?

In this paper, we consider both questions when n is a perfect square. In particular, we have

THEOREM 1.3. For every $c \geq 3$, any perfect square $n = N^2$ can have at most five divisors between $\sqrt{n} - c\sqrt[4]{n}$ and $\sqrt{n} + c\sqrt[4]{n}$ for $n > e^{Cc^6(\log c)^5}$ where C is some sufficiently large constant independent of c.

COROLLARY 1.4. Any sufficiently large perfect square $n = N^2$ has at most five divisors between $\sqrt{n} - \sqrt[4]{n} (\log n)^{1/7}$ and $\sqrt{n} + \sqrt[4]{n} (\log n)^{1/7}$.

Proof. When $n = N^2$ is sufficiently large (in terms of C), we have $n > e^{Cc^6(\log c)^5}$ with $c = (\log n)^{1/7} \ge 3$. Pick this c for Theorem 1.3. Then the theorem implies Corollary 1.4.

Theorem 1.3 answers Question 1.1 for perfect squares with K = 5 while Corollary 1.4 shows that we can take the range for the divisors to be slightly longer than $\sqrt[4]{n}$. Based on the proof of Theorem 1.3, every perfect square n

²⁰¹⁰ Mathematics Subject Classification: Primary 11A51; Secondary 11J86.

Key words and phrases: divisor, perfect square, simultaneous Pell equations.

T. H. Chan

with five divisors between $\sqrt{n} - c\sqrt[4]{n}$ and $\sqrt{n} + c\sqrt[4]{n}$ comes from solutions to Pell equations. For example, consider the Pell equation $X^2 - 2Y^2 = 2$. It has integral solutions (X_k, Y_k) generated by $X_k + \sqrt{2} Y_k = (3+2\sqrt{2})^k (2+\sqrt{2})$. We can verify by induction that X_k are even, Y_k are odd and $(X_k - 2)(X_k + 2) =$ $2(Y_k - 1)(Y_k + 1)$. Now consider the perfect square $n = (X_k - 2)^2 (X_k + 2)^2 =$ $4(Y_k - 1)^2 (Y_k + 1)^2$. It has divisors $2(Y_k - 1)^2$, $(X_k - 2)^2$, $(X_k - 2)(X_k + 2)$, $(X_k + 2)^2$, $2(Y_k + 1)^2$ that are between $\sqrt{n} - 5\sqrt[4]{n}$ and $\sqrt{n} + 5\sqrt[4]{n}$. This shows that the constant K = 5 is best possible for Question 1.1 restricted to perfect squares.

2. Proof of Theorem 1.3. Throughout the proof, we assume that $n > e^{Cc^6(\log c)^5}$ for some C > 4. We will specify C at the end of the proof. Suppose $N^2 = (N - d_1)(N + e_1) = (N - d_2)(N + e_2) = \cdots = (N - d_r)(N + e_r)$ where $N, N - d_i, N + e_j$ are all the divisors of N^2 that lie in $[N - cN^{1/2}, N + cN^{1/2}]$, where $1 \le d_1 < d_2 < \cdots < d_r \le cN^{1/2}$ and $1 \le e_1 < e_2 < \cdots < e_r \le cN^{1/2}$ are positive integers. As $N^2 = (N - d_i)(N + e_i), 0 < e_i d_i = (e_i - d_i)N$. So we must have $e_i > d_i$, say $l_i := e_i - d_i$ for some positive integer l_i . From $(d_i + l_i)d_i = l_iN$, we have

(2.1)
$$l_i = \frac{d_i^2}{N - d_i} \le \frac{c^2 N}{N - cN^{1/2}} \le 2c^2$$

for $N \ge 4c^2$ (which is true when $n > e^{Cc^6(\log c)^5}$).

As $(N - d_i)(N + e_i) = N^2$ is a perfect square, $N - d_i$ and $N + e_i$ have the same squarefree part. Hence

$$N - d_i = a_i x_i^2, \quad N + e_i = a_i y_i^2, \quad N = a_i x_i y_i;$$

where a_i is some squarefree integer. Adding the first two equations and subtracting twice the third one, we get

(2.2)
$$l_i = e_i - d_i = a_i (x_i - y_i)^2$$

which gives $1 \le a_i \le l_i \le 2c^2$. Similarly, by adding the first two equations and twice the third one, we get

(2.3)
$$4N + l_i = a_i (x_i + y_i)^2.$$

Suppose $n = N^2$ has more than five divisors in the interval $[\sqrt{n} - c\sqrt[4]{n}, \sqrt{n} + c\sqrt[4]{n}]$. Then $r \ge 3$ and (2.3) is true for i = 1, 2, 3. Subtracting among these three equations and letting $z_i = x_i + y_i$, we arrive at a pair of Pell equations:

(2.4)
$$\begin{cases} a_1 z_1^2 - a_2 z_2^2 = l_1 - l_2, \\ a_1 z_1^2 - a_3 z_3^2 = l_1 - l_3. \end{cases}$$

Here we need a result of Turk [Tur] on simultaneous Pell equations:

THEOREM 2.1. Let a, b, c, d be squarefree positive integers with $a \neq b$ and $c \neq d$ and let e and f be any integers. If af = ce then we also assume that abcd is not a perfect square. Then every positive integer solution of

$$\begin{cases} ax^2 - by^2 = e, \\ cx^2 - dz^2 = f \end{cases}$$

satisfies

$$\max(x, y, z) < e^{C\alpha^2 (\log \alpha)^3 \gamma \log \gamma}$$

where $\alpha = \max(a, b, c, d)$, $\beta = \max(|e|, |f|, 3)$, $\gamma = \max(\alpha \log \alpha, \log \beta)$ and C is a large absolute constant.

From (2.3) and $a_i \leq 2c^2$, we have $z_i \geq \sqrt{N/c} > 2c^2$ if $N > 4c^6$ (which is true if $n > e^{Cc^6(\log c)^5}$). If $a_1 = a_2$, then (2.4) gives $a_1|z_1^2 - z_2^2| = |l_1 - l_2| \leq 2c^2$. Clearly $z_1 \neq z_2$, for otherwise $l_1 = l_2$, which forces $x_1 = x_2$ and $y_1 = y_2$ after substituting $l_1 = l_2$ into (2.2) and (2.3). Hence $z_1, z_2 \leq |z_1 + z_2| \leq a_1|z_1 - z_2| |z_1 + z_2| \leq 2c^2$, which contradicts $z_i > 2c^2$. Therefore this case cannot happen. Similarly, $a_1 = a_3$ cannot happen. Now if $a_1a_2a_1a_3$ is a perfect square, then $a_2 = a_3$ since they are all squarefree numbers. Subtracting the two equations in (2.4), we get $a_2z_2^2 - a_2z_3^2 = l_2 - l_3$, which implies $z_2, z_3 \leq 2c^2$ by a similar argument to the above. This contradicts $z_i > 2c^2$.

Therefore we can apply Theorem 2.1 to (2.4) with $\alpha \leq 2c^2$, $\beta \leq 2c^2$, $\gamma \leq 6c^2 \log c$ and get $z_i < e^{C'c^6(\log c)^5}$ for some sufficiently large absolute constant C', which contradicts $z_i \geq \sqrt{N/c} > e^{C'c^6(\log c)^5}$ if $n = N^2 > e^{3C'c^6(\log c)^5}$. This proves Theorem 1.3 with absolute constant $C = \max(3C', 5)$.

Acknowledgements. The author would like to thank the referee for suggestions that greatly simplified the proof of the main theorem.

References

- [ErdRos] P. Erdős and M. Rosenfeld, The factor-difference set of integers, Acta Arith. 79 (1997), 353–359.
- [Tur] J. Turk, Almost powers in short intervals, Arch. Math. (Basel) 43 (1984), 157–166.

Tsz Ho Chan Department of Arts and Sciences Victory University 255 N. Highland Street Memphis, TN 38111, U.S.A. E-mail: thchan@victory.edu

> Received on 28.3.2013 and in revised form on 22.2.2014