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The asymptotic behaviour of the counting functions of
Ω-sets in arithmetical semigroups
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Maciej Radziejewski (Poznań)

1. Introduction. We study oscillatory properties of the error terms of
the counting functions of some subsets of arithmetical semigroups. Quanti-
tative factorization theory, i.e. the study of quantitative properties of such
subsets defined by factorization-related conditions, was initiated by Fogels [5]
and further developed by Narkiewicz (cf., e.g., [24–26]). Of course, the ques-
tion of what an arithmetical semigroup exactly is can hardly ever be settled,
as the interests of number theorists expand over time, but it seems clear
that at the minimum it should include the semigroup of positive integers,
the semigroups of non-zero integers and non-zero principal ideals in alge-
braic number fields and, more generally, the generalized Hilbert semigroups
modulo an integral ideal (cf. Subsection 2.1). It is well known that in these
cases the arithmetical properties of the semigroup are closely related to the
analytical properties of the L-functions associated to the class group, and
that these L-functions either belong to or are closely related to elements of
the Selberg class.

Therefore we consider (Section 2) a class of semigroups, called L-semi-
groups, with precisely this property. In particular we define simple L-semi-
groups, which include all the examples given above. The counting function
of a subset A of an L-semigroup S is defined, as usual, as

A(x) =
∑′

a∈A
N(a)≤x

1,

where the sum is over non-associated elements of A, and N denotes the norm
defined in S. When the zeta function associated to A (cf. Subsection 4.2)
is sufficiently regular, the main term and the error term of A(x) may be
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defined analytically (cf. Section 3 for the definitions of the error term and
oscillations).

The set Gk of elements of S with at most k distinct lengths of factoriza-
tions into irreducibles (or a related set Gk = Gk \Gk−1) was considered by
Narkiewicz [24] and Śliwa [38] who studied the main term in the case of the
semigroup of non-zero algebraic integers. Kaczorowski [10] gave more precise
asymptotics for Gk(x). Geroldinger and Halter-Koch [7, Chapter 9] studied
the main term in an abstract setting. The author [29, 31] and Schmid and
the author [35] showed, in the case of the semigroup of non-zero algebraic
integers, totally positive integers, and some related semigroups, that the er-
ror term of Gk(x) has oscillations of size x1/2−ε for k ≥ 2 and, conditionally,
in the case k = 1 (provided some conjectures hold, either combinatorial or
analytical, related to multiplicities of zeros of L functions).

In the present paper we show the existence of oscillations of the error
term of Gk(x) unconditionally, for all k ≥ 1. We also obtain slightly larger
oscillations and treat more general semigroups, including all the generalized
Hilbert semigroups.

Theorem 1.1. If S is a simple L-semigroup with class number h ≥ 3,
and k is a positive integer, then the error term of the counting function
Gk(x) has oscillations of logarithmic frequency and size

√
x(log x)−M for

some M > 0.

We also consider the set B = B(a, q) of positive integers without non-
trivial divisors in a given arithmetic progression a mod q. Here “non-trivial
divisors” means that we allow the divisor gcd(a, q), as otherwise the defined
set, in the case gcd(a, q) ≡ a (mod q), would become almost trivial. The
distribution of numbers with this property was first considered by Banks,
Friedlander and Luca [1] who defined a very similar set, say C = C(a, q), of
positive integers without divisors 6= 1 and congruent to a modulo q. They
obtained the asymptotics for the main term of C(x) = B(x) in the case
of prime q. Narkiewicz and the author [28] studied the main term of C(x)
for a general rational integer modulus. Of course B(a, q) = C(a, q) if q is a
prime (and a - q), and for general moduli differences occur only in the case
gcd(a, q) ≡ a (mod q), gcd(a, q) 6= 1. If q/gcd(a, q) ≤ 2, then the set B(a, q)
has a very simple, regular structure. In all the remaining cases we show the
existence of oscillations of the error term of B(x).

Theorem 1.2. Let a, q be positive integers with q/gcd(a, q) ≥ 3. Let B
denote the set of positive integers that have no divisor other than gcd(a, q)
congruent to a modulo q. Then the error term of the counting function of
B has oscillations of logarithmic frequency and size

√
x(log x)−M for some

M > 0.
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We also consider, so to say, “arithmetic progressions of ideals” in an al-
gebraic number field and obtain an analogous, more general, though also
more technical result (Theorem 5.4) for the set of ideals without non-trivial
divisors in such a progression. It is partly derived from a general property
(Corollary 5.3) of sets defined by “forbidden” divisors. We use two analytical
theorems recently obtained by the author, quoted in Section 3, and some
combinatorial results (Subsection 4.1) related to a family of semigroup sub-
sets called Ω-sets, in particular concerning so-called (r, d)-singular Ω-sets.
In Subsection 4.3 we show a general oscillation theorem (Theorem 4.7) for
the counting functions of (r, d)-singular Ω-sets.

We write, as usual, s = σ + it, and F (s) = F (s) for a complex function
F (s). If G is a function meromorphic in a neighbourhood of ρ, we letm(ρ,G)
denote the order of a zero of G at ρ, with m(ρ,G) = −m in the case of a pole
of order m, and m(ρ,G) = 0 if G is regular and non-zero at ρ. We denote
by N, Z, Q, R and C the sets of positive integers, integers, and rational, real
and complex numbers, respectively, and put N0 = N∪{0}. In expressions of
the form log(s − ρ) or (s − ρ)w (where ρ, w ∈ C), and logG(s), where G is
a function from the Selberg class, we generally mean the principal branches.
In Section 2 we define some further notation pertaining to the semigroup S
and use it throughout the paper.

2. L-semigroups. We say that a complex function F (s) has an Euler
product (cf. [3]) if it satisfies

(2.1) F (s) = exp
( ∞∑
n=1

b(n)n−s
)
, σ > 3/2,

for some b(n) � nθ with θ < 1/2 and b(n) = 0 unless n is a prime power
greater than 1. We recall that the Selberg class S of L-functions (cf. [11,
14–23, 36]) consists of Dirichlet series F (s) =

∑∞
n=1 a(n)n

−s with a(n) �
nε such that, for some integer m ≥ 0, the function (s − 1)mF (s) can be
analytically continued to an entire function of finite order, F (s) has an Euler
product and satisfies the functional equation of the form Φ(s) = ωΦ(1− s),
where |ω| = 1, and

Φ(s) = F (s)Qs
r∏
j=1

Γ (λjs+ µj)

for some Q > 0, r ≥ 0, λj > 0 and <µj ≥ 0, j = 1, . . . , r. The number
dF = 2

∑r
j=1 λj is called the degree of F and it is well known [3] that it

depends on F alone. The zeros of F (s), or their multiplicities, are divided
into trivial and non-trivial. The non-trivial ones are simply the zeros of Φ(s),
or equivalently the zeros of F (s) satisfying σ ≥ 1/2 and their images in the
reflection across the line σ = 1/2 (cf. also [3]). The following fact is generally
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known. The second part of it was stated in [16] and the first one follows in
the same way as [9, (5.28)].

Lemma 2.1. Let F ∈ S. Then
logF (s) =

∑
|γ−t|≤1

log(s− ρ) +OF (log(|t|+ 2))

for all s = σ+ it such that −1 ≤ σ ≤ 2 and F (s) 6= 0, where the sum is over
all non-trivial zeros ρ = β + iγ of F , counted with multiplicity. Moreover,

NF (T ) =
dF
2π
T log T + cFT +OF (log T ), T →∞,

where NF (T ) is the number of non-trivial zeros ρ, counted with multiplicity,
satisfying 0 ≤ γ ≤ T , dF is the degree of F , and cF is another constant,
depending only on F .

We say that the Euler product (2.1) is finite if b(pk) = 0 for all k ∈ N
and all but finitely many primes p.

Lemma 2.2. If F (s) has a finite Euler product, then, for some θ < 1/2,
it does not vanish in the half-plane σ > θ and it has an absolutely convergent
Dirichlet series expansion there.

Proof. We have

F (s) = exp
( m∑
j=1

∞∑
k=1

b(pkj )p
−ks
j

)
, σ > 3/2,

for some primes p1 < · · · < pm and b(n)� nθ, θ < 1/2, so clearly F (s) has
a non-vanishing extension in <s > θ. For p = p1, . . . , pm the function

fp(z) = exp
( ∞∑
k=1

b(pk)zk
)

is regular in |z| < p−θ, so fp(z) = 1 +
∑∞

k=1 ap(p
k)zk for some ap(pk) that

satisfies ap(pk) � pk
θ+ε for every ε > 0. Hence F (s) =

∏k
j=1 fpj (p

−s
j ) is a

product of Dirichlet series absolutely convergent for σ > θ.

Let F(P) denote the free multiplicative monoid generated by a non-
empty set P. Let S be a semigroup with divisor theory (cf. [6, 8]), i.e. a
commutative, cancellative semigroup with a unit and a monoid homomor-
phism ϕ : S → F(P) such that for all a, b ∈ S the divisibility ϕ(a) |ϕ(b)
in F(P) implies a | b in S, and every p ∈ P equals gcd(ϕ(a1), . . . , ϕ(an)) for
some a1, . . . , an ∈ S. We assume that the class group Cl(S) of S is finite
and put h = |Cl(S)|. We write S and Cl(S) mutiplicatively. We assume
that the divisor semigroup F(P) of S is equipped with a multiplicative
norm N : F(P) → N, i.e. N(a) = 1 implies a = 1 for a ∈ F(P), and
N(ab) = N(a)N(b) for every a, b ∈ F(P).
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We say that S is an L-semigroup if

(i) we have

#{a ∈ F(P) : N(a) ≤ x} �ε x
1+ε, x→∞,

for every ε > 0, and
(ii) for every χ ∈ Ĉl(S) the Dirichlet series

L(s, χ) =
∑

a∈F(P)

χ(a)N(a)−s

satisfies fχ(s)−1L(s, χ) ∈ S for some function fχ with a finite Euler
product.

We say that the L-semigroup is simple if:

(iii) L(s, χ0) has a simple pole at s = 1, and
(iv) for all χ ∈ Ĉl(S) \ {χ0} the function L(s, χ) is regular and non-

vanishing at s = 1.

While the notion of an L-semigroup may be viewed simply as a tool to conve-
niently encapsulate key properties of many semigroups that frequently arise
in number theory (though definitely not all, a notable exception being the
Selberg class itself), it also raises a number of questions that seem interest-
ing in their own right. For example: are the degrees (in the Selberg class)
of all the functions fχ(s)−1L(s, χ), χ ∈ Ĉl(S), necessarily the same? It is so
in all examples of L-semigroups known to the author. In that case we can
call this common degree the degree of S, denoted degS. Then, if S1, S2 are
L-semigroups with degrees, we have

deg(S1 × S2) = deg(S1) + deg(S2),

where the required structure on the product semigroup S1×S2 is defined in
the obvious way. Can we say something similar about other invariants? What
can we say about the semigroup-like structure defined by this direct prod-
uct (say, on isomorphism classes of L-semigroups)? Is fχ always a Dirichlet
polynomial? Are the non-trivial local factors of f−1χ always identical to the
corresponding factors of fχ(s)−1L(s, χ)? Is S necessarily simple if it is prim-
itive (not isomorphic to a non-trivial direct product)? The author hopes to
return to some of these questions in a future paper.

Kaczorowski and Perelli [21, Non-Vanishing Conjecture] conjectured that
F (1 + it) 6= 0 for all F ∈ S, t ∈ R. They also showed that this conjecture
is equivalent to a general prime number theorem and that it follows from
other well-known conjectures regarding the Selberg class. We say that S
satisfies (NVC) on the line σ = 1 if L(1 + it, χ) 6= 0 for all χ ∈ Ĉl(S),
t ∈ R. In (iii)–(iv) above we assumed this for t = 0 for simple L-semigroups.
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These conditions (for a particular semigroup) are of course much weaker
than (NVC) for the entire Selberg class. In particular we have F (1+ it) 6= 0
for all known examples of L-functions [13], so we are able to verify (NVC)
on the line <s = 1 for all known L-semigroups.

We denote the principal class of Cl(S) by E, the set of classes that contain
at least one prime divisor by G0, the number of prime divisors of a in the
class X (counted according to their multiplicities) by ΩX(a), and the class of
d∈F(P) in Cl(S) by [d]. For a∈F(P) let Supp(a) = {X∈G0 : ΩX(a) > 0}.

2.1. Generalized Hilbert semigroups. LetK be an algebraic number
field, OK its ring of integers, f a non-zero ideal, H∗f (K) the class group of K
modulo f in the narrow sense, andH ′ a subgroup ofH∗f (K). The semigroup S
of non-zero ideals of OK whose classes belong to H ′ is called the generalized
Hilbert semigroup. It was introduced by Halter-Koch [8, Beispiel 4]. If H ′ is
the trivial subgroup of H∗f (K), we call S the generalized Hilbert semigroup
modulo f. The divisor theory of S is the embedding of S in F(P), where
P is the set of all prime ideals not dividing f, and Cl(S) may be identified
with H∗f (K)/H ′. Characters of Cl(S) may be identified with characters χ
of H∗f (K) such that H ′ ⊆ kerχ. Let χ be such a character, induced by a
primitive character χ∗ modulo q. Then

L(s, χ∗) =
∏
p|f
p-q

(1− χ∗(p)N(p)−s)−1L(s, χ)

belongs to the Selberg class (cf. [14, 16]). We have L(1 + it, χ) 6= 0, t ∈ R,
χ ∈ Ĉl(S). The function L(s, χ0) has a simple pole at s = 1, and, for
χ 6= χ0, the function L(s, χ) is regular and non-vanishing at s = 1 (cf. [27]).
Therefore S is a simple L-semigroup, of degree equal to the degree of the
field, satisfying (NVC). Such semigroups are the only examples of simple
L-semigroups known to the author. Of course they include, as special cases,
the classical Hilbert semigroups (modulo a positive integer f), the reduced
multiplicative semigroup of OK and the semigroup I(OK) of non-zero ideals.

3. Singularities and oscillations of arithmetical functions. Next
we recall some results of [32, 33]. Let D ⊆ C be a region and let C ⊆ D be
a discrete closed set contained in some half-plane <s ≤ σ1. We say that a
complex function F is defined in D with possible singularities in C if

(i) the function F is defined and regular on D apart from horizontal
cuts inside D, extending from the points ρ ∈ C to the left, up to the
boundary of D or to ρ−∞, and

(ii) F has an extension (possibly branched) onto D\C covering all points
inside the cuts at least twice (from “above” and from “below”).
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We call F maximal if, in addition, the set C above is minimal, i.e. no exten-
sion of F exists that satisfies the above with a proper subset of C in place
of C. In that case we call C the set of singularities of F . Let Br(D) denote
the set of all maximal functions defined in D with possible singularities. As
shown in [32] every function F with possible singularities has a unique maxi-
mal extension (that we can identify with F ) and the set Br(D) is an integral
domain. By a branch of G(s)w, where w ∈ C and G is a function regular in
D with all zeros contained in some half-plane <s ≤ σ1, we mean any func-
tion of the form ewh(s), where h(s) is a function defined in D with possible
singularities such that eh(s) = G(s) identically. We denote by Hol(D) the
ring of functions holomorphic in D and by HolC(D) the subring of Br(D)
generated by Hol(D) and by (all) branches of functions of the form G(s)w.

Theorem 3.1 ([32]). Let T > 0 and let D be a region containing the set

{s ∈ C : <s ≥ 1/2, |=s| ≥ T} ∪ {s ∈ C : <s > 1, |=s| ≤ T}.
Let F1, . . . , Fn ∈ S with logF1, . . . , logFn linearly independent over Q and
let P ∈ HolC(D)[X1, . . . , Xn] with degP > 0. Then the function f(s) =
P (logF1(s), . . . , logFn(s), s) has infinitely many singularities in D with
<s ≥ 1/2.

Let f : (0,∞) → R be a function with locally bounded variation satis-
fying f(x) = (f(x − 0) + f(x + 0))/2 for all x ∈ (0,∞). We recall that the
Mellin transform [40] of f , defined as

F (s) =

∞�

0

f(x)x−s−1 dx,

is absolutely convergent in the strip {s ∈ C : σ1 < <s < σ2}, where σ1 =
inf{σ : f(x) = O(xσ), x → ∞} and σ2 = sup{σ : f(x) = O(xσ), x → 0+}.
In [33] the author has defined F to be weakly bounded if −∞ < σ1 < σ2 ≤ ∞
and it satisfies conditions equivalent to:

(i) F has an extension to some region containing the strip

(3.1) {s ∈ C : σ0 ≤ <s ≤ σ1}
for some σ0 < σ1, with possible singularities of the form

F (s) =
m∑
j=1

(s− ρ)−bj (log(s− ρ))cjhj(s),

where bjs are complex numbers, cjs are non-negative integers and
each hj is regular in a neighbourhood of ρ,

(ii) the set of singularities C is contained in (3.1),
(iii) for some integer-valued functionm(ρ) supported on C, withm(ρ)>0

for all ρ ∈ C \R, and for N(T ) =
∑

0≤=ρ≤T m(ρ), we have N(T +1)

−N(T ) = O(log T ) for all T ≥ 2, and
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(iv) there exist numbers a,M > 0 such that for every s = σ + it ∈ D
with σ > σ0 and t ≥ 2 there is at least one branch of F satisfying

F (s)� tM exp
(
a
∑
|γ−t|≤1

m(ρ)
∣∣log |s− ρ|∣∣),

where the sum is taken over all ρ = β+ iγ ∈ C satisfying |γ− t| ≤ 1.

Let C0 be a contour of integration starting at a point θ > σ0, going just
below the real line, around any singularities of F on [σ0, σ1], crossing the
real line to the right of σ1, and then going just above the real line, back to
the beginning. Then

M(x) =
1

2πi

�

C0

xsF (s) ds

is called the main term of f(x) and E(x) = f(x)−M(x) the error term [10,
14, 33]. We say that E(x) has oscillations of logarithmic frequency and size
g(x) if there exists a sequence xn ↗∞ such that

(−1)nE(xn)� g(xn), log xn � n and log xn+1 ∼ log xn.

The main result in [33] implies the following.

Theorem 3.2 ([33, Corollary to Theorem 1.1]). Let f(x) be a real func-
tion with weakly bounded Mellin transform F (s), and let D and θ be as above.
If the function F (s) has a singularity at ρ = β+ iγ ∈ D, γ 6= 0, θ < β < σ2,
then the error term of f(x) has oscillations of logarithmic frequency and size
xβ(log x)−M for some M ∈ R.

Finally the following result is useful when showing the existence of a
singularity at a particular point.

Lemma 3.3 ([30, Lemma 5]). Let F be a function of the form

F (s) =
N∑
i=1

(s− ρ)wiPi(log(s− ρ))

where N ≥ 0, wi ∈ C, ρ ∈ C, and Pi are polynomials with coefficients regular
in the neighbourhood of ρ. Then F can be uniquely represented in the form

F (s) =

N ′∑
j=1

(s− ρ)w
′
jQj(log(s− ρ))

with N ′, w′j, and Qj being as m, wj and Pj above, but w′j pairwise non-
congruent modulo Z and the coefficients of Qj not all 0 at ρ. Each w′j is
congruent modulo Z to one of the wis.
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4. Ω-sets in L-semigroups

4.1. Ω-sets in semigroups with divisor theory. We use some com-
binatorial tools from [34], but we phrase them in another language to make
their application straightforward. For Y ∈ Cl(S), U ⊆ G0, and α : G0 → N0

such that α(X) = 0 for all X ∈ U , let

Ω(U,α) = {a ∈ F(P) : ΩX(a) = α(X) for all X ∈ G0 \ U}
and

ΩY (U,α) = Y ∩Ω(U,α).

A subset A ⊆ F(P) is called an Ω-set if the value of the characteristic
function of A on a depends only on the values of ΩX(a), X ∈ G0. The
rank of A, denoted rkA, is the smallest number r such that A is contained
in a finite union of sets of the form ΩY (U,α) with |U | ≤ r. In addition
rk ∅ = −∞. The degree of A, denoted degA, is the supremum of all values
of
∑

X α(X) over Y,U, α such that

rk(ΩY (U,α) ∩A) = rkA.

The number of layers of A is the maximum length l = l(A) of an interleaved
chain of divisors a1 | b1 | a2 | b2 | · · · | bl−1 | al in F(P), all having the same
class in Cl(S) and such that a1, . . . , al ∈ A and b1, . . . , bl−1 /∈ A. Finally, the
in-class divisor closure of A is

Div(A) = {d ∈ F(P) : d | a for some a ∈ A, [d] = [a]}.
In case A ⊆ ϕ(S) the set A1 = ϕ−1(A) ⊆ S is also called an Ω-set. The
rank, degree and other properties of A1 are defined to be those of A.

Proposition 4.1 ([34]). Let A be a non-empty Ω-set. We have l(A)<∞
if and only if the characteristic function of A can be represented in the form

(4.1) A =

n∑
j=1

γj ·ΩYj (Uj , αj),

where sets are tacitly identified with their characteristic functions, the sets
ΩYj (Uj , αj) are non-empty and pairwise distinct, Yj∈Cl(S), and γj∈Z\{0}
(j = 1, . . . , n). The representation (4.1) is then unique up to order and we
have

rkA = max
j
|Uj |, degA = max

j: |Uj |=rkA

∑
X∈G0

αj(X),

and γj0 = 1 whenever ΩYj0
(Uj0 , αj0) is inclusion-maximal among all the

ΩYj (Uj , αj).

If A is an Ω-set with l(A) < ∞, r ∈ N0 and d ∈ N, then we say that
A is (r, d)-singular if the unique representation (4.1) satisfies the following
conditions:
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(i) There is at least one j such that

(4.2) |Uj | = r and
∑
X

αj(X) = d.

(ii) The sign of γj is the same for every j satisfying (4.2).
(iii) For each j not satisfying (4.2) we have |Uj | < r or

∑
X αj(X) < d.

The absolute degree of A, for l(A) <∞, is defined based on (4.1) as

deg0(A) =

{
maxj

∑
X∈G0

αj(X), A 6= ∅,
0 A = ∅.

Theorem 4.2 ([34]). Let A be an Ω-set such that Div(A) = A. Then A
is (r, d)-singular for some r ≥ 0 and d > 0 if and only if deg0(A) > 0.

4.2. The counting function of an Ω-set. We let χ and ψ denote char-
acters of Cl(S) and number these characters as χ0, . . . , χh−1. Let Fχ(s) =
fχ(s)

−1L(s, χ), χ ∈ Cl(S), and Fi(s) = Fχi(s), i = 0, . . . , h− 1. We assume,
as we may, that the numbering of characters is such that χ0 is the principal
character and logF0(s), . . . , logFu(s), for some u ≤ h− 1, is a maximal lin-
early independent (over Q) subset of logF0(s), . . . , logFh−1(s). We also use
shorthand notation

l0(s) = (logF0(s), . . . , logFu(s)),

l1(s) = (logF1(s), . . . , logFu(s)),

l2(s) = (logF0(s), . . . , logFu(s), logF0(2s), . . . , logFu(2s)).

Suppose θ ∈ (2/5, 1/2) is sufficiently close to 1/2 so that all the fχ(s) are
absolutely convergent and non-zero in σ ≥ θ. We denote by A the ring of
Dirichlet series absolutely convergent in σ > θ. We write, e.g., P (l2(s), s)
for the value at s of a polynomial P ∈ A[x0, . . . , x2u+1] applied to these
logarithms. Let 〈χ |U〉 = 1

h

∑
X∈U χ(X). For any set A ⊆ F(P) we can

define its zeta functions as

Z(s,A) =
∑
a∈A

N(a)−s, σ > 1,

Z(s, χ,A) =
∑
a∈A

χ(a)N(a)−s, χ ∈ Cl(S), σ > 1.

We extend the notation Z(s,A) also to subsets of other semigroups with a
norm.

Lemma 4.3. Suppose S is simple.

(i) Each class X ∈ Cl(S) contains infinitely many prime divisors.
(ii) For Y ∈ Cl(S), U ⊆ Cl(S), α : Cl(S) → N0 with α|U = 0, and

X0 =
∏
X/∈U X

α(X) the set ΩY (U,α) is non-empty if and only if
X0Y

−1 ∈ 〈U〉.



Ω-sets in arithmetical semigroups 189

(iii) Under the notation of (ii) we have

Z(s,ΩY (U,α)) =
(∏
X/∈U

PX,α(X)(l2(s), s)
)

· 1
h

∑
χ

χ(X0Y
−1)
(∏
X∈U

HX,χ(X)(s)
)
GU,χ(s), σ > 1,

where

GU,χ(s)=
∏
ψ

L(s, ψ)〈χψ
−1|U〉L(2s, ψ)

1
2
〈χ2ψ−1|U〉L(2s, ψ2)−

1
2
〈χψ−2|U〉,

χ ∈ Ĉl(S),

the function HX,z(s) (for z ∈ C, |z| ≤ 1) is such that logHX,z(s) is
in A, and PX,m ∈ A[x0, . . . , x2u+1] (for m ∈ N0) is a polynomial of
degree m, with the coefficient of xm0 equal to 1

hmm! . We have

(4.3) lim
σ→1+

(∏
X∈U

HX,1(σ)
)
GU,χ0(σ)(σ − 1)|U |/h ∈ (0,∞).

(iv) Under the notation of (iii), for every U ⊆ Cl(S) we have

Z(s,Ω(U, 0)) =
(∏
X∈U

HX,1(s)
)
GU,χ0(s), σ > 1.

Proof. We have Z(s,ΩY (U,α)) = 1
h

∑
χ χ(Y )Z(s, χ,Ω(U,α)) and, for

every χ ∈ Ĉl(S),

(4.4) Z(s, χ,Ω(U,α)) =
(∏
X∈U

ZX(s, χ(X))
)(∏

X/∈U

χ(X)α(X)ZX,α(X)(s)
)
,

where

ZX(s, z) =
∑

a∈F(P)
p|a⇒p∈X

zΩ(a)N(a)−s, σ > 1,

and

ZX,m(s) =
∑

a∈F(P)
p|a⇒p∈X
Ω(a)=m

N(a)−s, σ > 1.
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Let PX(s) =
∑

p∈P∩X N(p)−s, σ > 1, X ∈ Cl(S). We have (cf. [12]),

PX(s) =
1

h

∑
χ

χ(X)

∞∑
k=1

µ(k)

k
logL(ks, χk)(4.5)

=
1

h

∑
χ

χ(X)
(
logL(s, χ)− 1

2 logL(2s, χ
2)
)
+R1,X(s)

=
1

h

∑
χ

χ(X)
(
logFχ(s)− 1

2 logFχ2(2s)
)
+R2,X(s),

for some R1,X(s), R2,X(s) ∈ A. This implies (i) and (ii). We have

ZX(s, z) =
∏

p∈P∩X

1

1− zp−s
, σ > 1, |z| ≤ 1,

hence

logZX(s, z) =
∞∑
m=1

zm

m
PX(ms), σ > 1, |z| ≤ 1

and

ZX(s, χ(X))

=
(∏
ψ

L(s, ψ)
1
h
χψ−1(X)L(2s, ψ)

1
2h
χ2ψ−1(X)L(2s, ψ2)−

1
2h
χψ−2(X)

)
FX,χ(X)(s),

σ > 1,

where

logHX,z(s) = zR1,X(s) +
z2

2

(
PX(2s)−

1

h

∑
χ

χ(X) logL(2s, χ)

)

+
∞∑
m=3

zm

m
PX(ms), σ > 1, |z| ≤ 1,

hence logHX,z(s) ∈ A. We also obtain

(4.6) ZX,m(s)

=
∑
k≥0

1

k!

∞∑
m1=1

. . .

∞∑
mk=1

m1+···+mk=m

1

m1 . . .mk
PX(m1s) . . . PX(mks), σ > 1.

The semigroup S is simple, so each logL(s, χj) for j = u+ 1, . . . , h− 1 is a
linear combination of logL(s, χ1), . . . , logL(s, χu) (i.e. without logL(s, χ0))
because of the behaviour at 1. Hence, substituting PX(mis) in (4.6) us-
ing (4.5) we get

ZX,m(s) = PX,m(l2(s), s),
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where PX,m is a polynomial with the properties stated in (iii). The limit
(4.3) is non-zero and finite, hence it is positive, because(∏

X∈U
HX,1(σ)

)
GU,χ0(σ) = ζ(σ,Ω(U, 0)) > 0, σ > 1.

We have shown (iii) and, substituting Z(s,Ω(U,α)) = Z(s, χ0,Ω(U,α)) in
(4.4), also (iv).

Lemma 4.3 and Proposition 4.1, by the classical Tauberian theorem of
Delange and Ikehara (cf. also the formulation by Geroldinger and Halter-
Koch [7, Theorem 8.2.5]), imply the following.

Corollary 4.4. If S is a simple L-semigroup and A ⊆ F(P) is a non-
empty Ω-set with l(A) <∞, then the counting function of A satisfies

A(x) � cx(log x)rk(A)/h−1(log log x)d,
where

d =

{
degA, rkA > 0,
degA− 1, rkA = 0,

and c > 0 depends only on A. If, in addition, S satisfies (NVC) on the line
<s = 1, then � may be replaced with ∼.

4.3. Oscillations of the counting function

Lemma 4.5. Suppose S is a simple L-semigroup and A ⊆ F(P) is a
non-empty Ω-set with l(A) <∞. The zeta function Z(s,A) has an analytic
continuation with possible singularities to an open half-plane containing the
half-plane <s ≥ 1/2. If A is (r, d)-singular for some r ≥ 0 and d > 0, then
Z(s,A) has a singularity outside the real line in the half-plane <s ≥ 1/2.

Proof. The first part follows from Lemma 4.3 and Proposition 4.1. Sup-
pose A is (r, d)-singular. Using the unique representation (4.1) and Lem-
ma 4.3 we have

Z(s,A) =

n∑
j=1

γj ·
( ∏
X/∈Uj

PX,αj(X)(l2(s), s)
)

· 1
h

∑
χ

χ(Xj)
( ∏
X∈Uj

FX,χ(X)(s)
)
GUj ,χ(s),

where Xj =
∏
X/∈U X

αj(X)Y −1j ∈ 〈U〉, j = 1, . . . , n. Clearly
Z(s,A) = P (l0(s), s)

for some P ∈ HolC(D′)[x0, . . . , xu] where D′ = D \ [2/5, 1/2]. Let PX,m,1 ∈
Hol(D′)[x0, . . . , xu] denote the polynomial obtained from PX,m by substitut-
ing the functions logF0(2s), . . . , logFu(2s) for the variables xu+1, . . . , x2u+1.
Let P (d) ∈ HolC(D′)[x1, . . . , xu] and P

(d)
j ∈ Hol(D′)[x1, . . . , xu] denote the
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coefficients of xd0 in the polynomials P and
∏
X/∈Uj

PX,αj(X),1, respectively.
We have

P (d)(l1(s), s) =

n∑
j=1

γj
h
P

(d)
j (l1(s), s)

∑
χ

χ(Xj)
( ∏
X∈Uj

HX,χ(X)(s)
)
GUj ,χ(s).

Since A is (r, d)-singular, we can write {1, . . . , n} = I1∪I2∪I3, where I1 is the
set of all j such that

∑
X αj(X) < d, I2 is the set of all j ∈ {1, . . . , n} such

that |Uj | < r, and I3 is the set of all j such that |Uj | = r and
∑

X αj(X) = d.
Let ω ∈ {1,−1} match the sign of γj for j ∈ I3 (all these signs are equal by
the definition of (r, d)-singular sets). We have P (d)

j = 0 for j ∈ I1. For every
j, X and χ the function P (d)

j (l1(s), s) is bounded close to s = 1 and we have

HX,χ(X)(s) ∼ 1, s→ 1,

GUj ,χ(s) ∼ (s− 1)−〈χ|Uj〉, s→ 1.

For j ∈ I2 and arbitrary χ, as well as for j ∈ I3 and U * kerχ, we have
〈χ |Uj〉 < r/h, so

lim
σ→1+

P
(d)
j (l1(σ), σ)

( ∏
X∈Uj

HX,χ(X)(σ)
)
GUj ,χ(s)(σ − 1)r/h = 0.

Finally, for j ∈ I3 and Uj ⊆ kerχ we have χ(Xj) = 1, ωγj > 0, P (d)
j =∏

X/∈Uj
(hαj(X)αj(X)!)−1 (a constant), and GUj ,χ = GUj ,χ0 . The number of

such χ for a given Uj is h/|〈Uj〉|. We obtain

lim
σ→1+

ωP (d)(l1(σ), σ)(σ − 1)r/h

=
∑
j∈I3

ωγjP
(d)
j

|〈Uj〉|
lim
σ→1+

( ∏
X∈Uj

HX,1(σ)
)
GUj ,χ0(σ)(σ − 1)r/h > 0,

so P (d) cannot vanish identically, and thus degP ≥ d > 0. By Theorem 3.1
the function Z(s,A) has the required singularity.

Lemma 4.6. Let S ⊆ F(P) be a simple L-semigroup and A ⊆ F(P) an
Ω-set with l(A) <∞. Then the Mellin transform s−1Z(s,A) of the function
1
2(A(x− 0) +A(x+ 0)) is weakly bounded.

Proof. Let (4.1) be the unique representation of A. Let σ0 ∈ (2/5, 1/2)
be sufficiently close to 1/2 so that all the fχ(s) are absolutely convergent
and non-zero in σ ≥ σ0 and L(s, χ)L(2s, χ) has no zeros on the segment
[σ0, 1/2), χ ∈ Ĉl(S). Let C denote the set of all zeros and poles of L(ns, χ)
for σ0 ≤ σ ≤ 1, χ ∈ Ĉl(S), n = 1, 2. Let D ⊆ C be a region containing the
strip σ0 ≤ σ ≤ 1, contained in the strip 2/5 ≤ σ ≤ 1, and not containing
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any zeros of L(ns, χ) for 2/5 ≤ σ < σ0, χ ∈ Ĉl(S), n = 1, 2. The assertion
follows from Proposition 4.1 and Lemmas 2.1, 2.2 and 4.3.

Theorem 4.7. Let S ⊆ F(P) be a simple L-semigroup and A ⊆ F(P)
an Ω-set with l(A) <∞. If A is (r, d)-singular for some r ≥ 0, d > 0, then
the error term of the counting function of A has oscillations of logarithmic
frequency and size

√
x(log x)−M for some M > 0.

Proof. By Theorem 3.2 and Lemma 4.6, it suffices to show that s−1Z(s,A)
has a singularity in the half-plane σ ≥ 1/2, not on the real line. This, in turn,
follows from Lemma 4.5.

5. Applications

5.1. Proof of Theorem 1.1. We recall that G0 ⊆ Cl(S) denotes the
set of classes that contain prime divisors. The sets Gk are closely related
to so-called half-factorial subsets of G0. One of the equivalent definitions
of a half-factorial set U ⊆ G0 is that we should have ΩE(U, 0) ⊆ G1 (cf.,
e.g., Skula [37], Śliwa [38] and, for the modern terminology, Geroldinger and
Halter-Koch [7]). We have the following.

Theorem 5.1 ([34]). Let k be a positive integer. The set Gk is (r, d)-
singular for some r ∈ N0 and d ∈ N if and only if the set G0 is not half-
factorial.

Since S is a simple L-semigroup, we have G0 = Cl(S) by Lemma 4.3.
As shown by Carlitz [2] and, in greater generality, by Skula [37, Proposition
3.2], in this case G0 is half-factorial if and only if h ≤ 2. Hence Theorem 5.1
implies the assertion.

5.2. Elements without divisors in a given Ω-set. Let F ⊆ F(P)
denote a non-empty Ω-set. Then the set

(5.1) A = F(P) \ FF(P),

i.e. the set of elements of F(P) without divisors in F , is also an Ω-set. Let
Fmin denote the set of minimal elements (with respect to division) of F .

Theorem 5.2 ([34]). If F ⊆ F(P) is an Ω-set, then the set (5.1) is
(r, d)-singular for some r ∈ N0 and d ∈ N if and only if

(5.2) max
b∈Fmin

max
X

ΩX(b) > 1.

Corollary 5.3. If S is a simple L-semigroup and F ⊆ F(P) is an
Ω-set such that (5.2) holds, then the error term of the counting function
of (5.1) has oscillations of logarithmic frequency and size

√
x(log x)−M for

some M > 0.
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5.3. Ideals without divisors in a given arithmetic progression.
Let K be an algebraic number field, OK its ring of integers, and ζK(s) the
Dedekind zeta function. Let a, q be non-zero integral ideals of OK . We write
a′ ≡ a (mod q) if, for some totally positive a, a′ ∈ OK with a ≡ a′ ≡ 1
(mod q) we have aa = a′a′. In particular, when a is relatively prime to q,
this congruence is equivalent to a′ being in the class [a] of H∗q (K). We say
that an ideal b ∈ I(OK) has no non-trivial divisors congruent to a modulo
q if for every a′ ≡ a (mod q) with a′ 6= gcd(a, q), we have a′ - b. Let B(a, q)
denote the set of all ideals b ∈ I(OK) that have no non-trivial divisors
congruent to a modulo q.

Theorem 5.4. Let a, q ∈ I(OK), d = gcd(a, q), a1 = d−1a, and f =
d−1q. Let S be the generalized Hilbert semigroup modulo f. If

(i) [a1] = E and |Cl(S)| ≥ 2, or
(ii) [a1] 6= E and Cl(S) � C(2)m, m ∈ N, or
(iii) [a1] 6= E and there exist some χ ∈ Ĉl(S) and a simple zero ρ of

L(s, χ) such that ρ ∈ C \ R, <ρ ≥ 1/2, χ([a1]) 6= 0, and

L(ρ, ψ) 6= 0, ψ ∈ Ĉl(S) \ {χ},

then the error term of the counting function of the set B = B(a, q) has
oscillations of logarithmic frequency and size

√
x(log x)−M for some M > 0.

Proof. We have B=I(OK)\dFI(OK), where F =[a1]\{OK} if [a1] = E,
and F = [a1] otherwise. Hence

(5.3) Z(s,B) = (1−N(d)−s)ζK(s) +
∏
p|f

(1−N(p)−s)−1Z(s,A),

where A = F(P) \ FF(P). It follows from (5.3) and Lemma 4.6 that the
counting function of B has a weakly bounded Mellin transform, so by Theo-
rem 3.2 it suffices to show that the function Z(s,B) has a singularity outside
the real line in the half-plane <s ≥ 1/2. If (5.2) is satisfied, then the set A
is (r, d)-singular for some r ≥ 0 and d > 0 by Theorem 5.2, so, by (5.3) and
Lemma 4.5, an appropriate singularity exists and the assertion follows. We
check the condition (5.2) in several cases.

Case 1: [a1] = E, h ≥ 2. Then F = E \ {OK}, so Fmin is equal to the
set A(S) of irreducibles of S. If p ∈ P and X = [p] is of order m > 1, then
pm ∈ A(S) and ΩX(pm) = m, so (5.2) holds.

Case 2: [a1] 6= E and Cl(S) ∼= C(2)m for some m ∈ N. Then F = [a1].
Suppose b ∈ F and p, q ∈ P are such that [p] = [q] and pq | b. Then
[(pq)−1b] = [b], so (pq)−1b ∈ F . Hence we have ΩX(b) ≤ 1 for all b ∈ Fmin

and X ∈ Cl(S), i.e. (5.2) fails.
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Case 3: [a1] 6= E and Cl(S) � C(2)m, m ∈ N. Then F = [a1] again. If
[a1] is a square in Cl(S), then we can find some r ∈ P such that [r]2 = [a1],
so r2 ∈ Fmin and (5.2) holds. Otherwise let X ∈ Cl(S), Y = X−2[a1], and
let p ∈ P ∩X and q ∈ P ∩ Y . We have p2q ∈ Fmin (implying (5.2)) if and
only if X,Y,X2, XY 6= E, i.e. {X,X2}∩{E, [a1]} = ∅, for which a sufficient
condition is

(5.4) X2 /∈ {E, [a1]2},

since [a1] is not a square. Such an X may always be found when Cl(S) has
an element of order ≥ 5, so suppose

Cl(S) ∼= C(2)a ⊕ C(4)b ⊕ C(3)c, b+ c > 0.

The number of squares in this group is 2b3c, so if 2b3c > 2, then again we
can find X satisfying (5.4). Otherwise b = 1 and c = 0. If ord [a1] = 4, then
r3 ∈ Fmin for r ∈ P ∩ [a1]

−1, so (5.2) holds again. Otherwise ord [a1] = 2, so
(5.4) holds for any X of order 4.

It remains to consider Case 2 when the assumption (iii) holds for some
χ and ρ. Similarly to [1] and [28, proof of Lemma 7] we have

(5.5) A =

m⋃
i=1

Ω(Hi, αi),

where, for every i = 1, . . . ,m, the setHi is a subgroup of Cl(S) not containing
[a1], αi : Cl(S) → N0, αi|Hi = 0, and the set Ω(Hi, αi) is non-empty and
inclusion-maximal in (5.5). By the inclusion-exclusion principle we obtain

A =

n∑
j=1

γj ·Ω(Uj , βj)

for some integer γj , Ω(Uj , βj) 6= ∅, βj : Cl(S)→ N0, all Uj pairwise distinct,
each Uj equal to an intersection of one or more of the Hi, and, whenever
Uj = Hi for some i, j, we have γj = 1 and βj = αi. As each set Ω(Uj , βj) is
a union of disjoint sets of the form ΩX(Uj , βj), it follows that

deg0(A) ≥ max
1≤i≤m

∑
X

αi(X).

Since (5.2) is false and Div(A) = A, Theorems 4.2 and 5.2 imply

deg0(A) = 0,

so that all the αis and βjs must be zero. If H ⊆ Cl(S) is a subgroup with
[a1] /∈ H, then Ω(H, 0) ⊆ A. Consequently the His are all the inclusion-
maximal subgroups of Cl(S) not containing [a1]. We have | kerχ| = 2m−1, so
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kerχ is one of the Hi, say kerχ = H1. By the final assertion of Lemma 4.3
we have

Z(s,A) =
n∑
j=1

γj

( ∏
X∈Uj

HX,1(s)
)
GUj ,χ0(s)

and GUj ,χ0(s) = (s− ρ)〈χ−1|Uj〉Gj(s) for some Gj(s) non-zero and regular in
a neighbourhood of ρ, j = 1, . . . , n. We have

〈χ−1 |Uj〉 =
{
|Uj |/2m, Uj ⊆ kerχ,
0 otherwise,

hence 〈χ−1 |U1〉 = 1/2 and 〈χ−1 |Uj〉 ∈ [0, 1/4] for j = 2, . . . ,m. It fol-
lows from Lemma 3.3 that Z(s,A) has the required singularity, and so does
Z(s,B).

5.4. Proof of Theorem 1.2. Let f = q/gcd(a, q). We apply Theo-
rem 5.4 with K = Q, a = aZ and q = qZ, so S is the Hilbert semigroup
modulo f . The assertion follows directly except for the case Cl(S) ∼= Φ(f)
∼= C(2)m, m ∈ N, where Φ(f) denotes the group of units of the ring Z/fZ.
In that case we have f ∈ {3, 4, 6, 8, 12, 24}. Let χ1 denote the primitive
Dirichlet character modulo 3, χ2 the primitive character modulo 4, and χ3

the primitive odd character modulo 8. With the help of the PARI/GP [39]
system, the ComputeL package by Dokchitser [4], and some scripts of the
present author [29], we can find ρ1, ρ2, ρ3 such that for each i = 1, 2, 3 the
number ρi is a simple zero of L(s, χi), =ρi 6= 0, <ρi ≥ 1/2, and L(ρi, ψ∗) 6= 0
for all characters ψ modulo 24, with ψ∗ 6= χi, for example:

ρ1 ≈ 1/2 + 8.03973715568146i,

ρ2 ≈ 1/2 + 6.02094890469760i,

ρ3 ≈ 1/2 + 3.57615483678759i.

We have kerχ1 = {1} in Φ(3) and in Φ(6), and kerχ2 = {1} in Φ(4), hence
also kerχ1 ∩ kerχ2 = {1} in Φ(12). Similarly kerχ2 ∩ kerχ3 = {1} in Φ(8)
and kerχ1 ∩ kerχ2 ∩ kerχ3 = {1} in Φ(24). Therefore the hypotheses of
(iii) in Theorem 5.4 are satisfied for f ∈ {3, 4, 6, 8, 12, 24} and the assertion
follows again.
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