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Factors of a perfect square
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1. Introduction and main result. In [ErdRos|, Erdés and Rosenfeld
considered the differences between the divisors of a positive integer n. They
exhibited infinitely many integers with four “small” differences and posed
the question whether any positive integer can have at most a bounded num-
ber of “small” differences. Specifically, they asked

QUESTION 1.1. Is there an absolute constant K such that, for every c,
the number of divisors of n between \/n — cy/n and \/n+ cy/n is at most K
for n > ng(c)?

They also mentioned a conjecture of Ruzsa which is a stronger question:

QUESTION 1.2. Given € > 0, is there a constant K. such that, for any
positive integer n, the number of divisors of n between n*/? — n'/2=¢ and
nt/2 4 nl/2=¢ js at most K. ?

In this paper, we consider both questions when n is a perfect square. In
particular, we have

THEOREM 1.3. For every ¢ > 3, any perfect square n = N? can hcwse
at most five divisors between \/n — c\/n and \/n + c/n for n > € (logo)
where C' is some sufficiently large constant independent of c.

COROLLARY 1.4. Any sufficiently large perfect square n = N? has at
most five divisors between /n — ¥/n (logn)"7 and \/n + /n (logn)'/7.

Proof. When n = N? is sufficiently large (in terms of C), we have n >
eCc?10g9)” with ¢ = (log n)1/7 > 3. Pick this ¢ for Theorem Then the
theorem implies Corollary

Theorem [I.3] answers Question [I.1] for perfect squares with K = 5 while
Corollary shows that we can take the range for the divisors to be slightly
longer than +/n. Based on the proof of Theorem every perfect square n
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with five divisors between /n —c/n and /n+ c+/n comes from solutions to
Pell equations. For example, consider the Pell equation X?—2Y? = 2. It has
integral solutions (X, V%) generated by Xz++v/2Y), = (3+2v/2)%(2+v/2). We
can verify by induction that X}, are even, Y} are odd and (X —2)(Xp+2) =
2(Y;, —1)(Y +1). Now consider the perfect square n = (X, —2)%(X3 +2)? =
4(Y) — 1)2(Y3 4+ 1)2. Tt has divisors 2(Y; — 1)2, (X — 2)2, (X3 — 2)(Xk +2),
(X1 + 2)2%, 2(Y + 1)? that are between /n — 5¢/n and /n + 5¢/n. This
shows that the constant K = 5 is best possible for Question [1.1] restricted
to perfect squares.

2. Proof of Theorem [1.3] Throughout the proof, we assume that n >
0 (108)” for some C' > 4. We will specify C' at the end of the proof. Suppose
N2 =(N—d))(N+e1)=(N—dy)(N+ez)=---=(N—d.)(N +e,) where
N, N —d;, N +e; are all the divisors of N? that lie in [N—cNY2 N+eNV?),
where 1 < dj <dy < --- < d, < eNY? and 1 e <e<---<ep < ¢NV/?
are positive integers. As N2 = (N — d;)(N +¢;), 0 < e;d; = (e; — d;)N. So
we must have e; > d;, say l; := e; — d; for some positive integer [;. From
(di + 1;)d; = [; N, we have

d? AN 9
(2.1) = N—g SNowz =%
for N > 4c? (which is true when n > 0 (log©)?),

As (N — d;)(N +e;) = N? is a perfect square, N — d; and N + e; have
the same squarefree part. Hence

N —d; =aiw, N+ei=ay, N=awy,
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where a; is some squarefree integer. Adding the first two equations and
subtracting twice the third one, we get

(2.2) li = ei — di = ai(z; — yi)?,

which gives 1 < a; < I; < 2¢2. Similarly, by adding the first two equations
and twice the third one, we get

(2.3) AN + [; = ai(a:i + yi)2.

Suppose n = N? has more than five divisors in the interval [\/n — c¥/n,
v/n + ¢y/n]. Then r > 3 and is true for i = 1,2, 3. Subtracting among
these three equations and letting z; = x; + y;, we arrive at a pair of Pell
equations:

(2.4) { alz% — CLQZ% = ll — lQ,

alz% — a32§ =1 — 3.

Here we need a result of Turk [Tur] on simultaneous Pell equations:
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THEOREM 2.1. Let a, b, ¢, d be squarefree positive integers with a # b
and ¢ # d and let e and f be any integers. If af = ce then we also assume
that abed is not a perfect square. Then every positive integer solution of

{ azx® — by =e,
cx? —dz? = f
satisfies
2 3
max(a:,y,z) < 6Coz (log a)®~ log v

where o = max(a,b,c,d), B = max(|e|,|f|,3), v = max(alog«a,log ) and
C is a large absolute constant.

From and a; < 2¢2, we have z; > V/N/c > 2¢ if N > 4c% (which is
true if n > ¢“<"(989)°) If a1 = ay, then gives ay |22 — 22| = |1 —l2| < 2¢2.
Clearly z1 # z9, for otherwise I; = lo, which forces x1 = z2 and y1 = yo
after substituting Iy = I into and . Hence 21,22 < |21 + 23] <
ailz1 — za| |21 + 22| < 2¢2, which contradicts z; > 2¢?. Therefore this case
cannot happen. Similarly, a; = a3 cannot happen. Now if ajasajas is a per-
fect square, then as = ag since they are all squarefree numbers. Subtracting
the two equations in , we get agza — a2z§ = [y — [3, which implies
29,23 < 2¢% by a similar argument to the above. This contradicts z; > 2¢2.

Therefore we can apply Theorem [2.1] to (2.4) with a < 2¢2, 8 < 2¢2,
v < 6¢%log c and get z; < @08 ©)” for some sufficiently large absolute con-
stant C’, which contradicts z; > \/N/c> eC'®(log0)® jf py — N2 3C O (loge)®
This proves Theorem [1.3| with absolute constant C' = max(3C’,5).
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