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Cohomology groups of the class groups over a Zp extension

by

Soogil Seo (Seoul)

1. Introduction. Since Kummer found the class number formula for
the maximal real subfield of the pth cyclotomic field Q(µp) the relations
between the class groups and the quotient groups of the global units by the
cyclotomic units have been a subject of study for a long time. The arguments
of Euler systems (cf. [10], [12], [13]) by Kolyvagin and Rubin established a
strong tie between these two objects.

The purpose of this short note is to study the relations of the coho-
mology groups of certain Galois groups with coefficients in the class groups
and those of the quotient of the units modulo cyclotomic units. Even if the
Galois module of a class group and the quotient of the units modulo cyclo-
tomic units need not be isomorphic, the cohomology groups are shown to
be isomorphic over the Zp extension Q(µp∞).

The cohomology groups of the “p-primary parts” of ideal class groups
and those of the quotients of global units modulo cyclotomic units (together
with their own cohomology groups) over the basic Zp extension have been
studied for many years. Specially Iwasawa gave many interesting results on
the cohomology groups on these objects over Zp extensions (cf. [5]–[7]).

Using a result of Iwasawa and the computations of the cohomology
groups of circular units due to R. Gold and J. Kim (cf. [3], [8]) we will
show the following theorem. Let µn be the set of nth roots of unity in a
fixed algebraic closure Qalg of the rational field Q, and ζn ∈ µn be a primi-
tive nth root of unity. Let Cln be the class group of Kn := Q(ζpn +ζ−1

pn ). Let
En, Cn be the group of units and cyclotomic units of Kn respectively. Fi-
nally, let Hi(G, M) denote the Tate cohomology group of G with coefficients
in a G-module M .

Theorem 1.1. Let P be a p-subgroup of G(Kn/Q). Then

Hi(P, Cln) ≃ Hi(P, En/Cn) for all i and n.
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For the cohomology groups of “prime-to-p parts” we start with a result
of Schoof. In his recent paper [14], Schoof showed that the cohomology
groups of these two objects are isomorphic for the maximal real subfield
K1 = Q(ζp + ζ−1

p ) of the pth cyclotomic field. More precisely, let p > 2 be
a prime and H be a subgroup of the Galois group G(K1/Q). Let E1, C1 be
the units and cyclotomic units of K1, and Cl1 the class group of K1. Then
Schoof’s result (§5 of [14]) states that for each choice of a generator of H
there are natural isomorphisms

Hi(H, Cl1) ≃ Hi(H, E1/C1) for each i.

We extend his method to the maximal real subfield Kn of the pnth cyclo-
tomic field. We will prove the following theorem.

Theorem 1.2. Let H be a subgroup of G(Kn/Q) with order #(H) prime

to p. Then
Hi(H, Cln) ≃ Hi(H, En/Cn) for all i and n.

As an immediate corollary of Theorems 1.1 and 1.2, we have

Corollary 1.3. Let G be any subgroup of G(Kn/Q). Then

Hi(G, Cln) ≃ Hi(G, En/Cn) for all i.

We have recently been informed that the result above when Kn has
prime power conductor and G is a Sylow subgroup of G(Kn/Q) has already
appeared in the paper by Greither and Cornacchia (cf. [2]). Their approach,
which we think is more elegant, is different from ours which is elementary
and computational.

Let K∞ be the basic Zp extension of K1. Let Gn = G(Kn/Q) and
G∞ = G(K∞/Q). Let E∞, C∞, Cl∞ denote the inverse limits of En, Cn, Cln
respectively with respect to the norm maps. As an immediate corollary we
obtain the following

Corollary 1.4. For all i, we have the lim
←−

Z[Gn]-module isomorphism

Hi(G∞, Cl∞) ≃ Hi(G∞, E∞/C∞).

In §2 we start with the basic arithmetic of cyclotomic units, which will
be used in the subsequent section. The arithmetic of cyclotomic units is
essential to compute the cohomology groups of certain Galois groups with
coefficients in the cyclotomic units. In order to compute the cohomology of
certain Galois groups with coefficients in class groups we need to recall the
basic tools of class field theory. In the computation of the cohomology of the
prime-to-p parts, the key ingredient is Schoof’s method which combines the
arithmetic of cyclotomic units with classical class field theory which gives
information on the class groups together with the class number formula. In
§3 we will prove our theorems.
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2. Basic arithmetic of cyclotomic units. We begin with the notion
of cyclotomic units (cf. [1], [16] and [17]), which will play a crucial rule in our
arguments. Let p denote a fixed odd prime. As defined in the introduction,
let Kn be the maximal real subfield of the cyclotomic field Q(µpn). The group
C(pn) of cyclotomic numbers of Q(µpn) is defined to be the multiplicative
group generated over Z by

{±ζpn , 1− ζa
pn | 1 ≤ a ≤ pn − 1}.

One can show that C(pn) is equal to the group generated as Galois module
of the group ring Z[G(Q(µpn)/Q)] by 1 − ζpn . We define the group Cn of
cyclotomic or circular units of Kn to be the intersection of the group En of
units of Kn with C(pn),

Cn = En ∩ C(pn).

This group Cn can be shown to be equal to the group generated by −1 and
the units of the following forms:

ζ1−a
pn

1− ζ2a
pn

1− ζ2
pn

, 1 < a < pn/2, (a, p) = 1.

Let σ denote a fixed generator of the Galois group G(Q(µpn)/Q). We can
associate to σ a primitive root g modulo pn with σ(ζpn) = ζg

pn . The σ induces
a natural generator of the Galois group of G(Kn/Q) which will be denoted
by the same σ if no ambiguity can arise. By a direct computation, one can
show that Cn is generated as Galois module of the group ring Z[G(Kn/Q)]
by

η := (ζpn − ζ−1
pn )σ−1 =

σ(ζpn − ζ−1
pn )

ζpn − ζ−1
pn

.

We have the following lemma on the cohomology groups with coefficients
in the group of cyclotomic units. We will use mainly the fact that the zeroth
Tate cohomology of the circular units vanishes. For an abelian extension
L/K we denote by NL/K the norm map from L to K.

Lemma 2.1. Let G be any subgroup of G(Kn/Q). Then Hi(G, Cn) = 0
for all even i. If G is either a p-subgroup or #(G) is a prime number then

the order of Hi(G, Cn) is equal to #(G) for all odd i.

Proof. It follows from the above argument that

Cn/{±1} = (ζpn − ζ−1
pn )(σ−1)Z[G(Kn/Q)] ≃ IG(Kn/Q),

where IG(Kn/Q) denotes the augmentation ideal (σ − 1)Z[G(Kn/Q)] of the

group ring Z[G(Kn/Q)]. By the well known fact that H0(G, IG(Kn/Q)) = 0
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we have a surjection

H0(G, {±1})→ H0(G, Cn)→ 0.

We will use the following convenient notation. Let (s, p) = 1. We denote by
σs the element of G(Q(µpn)/Q) such that σs(ζpn) = ζs

pn . We will use the
same notation for a subfield if no confusion can arise. One sees easily that
the norm NKn/Q of η is equal to −1,

NKn/Q(η) = (ζpn − ζ−1
pn )(σ−1)

∑(p−3)/2
i=0 σi

= (ζpn − ζ−1
pn )(σ−1−1) = −1,

by taking σ(p−1)/2 = σ−1 into account. This shows that the norm map NG of
G has the value −1 at η1+σ+···+σa−1

where a = #(G(Kn/Q)/G). It follows
that the above surjection is trivial and H0(G, Cn) vanishes.

Suppose now that #(G) is a prime number. As En/Cn is finite, the
Herbrand quotient of Cn is equal to that of En which is equal to 1/#(G).
Hence in this case #(Hi(G, Cn)) = #(G) for all odd i. Finally, if G is a
p-group then the conclusion follows from Theorem 2 of [8]. This completes
the proof.

Remark. Note that if G is a p-group then the first cohomology groups
H1(G, C(n)) of G with coefficients in the circular units C(n) of the nth cy-
clotomic field Q(µn) (not of Kn) are more explicitly known from the concrete
computations (cf. [3], [8]):

H1(G, C(n)) ≃ Z/gZ,

where #(G) = g. Notice also that in general C(n) is not equal to Cn.

We briefly recall class field theory which will be used later. Let L/K be
a cyclic extension of either local or global fields. Let AL denote the multi-
plicative group L× or the idele class group IcL according as the extension
is local or global. Then class field theory tells us there is an isomorphism
(Artin map)

(1) Hi(G(L/K), AL) ≃

{

G(L/K) if i is even,

0 if i is odd.

Let L/K be an abelian extension of local fields. The inertia group I(L/K)
of G(L/K) has an isomorphism via class field theory,

(2) I(L/K) ≃ H0(G(L/K), UL),

where UL denotes the group of local units of L. Let P be the prime of L
over p ∈ K, and fP the residue field of P. Let U i

L denote the group of all
elements u of UL which are 1 modulo Pi.

If L/K is an unramified extension then it follows from the isomor-
phism U i−1

L /U i
L ≃ fP for i > 1 and a filtration of U1

L by U i
L that (see

[15]) Hi(G(L/K), U1
L) = 0 for all i as Hi(G(L/K), fP) = Hi(G(fP/fp), fP)
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= 0. Hence the isomorphism UL/U1
L ≃ f×P yields H1(G(L/K), UL) =

H1(G(L/K), f×P) = H1(G(fP/fp), f
×

P) = 0. Finally, class field theory tells

us that H2(G(L/K), UL) = 0.

If L/K is a totally ramified extension then the Galois group G(L/K)
acts trivially on the residue field fP. In this case one can easily see that
if the order of G(L/K) is prime to p then the Hi(G(L/K), fP) are trivial.
Applying the same reasoning one obtains

(3) Hi(G(L/K), U1
L) = 0 for all i.

It follows from (3) and the cohomology sequence induced from the short
exact sequence of 0→ U1

L → UL → f×P→ 0 that

(4) Hi(G(L/K), UL) ≃ Hi(G(L/K), f×P) for all i.

Note that the isomorphism (4) is induced by the map u 7→ u mod P. Now
we suppose that L/K is equal to Kn,P/Qp where Kn,P denotes the field of
completion of Kn at P, the prime over p, and H is any subgroup of G(L/K)
whose order #(H) = h is prime to p. Then (4) becomes

Hi(H, UL) ≃

{

f×P/(f×P)h if i is even,

µh(f×P) if i is odd,
(5)

where µh(f×P) denotes the set of hth roots of unity in f×P.

Let Un denote the group of unit ideles, which is the subgroup of the idele
group consisting of unit elements at all finite places of Kn. As Kn is unram-
ified at all primes except the prime P, the cohomology group Hi(H, Un) is
isomorphic to Hi(H, UKn,P

), where UKn,P
denotes the group of local units

of Kn,P. It follows from (5) that for all i, Hi(H, Un) is isomorphic to a cyclic
group of order h, more precisely,

Hi(H, Un) ≃

{

f×P/(f×P)h if i is even,

µh(f×P) if i is odd.
(6)

Let α1 : H1(H, Cn) → H1(H, En) and α2 : H1(H, En) → H1(H, Un) be
induced by the natural maps Cn → En and En → Un respectively.

Lemma 2.2. Let H be a subgroup of G(Kn/Q) with #(H) = h prime

to p. Then the composite map α2 ◦ α1 is surjective.

Proof. Put (p − 1)/2h = h′. Let ε = η2(σh′

−1)/(σ−1). Then ε defines a
cocycle of H1(H, Cn). The map α2 ◦α1 can be identified with c 7→ c mod P

for c ∈ Cn via the isomorphism (6). It follows from ε ≡ g2h′

mod (1 − ζpn)
that the image of ε has order h and hence α2 ◦ α1 maps ε to a generator of
H1(H, Un).
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3. Cohomology groups of class groups. Let K(n) be the pnth cyclo-
tomic field Q(µpn) and Cl(n) the ideal class group of K(n). Let E(n), C(n)
be the groups of units and circular units of K(n) respectively. Thus En

and Cn are subgroups of E(n) and C(n) respectively which are fixed under
complex conjugation. Write

G(m, n) := G(K(m)/K(n)) and G(m,n) := G(Km/Kn).

We fix a generator σm,n of G(m, n) ≃ G(m,n). Let Nm,n be the norm map
from Cl(m) to Cl(n) and τn,m the homomorphism from Cl(n) to Cl(m)
induced by the natural injection from the fractional ideals of K(n) to K(m).
Let Nm be the composite map of Nm,n and τn,m,

Cl(m)

Nm $$I

I

I

I

I

I

I

I

I

Nm,n
// Cl(n)

τn,m

��

Cl(m)

Then H1(G(m, n), Cl(m)) can be identified with the kernel of Nm modulo
Cl(m)(σm,n−1). We need the following theorem of Iwasawa.

Theorem 3.1 (Iwasawa [5, Theorem 11]). For m ≥ n ≥ 0,

H1(G(m, n), Cl(m)) ≃ Ker(τn,m).

We first compare the cohomology groups of certain Galois groups with
coefficients in class groups and with coefficients in the quotient of the units
by the circular units when G is a p-group. Very useful is the following the-
orem due to Iwasawa.

Theorem 3.2 (Iwasawa [5, Theorem 13]). For m ≥ n ≥ 0,

H0(G(m, n), Cl(m)) ≃ H0(G(m, n), E(m)),

H1(G(m, n), Cl(m))× Z/pm−nZ ≃ H1(G(m, n), E(m)).

Let ∆ := G(K(1)/Q). Let Ξ be the set of p-adic-valued Dirichlet charac-
ters of ∆. For each χ in Ξ we let Zp(χ) denote the ring generated over Zp by
the values of χ. As p does not divide #(∆) the semisimple group ring Zp[∆]
decomposes into a product of discrete valuation rings, Zp[∆] ≃

∏

χ∈Ξ Zp(χ),
and each Zp[∆]-module M has the corresponding decomposition

M =
∏

χ∈Ξ

(M ⊗Z[∆] Zp(χ)).

We write M(χ) := M ⊗Z[∆] Zp(χ). A character χ is called even or odd

according as χ takes the value 1 or −1 at the complex conjugation. We
denote by Ξ+ the set of all even characters and by Ξ− the set of all odd
characters. Hence the product of Cl(n)(χ) (resp. E(n)(χ), C(n)(χ), etc.)
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over χ in Ξ+ is just the ideal class group (resp. the units, the circular units,
etc.) of Kn,

∏

χ∈Ξ+

Cl(n)(χ) = Cln,
∏

χ∈Ξ+

E(n)(χ) = En,
∏

χ∈Ξ+

C(n)(χ) = Cn.

The objects appearing in Theorems 3.1 and 3.2 are Zp[G(m, n) × ∆]-
modules. As p ∤ #(∆), for any Zp[G(m, n) × ∆]-module M the functor
M 7→M(χ) is exact and hence the short exact sequence of modules

0→ NG(m,n)M →MG(m,n) →MG(m,n)/NG(m,n)M → 0

shows that

0→ NG(m,n)M(χ)→MG(m,n)(χ)→ H0(G(m, n), M)(χ)→ 0.

This proves that the cohomology functor commutes with the χ-functor,

H0(G(m, n), M)(χ) ≃ H0(G(m, n), M(χ)).

In a similar way we have an isomorphism on the first cohomology,

H1(G(m, n), M)(χ) ≃ H1(G(m, n), M(χ)).

The two isomorphisms above will be very useful in our subsequent ar-
guments. As pointed out by Iwasawa (p. 552 of [5]), the proofs of the
above Theorems 3.1 and 3.2 show that all these isomorphisms are Galois
equivariant. Hence we have

H1(G(m, n), Cl(m)(χ)) ≃ H1(G(m, n), Cl(m))(χ) ≃ Ker(τn,m)(χ),

H0(G(m, n), Cl(m)(χ)) ≃ H0(G(m, n), E(m)(χ)),

H1(G(m, n), Cl(m)(χ))× (Z/pm−nZ)(χ) ≃ H1(G(m, n), E(m)(χ)).

As already noted by Iwasawa (ibid.), ∆ acts trivially on the cyclic factor
Z/pm−nZ and hence (Z/pm−nZ)(χ) = 0 for χ 6= 1. This fact will be reproved
in terms of cohomology. If we sum all objects above over all even characters
Ξ+ then Theorems 3.1 and 3.2 can be rephrased as follows. For m ≥ n ≥ 0,

(3.1) H1(G(m,n), Clm) ≃ Ker(τ+
n,m),

(3.2) H0(G(m,n), Clm) ≃ H0(G(m,n), Em),

(3.3) H1(G(m,n), Clm)× Z/pm−nZ ≃ H1(G(m,n), Em).

Moreover for the p-group G(m, n), from the remark after Lemma 2.1, we
have an isomorphism of the cohomology group,

H1(G(m, n), C(m)) ≃ Z/pm−nZ,

which is the highest p-power order cyclic subgroup of H1(G(m, n), E(m)).
By computing the generator of H1(G(m,n), Cm), we will show that the first

cohomology H1(G(m,n), Cm) corresponds exactly to the cyclic subgroup

Z/pm−nZ inside H1(G(m,n), Em) in (3.3).
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First we will claim that H1(G(m,n), Cm) injects into H1(G(m,n), Em).
We have the injectivity (cf. [8], [9]) of the cohomology map induced from
C(m)→ E(m),

0→ H1(G(m, n), C(m))→ H1(G(m, n), E(m)).

As #(∆) is prime to p we can take the χ parts, which preserves the injec-
tivity:

0→ H1(G(m, n), C(m))(χ)→ H1(G(m, n), E(m))(χ).

Again applying the same reasoning we have

0→ H1(G(m,n), Cm)→ H1(G(m,n), Em).

In order to show that H1(G(m,n), Cm) corresponds to the cyclic factor

Z/pm−nZ inside H1(G(m,n), Em) via (3.3) we need to explain the isomor-
phisms of Theorems 3.1 and 3.2 (cf. [4], [5]).

Let V ′ denote the principal ideals of Km which are fixed under the Galois
action of G(m, n),

V ′ := {(α) = αOK(m) | α ∈ K(m), τ((α)) = (α), ∀τ ∈ G(m, n)},

where OK(m) denotes the ring of integers of K(m). Each (α) ∈ V ′ defines a

unit εσm,n such that εσm,n = ασm,n−1. This defines a homomorphism from
V ′ to the first cohomology H1(G(m, n), E(m)) ≈ H−1(G(m, n), E(m)). And
conversely, each cocycle ε defines, via Hilbert’s theorem 90, an element α in
K(m) such that ε = ασm,n−1. Then the principal ideal (α) belongs to V ′.
The kernel, denoted by P (Kn)OK(m), of this map can easily be found to be
the principal ideals of K(m) coming from K(n),

P (Kn)OK(m) = {βOK(m) | β ∈ K(n)}.

We have now completely described an isomorphism

H−1(G(m, n), E(m)) ≃ V ′/P (Kn)OK(m).

We need to describe the right hand side in detail. Let pm denote the unique
prime ideal of K(m) lying over p. As the extension K(m)/K(n) is unramified
outside the prime pm, any ideal of K(m) which is prime to pm and invariant
under the Galois action of G(m, n) comes from ideals of K(n) and hence

V ′ = 〈pm〉 ⊕

{

aOK(m)

∣

∣

∣

∣

a ∈ K(m), (a, pn) = 1,

aOK(m) = aOK(m) for some ideal a of K(n)

}

.

It follows that

H−1(G(m, n), E(m)) ≃ 〈pm mod P (Kn)OK(m)〉 ⊕Ker(τn,m).

We recall that the complex conjugation is denoted by σ−1. By taking the
plus parts into account we obtain

H−1(G(m,n), Em) ≃ 〈p+
m mod P (Kn)OKm〉 ⊕Ker(τ+

n,m),

where p+
m denotes the prime ideal ((1− ζpm)(σ−1+1)) of Km.
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We are ready to show that the first factor 〈p+
m mod P (Kn)OKm〉

(≃ Z/pm−nZ) on the right hand side above corresponds to H1(G(m,n), Cm).
The principal prime

pm = (1− ζpm)(1+σ−1)

defines a cocycle (1− ζpm)(1+σ−1)(σm,n−1) of H−1(G(m,n), C(m)), which is a

circular unit. We claim that this cocycle generates H−1(G(m,n), Cm). Sup-

pose that the order pj of (1−ζpm)(1+σ−1)(σm,n−1) is less than pm−n, j < m−n.
Then there is a circular unit cj in Cm such that

((1− ζpm)pj
)(1+σ−1)(σm,n−1) = c

σm,n−1
j .

It follows that (1− ζpm)(1+σ−1)pj
= cjαn for some αn in Kn, which is impos-

sible by a simple ramification argument. Hence we have proved the isomor-
phisms H1(G(m,n), Cm) ≃ 〈pm mod P (Kn)OKm〉 and

H−1(G(m,n), Em) ≃ H1(G(m,n), Cm)⊕Ker(τ+
n,m).

By (3.1), the kernel of τ+
n,m being isomorphic to H1(G(m,n), Clm), the above

equation becomes

H−1(G(m,n), Em)/H1(G(m,n), Cm) ≃ H1(G(m,n), Clm).

Remark. Notice that the Galois group ∆ acts trivially on H1(G(m,n),Cm).

In fact for any δ in ∆, δ((1 − ζpm)(1+σ−1)(σm,n−1)) is cohomologous to
(1− ζpm)(1+σ−1)(σm,n−1). Hence for any nontrivial even character χ we have

H1(G(m,n), Em(χ)) ≃ H1(G(m,n), Clm(χ)).

It now follows from

0→ H1(G(m,n), Cm)→ H1(G(m,n), Em)

→ H1(G(m,n), Em/Cm)→ H2(G(m,n), Cm)

and H2(G(m,n), Cn) = 0 (see Lemma 2.1) that

H1(G(m,n), Em/Cm) ≃ H1(G(m,n), Em)/H1(G(m,n), Cm)

≃ H1(G(m,n), Clm),

and from H0(G(m,n), Cm) → H0(G(m,n), Em) → H0(G(m,n), Em/Cm) → 0

and H0(G(m,n), Cn) = 0 (Lemma 2.1) and (3.2) that

H2(G(m,n), Em/Cm) ≃ H0(G(m,n), Em) ≃ H0(G(m,n), Clm).

We have proved the following theorem which is Theorem 1.1 of the intro-
duction.

Theorem 3.3. Let P be any p-subgroup of G(Km/Q). Then

Hi(P, Clm) ≃ Hi(P, Em/Cm) for all i and m.
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For the prime-to-p parts we need more computations. Let L be an abelian
number field. As defined in the previous section, let EL, CL denote the groups
of units and circular units of L respectively. Let IL denote the idele group
of L. Let UL and JL denote the subgroup of unit ideles inside IL and the
idele class group of L respectively. There exist fundamental exact sequences

0→ CL → UL → UL/CL → 0,

0→ EL/CL → UL/CL → UL/EL → 0,(7)

0→ UL/EL → JL → ClL → 0.

They give a sequence

H0(H, UL)
β1
→ H0(H, UL/CL)

β2
→ H0(H, UL/EL)

β3
→ H0(H, JL).(8)

By class field theory H0(H, UL) can be identified with the inertia group
of P, and H0(H, JL) with the group H by (1). With these identifications one
immediately sees that β3◦β2◦β1 is the inclusion map from the decomposition
group to the Galois group G(L/K). Now the proof of the following lemma
is straightforward.

Lemma 3.4. Let L/Q be a totally ramified abelian extension. Then the

inclusion map β3 ◦ β2 ◦ β1 of (8) is an isomorphism.

We now prove the theorem on prime-to-p parts, which is Theorem 1.2 of
introduction.

Theorem 3.5. Let H be a subgroup of G(Kn/Q) with #(H) prime to p.
Then

Hi(H, Cln) ≃ Hi(H, En/Cn) for all i and n.

Proof. As in §2 we let α1 : H1(H, Cn)→ H1(H, En) and α2 : H1(H, En)
→ H1(H, Un)) be induced from the natural maps. By Lemma 2.2 and (6) it
follows that α2 ◦ α1 is an isomorphism, so α1 is injective and α2 surjective.
Applying the isomorphism α2 ◦ α1 to the cohomology sequence induced
from the short exact sequence 0 → Cn → Un → Un/Cn → 0 and using
H2(H, Cn) = 0 (Lemma 2.1) one obtains

H1(H, Un/Cn) = 0, H0(H, Un) ≃ H0(H, Un/Cn).(9)

It follows that β1 in (8) with L = Kn is an isomorphism and by Lemma 3.4
the composite map β3◦β2 is also an isomorphism. Thus β2 is injective and β3

is surjective. Using these properties and (8) and (9), we have isomorphisms

H0(H, Cln) ≃ H1(H, Un/En) ≃ H2(H, En/Cn),(10)

and exact sequences

0→ H0(H, Un/Cn)
β2
→ H0(H, Un/En)→ H1(H, En/Cn)→ 0,(11)

0→ H−1(H, Cln)→ H0(H, Un/En)
β3
→ H0(H, Jn)→ 0.(12)
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From (10)–(12) one obtains isomorphisms

H0(H, Cln) ≃ H2(H, En/Cn), H−1(H, Cln) ≃ H1(H, En/Cn).

As H is cyclic this completes the proof.

As the isomorphisms appearing in our theorems are Galois equivariant,
Theorems 3.3 and 3.5 give us the following corollary.

Corollary 3.6. Let G be any subgroup of G(Kn/Q). Then

Hi(G, Cln) ≃ Hi(G, En/Cn) for all n and i.

As defined in the introduction, let K∞ be the basic Zp extension of K =
K1, K∞ =

⋃

n Kn, Gn = G(Kn/Q) and G∞ := G(K∞/Q). Let E∞, C∞, Cl∞
denote the inverse limits of En, Cn, Cln respectively with respect to the norm
maps. By taking inverse limits in Corollary 3.6 we have the following

Corollary 3.7. For all i, we have the lim
←−

Z[Gn]-module isomorphism

Hi(G∞, Cl∞) ≃ Hi(G∞, E∞/C∞).
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