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1. Introduction. Let ϕ denote the Euler function, whose value at an
integer n ≥ 1 is given by

(1) ϕ(n) =
∏

pa‖n

pa−1(p− 1).

Recall that an integer m is said to be squarefree if p2 ∤ m for any prime p.
Using (1), it is easy to see that if m = ϕ(n) is squarefree, then the following
properties hold:

• If a prime p divides n, then p− 1 is squarefree.
• p3 ∤ n for any prime p.
• If 4 |n, then p ∤ n for any odd prime p (and thus, n = 4).
• If 4 ∤ n, then p |n for at most one odd prime p.

These properties imply that n ∈ {2, 4, p, 2p, p2, 2p2} for some prime p > 2
such that p−1 is squarefree. Hence, the problem of estimating the number of
integers n ≤ x for which ϕ(n) is squarefree reduces to that of estimating the
number of primes p ≤ x for which p− 1 is squarefree. These questions have
been previously investigated in [9], where it is shown that for any constant
A > 0, the asymptotic relation

(2) #{p ≤ x : p− 1 is squarefree} = απ(x) +O

(
x

logA x

)

holds (see also [8]), and consequently,

(3) #{n ≤ x : ϕ(n) is squarefree} =
3α

2
π(x) +O

(
x

logA x

)
.
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Here, α is the Artin constant (see, for example, [3, 7]):

α =
∏

p

(
1 −

1

p(p− 1)

)
= 0.373956 . . . .

As is clear from the analysis above, the prime p = 2 plays a crucial
role in the proof of (3) by limiting the number of distinct odd primes that
can divide any integer n for which ϕ(n) is squarefree. A similar idea has
been exploited in [2] to establish an asymptotic expression for the number
of positive integers n ≤ x for which ϕ(n) is free of kth powers.

Now consider the problem of estimating the number of positive integers
n ≤ x for which the odd part of ϕ(n) is squarefree (in this case, we say that
m = ϕ(n) is oddly squarefree). This problem is clearly more complicated in
that, by disregarding the power of 2 that divides ϕ(n), one can no longer
control the number of distinct odd primes dividing n.

More generally, for a real number y > 0, let N (y) denote the set of
natural numbers n with the property that p2 ∤ n for any prime p > y. We say
that n is y-squarefree if n ∈ N (y). In particular, N (1) is the set of squarefree
natural numbers, and N (2) is the set of oddly squarefree natural numbers. It
is easy to see that the set of y-squarefree numbers has an asymptotic density
equal to

∏
p>y(1 − 1/p2). Our goal in this paper is to derive estimates for

the cardinality of the set

Fy(x) = {n ≤ x : ϕ(n) ∈ N (y)}.

We also consider the problem of estimating the cardinality of the set

Ly(x) = {n ≤ x : λ(n) ∈ N (y)}.

Here, λ(n) denotes the Carmichael function, which is defined for an integer
n ≥ 1 as the largest possible order of any element in the multiplicative group
of integers modulo n. More explicitly, for a prime power pa, one has

λ(pa) =

{
pa−1(p− 1) if p ≥ 3 or a ≤ 2,

2a−2 if p = 2 and a ≥ 3,

and for an arbitrary integer n ≥ 2 with prime factorization n = pa1

1 · · · pak
k ,

one has

λ(n) = lcm[λ(pa1

1 ), . . . , λ(pak
k )].

Clearly, λ(1) = 1.
In what follows, we use the Landau symbols O, o, and ≍, and the Vino-

gradov symbols ≪ and ≫ with their usual meanings. Recall that, for positive
functions F and G, the notations F ≪ G, F ≫ G and F = O(G) are all
equivalent, and F ≍ G is equivalent to F ≪ G≪ F .

For an integer k ≥ 1 and a real number x > 0, we write logk x for the
recursively defined function given by log1 x = max{lnx, 1} and logk x =
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max{ln(logk−1 x), 1} for k ≥ 2, where lnx denotes the natural logarithm.
When k = 1, we omit the subscript with the understanding that log x ≥ 1
for all x > 0.

The letters p and q are always used to denote prime numbers. As usual,
we denote by π(x) the number of primes p ≤ x, and for coprime integers
l, k ≥ 1 we denote by π(x; k, l) the number of primes p ≤ x that satisfy the
congruence p ≡ l (modk).

Acknowledgements. We thank the anonymous referee for remarks
that improved the quality of this paper and for suggesting the questions and
problems that appear in the last section of this paper. Most of this work
was done during a visit by W. B. to the Universidad Nacional Autónoma
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hospitality and support of both of these institutions are gratefully acknowl-
edged. During the preparation of this paper, W. B. was supported in part by
NSF grant DMS-0070628, and F. L. was supported in part by grant PAPIIT
IN104505.

2. y-Squarefree values of ϕ(n). As in the introduction, we define

Fy(x) = {n ≤ x : ϕ(n) ∈ N (y)},

where N (y) is the set of natural numbers n such that p2 ∤ n for any prime
p > y. Let

r(x, y) = log2 x
∏

y<p≤log2 x

(
1 −

1

p− 1

)
.

Here, and in what follows, an empty product is taken to be 1, as usual. Since
the estimate

∏

p≤t

(
1 −

1

p− 1

)
=

c

log t

(
1 +O

(
1

log t

))
,

holds as t→ ∞ for some positive constant c, it follows that

r(x, y) =
log2 x log y

log3 x

(
1 +O

(
1

y
+

1

log3 x

))

uniformly for 2 ≤ y ≤ log2 x.
The main result of this section is the following:

Theorem 1. Uniformly for x and y ≥ 2, we have

#Fy(x) =
x

log x
exp

(
r(x, y)

(
1 +O

(
log4 x

log3 x

)))
.

Our proofs of both the upper and the lower bound are rather intricate
and rely on standard results from multiplicative number theory, including
the study of shifted primes free of prime factors from certain intervals, the
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use of sieves, and various averaging techniques. Several of the arguments
presented here use variations of techniques that are already present in the
literature, e.g. in [4], where similar techniques are used to study the aver-
age value of the Carmichael function. However, as we did not find specific
arguments in the literature which can be directly applied to our problem,
we develop these ideas here in some detail.

We begin with the following lemma:

Lemma 1. Let π1(x, y, z) be the number of primes p ≤ x with the prop-

erty that if a prime q divides p−1, then either q ≤ y, or q > z and q2 ∤ p−1.
Then, uniformly for max{y, z} ≤ 1

3 log x and z → ∞, the estimate

π1(x, y, z) = f(y, z)π(x) +O

(
x

z log z log x

)

holds, where

f(y, z) =
∏

y<p≤z

(
1 −

1

p− 1

)
.

Proof. For each d ≥ 1, let Ad = {p ≤ x : p ≡ 1 (modd)}. If B is the set
of primes p ≤ x such that p− 1 is coprime to R =

∏
y<q≤z q, then

#B =
∑

d|R

µ(d)#Ad =
∑

d|R

µ(d)π(x; d, 1)

=
∑

d|R

µ(d)
π(x)

ϕ(d)
+O

(∑

d|R

∣∣∣∣π(x; d, 1) −
π(x)

ϕ(d)

∣∣∣∣
)

= f(y, z)π(x) +O

(
x

log3 x

)
= f(y, z)π(x) +O

(
x

z log z log x

)
,

where we have used the Bombieri–Vinogradov Theorem together with the
fact that

R ≤
∏

q≤z

q = exp(z(1 + o(1))) ≤ x1/3+o(1) ≤ x2/5

when x is sufficiently large. On the other hand, if C is the set of primes
p ∈ B such that q2 | p− 1 for some q > z, then using the Brun–Titchmarsh
Theorem, we have

#C ≤
∑

z<q≤x1/2

π(x; q2, 1) ≪
∑

z<q≤x1/2

x

q2 log(2x/q2)

≪
x

log x

∑

z<q≤x1/3

1

q2
+ x1/3

∑

x1/3<q≤x1/2

1 ≪
x

z log z log x
.

Since π1(x, y, z) = #B − #C, we obtain the stated bound.
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Proof of Theorem 1. The range of y. We first note that it suffices to
assume that y ≤ log2

2 x. Indeed, if y > log2
2 x, then the bound asserted by

Theorem 1 is

x exp

(
O

(
log2 x log4 x

log3 x

))
= x1+o(1).

On the other hand, it is easy to see that #Fy(x) = (1 + o(1))x. Indeed,
let us count the complement of Fy(x) in [1, x], that is, the set consisting of
those positive integers n ≤ x such that p2 |ϕ(n) for some p > y. Clearly,
every such integer n must be of one of the following types:

• p3 |n for some p > y. The number of such n ≤ x is at most
∑

p>y

x

p3
≪

x

y2
= o(x).

• p2 |n and p | q − 1 for some q |n, where p > y. The number of such
n ≤ x is at most

∑

p>y

∑

q≤x/p2

p|q−1

x

p2q
≤ x

∑

p>y

1

p2

∑

q<x
q≡1 (mod p)

1

q

≪ x log2 x
∑

p>y

1

p3
≪

x log2 x

y2
= o(x).

• p2 | q − 1 for some q |n, where p > y. The number of such n ≤ x is at
most ∑

p>y

∑

q≤x
p2|q−1

x

q
≪ x log2 x

∑

p>y

1

p2
≪

x log2 x

y
= o(x).

• There exist two distinct prime factors q1 and q2 of n with q1 ≡ q2 ≡ 1
(modp) for some p > y. In this last and most numerous case, the
number of such n ≤ x is bounded by

∑

p>y

∑

q1≡q2≡1 (mod p)
q1<q2<x

x

q1q2
≪ x

∑

p>y

( ∑

q<x
q≡1 (mod p)

1

q

)2

≪ x log2
2 x

∑

p>y

1

p2
≪

x log2
2 x

y log y
= o(x).

Hence, from now on, we can assume that y ≤ log2
2 x.

Lower bound . Let x be a large real number, put z = log2 x log5
3 x and

k = ⌊f(y, z) log2 x⌋. Note that f(y, z) = 1 if y ∈ [z, log2
2 x], and that

log2 x

log3 x
≪ k ≤ log2 x



216 W. D. Banks and F. Luca

for all y in our range. Put w = exp(log2
2 x), v = x1/(6k), and let I be the

closed interval I = [w, v].
Let P be the set of primes p ∈ I with the property that if a prime q > y

divides p− 1, then q > z and q2 ∤ p− 1. Since z ≤ 1
3 logw if x is sufficiently

large, by Lemma 1, it follows that

π1(t, y, z) = f(y, z)π(t) +O

(
t

z log z log t

)

uniformly for all t ∈ I. Using partial summation, we derive that

∑

p∈P

1

p
=

v\
w

dπ1(t, y, z)

t

=
π1(t, y, z)

t

∣∣∣∣
t=v

t=w

+ f(y, z)

v\
w

π(t)

t2
dt+O

(
1

z log z

v\
w

1

t log t
dt

)

= f(y, z)

(
log2 v − log2w +O

(
1

logw

))
+O

(
1

logw
+

log2 v

z log z

)

= f(y, z) log2 v

(
1 +O

(
log2 w

log2 v
+

log z

logw log2 v
+

1

z

))

= f(y, z) log2 x

(
1 +O

(
log3 x

log2 x

))
,

where we used the fact that f(y, z) ≫ 1/log z.
Let Q be the subset of P obtained by removing from P those primes p for

which p−1 has more than log2
2 x distinct prime factors. Let K = ⌊log2

2 x⌋+1.
Since

∑

p≤x
ω(p−1)>log2

2 x

1

p
≤

∑

j≥K

1

j!

(∑

q≤x

1

q

)j

≪

(
e log2 x+O(1)

log2
2 x

)K

= o

(
1

log x

)
,

while f(y, z) ≫ 1/log z ≫ 1/log3 x, it follows that

(4)
∑

p∈Q

1

p
= f(y, z) log2 x

(
1 +O

(
log3 x

log2 x

))
.

Let also Q̃ be the set of powers of primes from Q. Clearly,
∑

pa∈Q̃

1

pa
=

∑

p∈Q

1

p
+O

( ∑

p≥w

1

p2

)
=

∑

p∈Q

1

p
+O

(
1

w

)
(5)

= f(y, z) log2 x

(
1 +O

(
log3 x

log2 x

))
.

Now let M be the set of squarefree natural numbers m with precisely k
prime factors, each one lying in Q, with the property that ϕ(m) ∈ N (z2).
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Note that if m ∈ M, and p2 |ϕ(m) for some prime p > y, then p ∈ [z, z2].
For every positive integer m ∈ M we write d(m) for the largest divisor of m
such that ϕ(d(m)) lies in N (y); clearly, ϕ(d(m)) ∈ N (z). Let D be the set
of all numbers d such that d = d(m) for some m ∈ M.

Let d be a fixed element of D; observe that d = d(m) ≤ m ≤ x1/6 for
some m ∈ M, and therefore d < x1/4 < (x/d)1/3. Let Pd be the set of primes
P with the properties:

• x1/4 < P ≤ x/d.
• If a prime q > y divides P − 1, then q > z and q2 ∤ P − 1.
• If a prime q divides gcd(P − 1, ϕ(d)), then q ≤ y.

Now let n be an integer of the form n = dP , where d ∈ D and P ∈ Pd.
Note that n ≤ x. Since P > d, it follows that P is the largest prime factor
of n. This shows that d and P are uniquely determined by n; hence, the
integers n ≤ x constructed in this way are pairwise distinct. Since ϕ(n) =
ϕ(d)(P − 1), the conditions on P guarantee that ϕ(n) ∈ N (y); therefore,

(6) #Fy(x) ≥
∑

d∈D

#Pd.

To estimate #Pd, let us first observe that the number of primes P ≤ x/d
such that either P ≤ x1/4, or q2 |P − 1 for some q > z, is bounded above by

π(x1/4) +
∑

q>z

π(x/d; q2, 1) ≪ π(x1/4) +
x

d log x

∑

z<q<(x/d)1/3

1

q2

+
x

d

∑

q≥(x/d)1/3

1

q2

≪ π(x1/4) +
x

dz log z log x
+

(
x

d

)2/3

≪
x

dz log z log x
,

where we used the fact that x/d ≥ x5/6 > π(x1/4)z log z log x and also
(x/d)1/3 ≥ x5/18 > z log z log x, if x is large enough. Thus, writing

Rd =
∏

q>y
q≤z or q|ϕ(d)

q,

we see that

#Pd =
∑

d1|Rd

µ(d1)π(x/d; d1, 1) +O

(
x

dz log z log x

)
(7)
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(7)
[cont.]

=
∑

d1|Rd

µ(d1)
π(x/d)

ϕ(d1)

+ O

( ∑

d1|Rd

∣∣∣∣π(x/d; d1, 1) −
π(x/d)

ϕ(d1)

∣∣∣∣ +
x

dz log z log x

)

= g(d)π(x/d) +O

(
x

dz log z log x

)
,

where

g(d) =
∏

q>y
q≤z or q|ϕ(d)

(
1 −

1

q − 1

)
.

Here, we have used the Bombieri–Vinogradov Theorem together with the
fact that Rd ≤ ϕ(d) < d < (x/d)1/3.

We now remark that g(d) ≫ 1/log z. Indeed, ϕ(d) has no more than
k log2

2 x ≤ log3
2 x distinct prime factors larger than y, and every such prime

is larger than z by construction. Since z > log2 x, from the Prime Number
Theorem, it follows that the number of prime factors of ϕ(d) that are larger
than z cannot exceed the number of primes in the interval [z, z4] if x is
sufficiently large. Thus,

∏

q>y
q|ϕ(d)

(
1 −

1

q − 1

)
≫ exp

(
−

∑

z≤p≤z4

1

p
+O

(∑

q>z

1

q2

))

= exp(− log 4 + o(1)) ≥ 0.2,

and therefore g(d) ≫ f(y, z) ≫ 1/log z.

Since

π(x/d) ≫
x

d log(x/d)
≫

x

d log x
,

from (7) we deduce that

#Pd ≫
x

d log z log x
.

Using this estimate in (6) and summing over all d ∈ D, we obtain

(8) #Fy(x) ≫
x

log z log x

∑

d∈D

1

d
.

To complete the proof of the lower bound in the theorem, it suffices to
find a suitable lower bound for the sum

SD =
∑

d∈D

1

d
.
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To do this, we begin by showing that the following estimate holds:

(9) SM =
∑

m∈M

1

m
≫ S,

where

S =
1

k!

(∑

p∈Q

1

p

)k

.

Using the multinomial formula, it is easy to see that (9) follows from the
two estimates

(10)
1

(k − 2)!

( ∑

pa∈Q̃

1

pa

)k−2 ∑

p∈Q

1

p2
= o(S)

and

(11)
1

(k − 2)!

( ∑

pa∈Q̃

1

pa

)k−2 ∑

q>z2

∑

p1,p2∈Q
p1≡p2≡1 (mod q)

1

p1p2
= o(S).

Indeed, the estimate (10) implies that the main contribution to S comes from
the sum S∗ of the reciprocals of squarefree numbers composed of k primes
from the set Q, while the estimate (11) implies that the main contribution
to S∗ comes from integers m lying in M rather than integers m for which
ϕ(m) 6∈ N (z2). Concerning (10), using (4) and (5), we obtain

1

(k − 2)!

( ∑

pα∈Q̃

1

pα

)k−2 ∑

p∈Q

1

p2
≪ Sk2

(
1

f(y, z) log2 x

)2 1

w logw

≪

(
k

f(y, z) log2 x

)2 S

w logw
≪

S

w logw
= o(S),

where we have used the fact that k ≍ f(y, z) log2 x. Concerning (11), if we
combine the same argument with Mertens’ Theorem, it follows that

1

(k − 2)!

( ∑

pα∈Q̃

1

pα

)k−2 ∑

q>z2

∑

p1,p2∈Q
p1≡p2≡1 (mod q)

1

p1p2

≪ S

(
k

f(y, z) log2 x

)2 ∑

q>z2

( ∑

p∈Q
p≡1 (mod q)

1

p

)2

≪ S

(
k

f(y, z) log2 x

)2 ∑

q>z2

log2
2 x

q2
≪ S

log2
2 x

z2 log z
= o(S).

Thus, we obtain (9).
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We now turn to the lower bound for SD.

Let M1 be the set of integers m ∈ M with the property that there exist
two primes q1, q2 ∈ [z, z2] and two prime factors p1 and p2 of m such that
p1 ≡ p2 ≡ 1 (mod q1q2). By arguments similar to those above, we have (since
z > log2 x)

∑

m∈M1

1

m
≪

1

(k − 2)!

( ∑

pα∈Q̃

1

pα

)k−2 ∑

q1,q2∈[z,z2]

∑

p1,p2∈Q
p1≡p2≡1 (mod q1q2)

1

p1p2

≪ S

(
k

f(y, z) log2 x

)2 ∑

q1,q2≥z

( ∑

p∈Q
p≡1 (mod q1q2)

1

p

)2

≪ S
∑

q1,q2≥z

log2
2 x

(q1q2)2
≪ S log2

2 x

(∑

q≥z

1

q2

)2

= S
log2

2 x

z2 log2 z
= o(S).

Next, let M2 be the set of integers m ∈ M for which there exists a
prime q ∈ [z, z2] and L = ⌊log3 x⌋ distinct prime factors p of m with p ≡ 1
(mod q). We have

∑

m∈M2

1

m
≤

1

(k − L)!

( ∑

pα∈Q̃

1

pα

)k−L ∑

q∈[z,z2]

∑

p1<···<pL≤x
pi≡1 (mod q), i=1,...,L

1

p1 · · · pL

≤ S

(
2k

f(y, z) log2 x

)L ∑

q≥z

1

L!

( ∑

p<x
p≡1 (mod q)

1

p

)L

≤ S
3L

L!

∑

q≥z

(
2 log2 x

q

)L

= S
(6 log2 x)

L

L!

∑

q≥z

1

qL

≪
S log2 x

L5/2

(
6e log2 x

(L− 1)z

)L−1

≪
S

L5/2
= o(S).

Here, we have used Stirling’s formula to approximate (L−1)!, together with
the fact that

∑

q≥z

1

qL
≤

∞\
z

dt

tL
=

1

(L− 1)zL−1
,

the estimate

(12)
∑

p≤x
p≡1 (mod q)

1

p
≤

2 log2 x

q
,

which holds for large x and q ∈ [z, z2] (using, for example, the Siegel–Walfisz
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Theorem and partial integration), and the inequality

(L− 1)z

6e log2 x
> e,

which holds when x is large and leads to the estimate
(

6e log2 x

(L− 1)z

)L−1

≪ e−L ≪
1

log2 x
.

Finally, let M3 be the set of those m ∈ M \ (M1 ∪ M2) for which
there exist at least T = ⌊log2 x/log3

3 x⌋ distinct primes q ∈ [z, z2] such that
for each prime q, there exist two distinct prime factors p1,q and p2,q of m
congruent to 1 modulo q. By arguments similar to those above, we have

∑

m∈M3

1

m
≤

1

(k − 2T )!

( ∑

pα∈Q̃

1

pα

)k−2T ∑

q1<···<qT

qi∈[z,z2]
i=1,...,T

∑

p1,...,p2T ≤x
p2i≡p2i+1≡1 (mod qi)

i=1,...,T

1

p1 · · · p2T

≤ S

(
2k

f(y, z) log2 x

)2T ∑

q1<···<qT

qi∈[z,z2]
i=1,...,T

T∏

i=1

( ∑

p≤x
p≡1 (mod qi)

1

p

)2

≤ S 32T
∑

q1<···<qT

qi∈[z,z2]
i=1,...,T

T∏

i=1

(
4 log2

2 x

q2i

)

≤ S
(6 log2 x)

2T

T !

(∑

q>z

1

q2

)T

≤
S

T 1/2

(
36e log2

2 x

Tz

)T

= o(S).

In the above estimates we used, in addition to Stirling’s formula for T ! and
the estimate (12), the fact that the inequality

∑

q>z

1

q2
≤

1

z

holds for large z, together with the fact that

36 log2
2 x

zT
≤

37

log2
3 x

< 1.

Now let M4 = M\ (M1 ∪M2 ∪M3). It follows easily that if m ∈ M4,
then there exist at most T distinct primes q ∈ [z, z2] such that q2 |ϕ(m) (if
not, then either there exist two primes p and p′ dividing m such that p− 1
and p′ − 1 have at least two common prime divisors in [z, z2], which cannot
happen since m 6∈ M1, or else there exist more than T distinct primes
q in [z, z2], and for each such q there are two prime factors p1,q and p2,q
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of m such that q divides pi,q − 1, i = 1, 2, which is again impossible since
m 6∈ M3). Also, the fact that m 6∈ M2 implies that if q2 |ϕ(m) for some
q > z, then there exist at most L prime factors p of m such that q divides
p− 1. Thus, if m = m′d(m), then ω(m′) ≤ TL ≤ log2 x/log2

3 x = o(k) since
k ≫ log2 x/log3 x. From our previous estimates, we immediately obtain

( ∑

d∈D

1

d

)( ∑

m′≤x
ω(m′)≤TL

1

m′

)
≥

∑

m∈M4

1

m
≫ S.

Clearly,

∑

m′≤x
ω(m′)≤TL

1

m′
≤

1

(TL)!

( ∑

p≤x

1

p

)TL

≤
1

(TL)1/2

(
e log2 x+O(1)

TL

)TL

= exp

(
O

(
log2 x log4 x

log2
3 x

))
= exp

(
O

(
f(y, z) log2 x log4 x

log3 x

))
.

Thus,

(13) SD =
∑

d∈D

1

d
≥ S exp

(
O

(
f(y, z) log2 x log4 x

log3 x

))
.

By our choice of k, the definition of S, and the formula (4), we have

S ≫
1

k1/2

(
ef(y, z) log2 x

k

(
1 +O

(
log3 x

log2 x

)))k

(14)

= exp

(
f(y, z) log2 x

(
1 +O

(
log3 x

log2 x
+

log k

f(y, z) log2 x

)))

= exp

(
f(y, z) log2 x

(
1 +O

(
log2

3 x

log2 x

)))
.

The lower bound of Theorem 1 now follows from the estimates (8), (13)
and (14), together with the observation that

f(log2 x, z) =
∏

log2 x<p≤z

(
1 −

1

p− 1

)

= exp

(
−

∑

log2 x<p≤z

1

p
+O

( ∑

p>log2 x

1

p2

))

= exp

(
log

(
1 +O

(
log4 x

log3 x

))
+O

(
1

log2 x

))
=1+O

(
log4 x

log3 x

)
.

Upper bound . Since the bound in the statement of Theorem 1 is x1+o(1)

for y > log2 x, we may assume that y ≤ log2 x for our proof of the upper
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bound. Let z = log2 x/log2
3 x. Since

f(z, log2 x) =
∏

z<p≤log2 x

(
1 −

1

p− 1

)
= exp

(
−

∑

z<p≤log2 x

1

p
+O

(∑

p>z

1

p2

))

= exp

(
log2(log2 x) − log2 z +O

(
1

log2 x

))
= 1 +O

(
log4 x

log3 x

)
,

we may further assume that y ≤ z.
Let Ay(x) be the subset of integers n ∈ Fy(x) that are squarefree. Our

first goal is to establish the following upper bound:

(15) #Ay(x) ≤
x

log x
exp

(
f(y, z) log2 x

(
1 +O

(
log4 x

log3 x

)))
.

For any positive integer k, let πk(x) be the number of positive integers
n ≤ x such that ω(n) = k. By a well known result of Hardy and Ramanujan
(see [5]), the following estimate holds:

(16) πk(x) ≪
x

log x

1

(k − 1)!
(log2 x+O(1))k−1.

Using Stirling’s formula, we get

(17) πk(x) ≪
x

log x

(
e log2 x+O(1)

k − 1

)k−1

.

Since the function appearing on the right hand side of (17) is increasing for
k ≤ 1

2 log2 x once x is large enough, if we put K1 = ⌊z⌋, it follows that

∑

k≤K1

πk(x) ≪
xz

log x
(O(log2

3 x))
z =

x

log x
exp

(
O

(
log2 x log4 x

log2
3 x

))

=
x

log x
exp

(
O

(
f(y, z) log2 x log4 x

log3 x

))
.

Using again the estimate (16), we note that if k ≥ K2 = ⌊3e log2 x⌋+1, then
the inequality

πk(x) ≪
x

log x

(
e log2 x+O(1)

k

)k

≤
x

log x

(
1

3
+ o(1)

)k

<
x

log x

(
1

2k

)

holds uniformly for such k provided that x is large enough. Therefore,
∑

k≥K2

πk(x) ≪
x

log x

∑

k

1

2k
≪

x

log x
.

Thus, to prove (15), it suffices to bound the number of integers n ∈ Ay(x)
for which ω(n) lies in the interval [K1,K2]; let A∗

y(x) denote the set of such
integers n.

Fix k ∈ [K1,K2] and n ∈ A∗
y(x) with ω(n) = k. Let us write n = n1n2,

where n2 is the largest divisor of n with the property that if a prime q |ϕ(n2),
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then q 6∈ [y, z]. Notice that if q ∈ [y, z] is a prime dividing ϕ(n), then (since
n ∈ Fy(x)) there exists a unique prime p |n such that q | p − 1; by the
maximal property defining n2, it follows that n1 is the product of all such
primes p. Since there are only π(z) ≪ log2 x/log3

3 x primes q ≤ z, we see
that n2 has at least k − π(z) = k(1 + o(1)) distinct prime factors.

Let Py,z denote the set of all primes p ≤ x such that p − 1 is free of
primes in the interval [y, z] and such that q2 ∤ p − 1 for any prime q > z.
Suppose that n = n1n2 (as above), where n1 has precisely t ≤ π(z) prime
factors, and n2 has k− t prime factors, each of which necessarily lies in Py,z.
For fixed t, the number of such n ∈ A∗

y(x) is bounded by a constant times

(18)
x log2

2 x

log x

1

t!

(∑

p≤x

1

p

)t 1

(k − t)!

( ∑

p∈Py,z

1

p

)k−t

.

To prove this, let P = P (n) be the largest prime factor of one such n, and
write n = Pm. Using well known results about the distribution of smooth

numbers (see, for example, [6]), we have

#{n ≤ x : P (n) ≤ exp(log x/log2 x)} = x exp((1 + o(1)) log2 x log3 x)

= o(x/logx);

hence, we may assume that P ≥ exp(log x/log2 x). For a fixed value of m,
it follows that P can be selected in at most

π(x/m) ≪
x log2 x

m log x

different ways. Summing these contributions over m, we must now consider
whether P divides n1 or n2. In either case, using the multinomial formula, we
obtain an estimate similar to (18), but in the first case, t has been changed
to t− 1 in both the factorial and the exponent, whereas in the second case
k − t has been changed to k − t − 1. At the cost of including an extra
factor of log2 x, we obtain (18) in either case; this follows from the estimates
t≪ log2 x, k − t≪ log2 x, and

∑

p≤x

1

p
≫ log2 x≫ 1,

∑

p∈Py,z

1

p
≫

log2 x

log z
≫

log2 x

log3 x
≫ 1.

Since t ≤ π(z) ≪ log2 x/log3
2 x, we have as above

1

t!

( ∑

p≤x

1

p

)t

≪

(
e log2 x+O(1)

t

)t

= exp

(
O

(
log2 x log4 x

log3
3 x

))
(19)

= exp

(
O

(
f(y, z) log2 x log4 x

log3 x

))
.
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We now claim that

(20)
1

(k − t)!

( ∑

p∈Py,z

1

p

)k−t

≤ exp

(
f(y, z) log2 x

(
1 +O

(
log4 x

log3 x

)))
.

To prove this, we apply arguments from our proof of the lower bound to
obtain the estimate

∑

p∈Py,z

1

p
= f(y, z) log2 x

(
1 +O

(
log3 x

log2 x

))
.

Put l = k − t. Then

1

(k − t)!

( ∑

p∈Py,z

1

p

)k−t

≪

(
ef(y, z) log2 x

l

)l(
1 +O

(
log3 x

log2 x

))l

.

Since l ≤ k ≪ log2 x, we have the inequality
(

1 +O

(
log3 x

log2 x

))l

≪ exp(O(log3 x)) = exp

(
O

(
f(y, z) log2 x log4 x

log3 x

))
;

it therefore suffices to estimate the quantity
(
ef(y, z) log2 x

l

)l

.

The maximum value of this function occurs at l = f(y, z) log2 x, and for this
value we have

(
ef(y, z) log2 x

l

)l

≤ exp(f(y, z) log2 x),

and the claim is proved.

Substituting (19) and (20) into inequality (18), and then summing (18)
first over all t ≤ π(z), then over all k ∈ [K1,K2], we derive that

A∗
y(x) ≪

xπ(z)K2 log2
2 x

log x
exp

((
1 +O

(
log4 x

log3 x

))
f(y, z) log2 x

)

=
x

log x
exp

((
1 +O

(
log4 x

log3 x

))
f(y, z) log2 x

)
.

Bearing in mind the contributions to Ay(x) coming from the values of k
outside [K1,K2], which have already been discussed, we obtain the desired
estimate (15).

Finally, we need to pass from Ay(x) to the entire set Fy(x). Suppose
that n = d2m lies in Fy(x), where m is squarefree. For fixed d, the number
of such numbers is at most x/d2. For those integers with d > log x, we have
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an overall contribution bounded by

x
∑

d>log x

1

d2
≪

x

log x
,

which is sufficient for our upper bound. On the other hand, for integers with
d ≤ log x, by (15) we see that the contribution to Fy(x) is at most

∑

d≤log x

#Ay(x/d
2) ≤

∑

d≤log x

xd

log xd
exp

(
f(y, z) log2 xd

(
1 +O

(
log4 xd

log3 xd

)))
,

where xd = x/d2. Since each d ≤ log x, we have the estimates

log xd =

(
1 +O

(
log2 x

log x

))
log x,

log2 xd =

(
1 +O

(
log2 x

log x

))
log2 x,

log3 xd = (1 + o(1)) log3 x, log4 xd = (1 + o(1)) log4 x,

and we deduce that
∑

d≤log x

#Ay(x/d
2) ≪

x

log x
exp

((
1 +O

(
log4 x

log3 x

))
f(y, z) log2 x

)∑

d≥1

1

d2

≪
x

log x
exp

((
1 +O

(
log4 x

log3 x

))
f(y, z) log2 x

)
.

This completes the proof of the upper bound and of the theorem.

3. y-Squarefree values of λ(n). As in the introduction, we define

Ly(x) = {n ≤ x : λ(n) ∈ N (y)},

where λ denotes the Carmichael function. In this section, we follow closely
ideas from [9] that were used to establish (2). Our main result is the following
analogue of Theorem 1 for the function λ:

Theorem 2. For every fixed real number y ≥ 2, there exists a constant

κ(y) > 0 such that

#Ly(x) = (κ(y) + o(1))
x

(log x)1−α(y)
,

where

α(y) =
∏

p>y

(
1 −

1

p(p− 1)

)
.

For historical interest, we remark that positive integers n with the prop-
erty that λ(n) is squarefree have been previously used in the primality test
of Adleman, Pomerance and Rumely (see [1]).
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Our principal tool for the proof of Theorem 2 is a well known theorem
of Wirsing [10], which may be formulated as follows:

Lemma 2. Suppose that the real-valued multiplicative function f(n) sat-

isfies the following conditions:

• f(n) ≥ 0 for all positive integers n.
• There exist constants c1, c2 with c2 < 2 such that f(pa) ≤ c1c

a
2 for all

primes p and integers a ≥ 2.
• There exists a constant α > 0 such that

∑

p≤x

f(p) = (α+ o(1))
x

log x
.

Then
∑

n≤x

f(n) =

(
1

eγαΓ (α)
+ o(1)

)
x

log x

∏

p≤x

( ∞∑

a=0

f(pa)

pa

)
,

where γ is the Euler–Mascheroni constant , and Γ (z) =
T∞
0 e−ttz−1 dt.

The next result provides the essential analytic ingredient needed to de-
duce Theorem 2 from Lemma 2.

Lemma 3. Let y > 0, and suppose that A > 0 is a fixed constant. Then

the set of primes

P(y) = {p ≤ x : p− 1 ∈ N (y)}

has cardinality

#P(y) = α(y)π(x) +O(x/(log x)A),

where α(y) is the constant of Theorem 2.

Proof. By standard arguments based on partial summation, it suffices
to show that

(21) ψy(x) = α(y)ψ(x) +O(x/(logx)A),

where

ψy(x) =
∑

n≤x
n−1∈N (y)

Λ(n) and ψ(x) =
∑

n≤x

Λ(n),

where Λ(n) is the von Mangoldt function.

Let µ(d) denote the Möbius function. Since the characteristic function
of the set N (y) is given by

n 7→
∑

d2|n
p|d⇒p>y

µ(d),
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it follows that

(22) ψy(x) =
∑

d≤x1/2

p|d⇒p>y

µ(d)ψ(x; d2, 1),

where for integers k, l with k ≥ 1 and gcd(k, l) = 1,

ψ(x; k, l) =
∑

n≤x
n≡l (mod k)

Λ(n).

Now let z = x1/2(log x)−B, where B = A+ 5. By (22), we have

ψy(x) = x
∑

d≤z
p|d⇒p>y

µ(d)

ϕ(d2)
+O(R1 +R2),

where

R1 =
∑

d≤z
p|d⇒p>y

∣∣∣∣ψ(x; d2, 1) −
x

ϕ(d2)

∣∣∣∣, R2 =
∑

z<d≤x1/2

p|d⇒p>y

ψ(x; d2, 1).

By the Bombieri–Vinogradov Theorem, we have the bound

R1 ≤
∑

k≤z

∣∣∣∣ψ(x; k, 1) −
x

ϕ(k)

∣∣∣∣ ≪
x

(logx)A
.

Using the trivial bound ψ(x; k, 1) ≤ x(log x)/k, we also have

R2 ≪
∑

d>z

x log x

d2
≪

x log x

z
= x1/2(log x)B+1 ≪

x

(log x)A
.

Therefore,

ψy(x) = x
∑

d≤z
p|d⇒p>y

µ(d)

ϕ(d2)
+O

(
x

(log x)A

)
.

Now ∑

d≤z
p|d⇒p>y

µ(d)

ϕ(d2)
=

∑

d≥1
p|d⇒p>y

µ(d)

ϕ(d2)
+O(R3),

where

R3 =
∑

d>z

1

ϕ(d2)
.

Using the well known bound ϕ(k) ≫ k/log2 k, we obtain

R3 ≪
∑

d>z

log2(d
2)

d2
≪

∑

d>z

1

d3/2
≪ z−1/2 = x−1/4(log x)B = O

(
1

(log x)A

)
.
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Consequently,

ψy(x) = x
∑

d≥1
p|d⇒p>y

µ(d)

ϕ(d2)
+O

(
x

(log x)A

)
.

Using the multiplicativity of µ(n) and ϕ(n) (hence, also of ϕ(n2)), we derive
that

∑

d≥1
p|d⇒p>y

µ(d)

ϕ(d2)
=

∏

p>y

(
1 −

1

ϕ(p2)

)
=

∏

p>y

(
1 −

1

p(p− 1)

)
= α(y),

which completes the proof.

Proof of Theorem 2. Let f(n) be the unique multiplicative function such
that f(pa) = 1 for every prime p ≤ y and integer a ≥ 1, and for any prime
p > y, f(p2) = f(p) = 1 if p − 1 ∈ N (y) and f(pa) = 0 if either a ≥ 3 or
p− 1 6∈ N (y).

Clearly, λ(n) ∈ N (y) if and only if λ(pa) ∈ N (y) for every prime power
pa dividing n. For any prime p ≤ y, the latter condition holds trivially for
all a ≥ 1, while if p > y ≥ 2, it is equivalent (since p is odd) to the two
conditions a ≤ 2 and p−1 ∈ N (y). Therefore, f is the characteristic function
of the set of integers n for which λ(n) lies in N (y).

By Lemma 3, we see that all of the conditions of Lemma 2 are satisfied,
with α = α(y); thus,

#Ly(x) =
∑

n≤x

f(n) =

(
1

eγα(y)Γ (α(y))
+ o(1)

)
x

log x

∏

p≤x

( ∞∑

a=0

f(pa)

pa

)
.

To complete the proof, we can apply an analogue of Lemma 4 of [9] to deduce
that the estimate

∏

p≤x

( ∞∑

a=0

f(pa)

pa

)
= η(y)(logx)α(y) +O((log x)α(y)−1)

holds for some absolute constant η(y) > 0. Taking

κ(y) =
η(y)

eγα(y)Γ (α(y))
,

we finish the proof.

4. Remarks and open problems. It is clear from the proof of our
Theorem 1 that if y is a bit smaller than (log2 x)

2, then almost all n have
the property that ϕ(n) is y-squarefree. It would be interesting to investigate
whether there is a threshold, or a distribution. For example, is there a func-
tion y = y(n) such that the set of integers n for which ϕ(n) is y-squarefree
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has asymptotic density 1/2? Or more simply, is there a function y = y(n)
such that the set of integers n for which ϕ(n) is y-squarefree has asymptotic
density c for some constant c in the interval (0, 1)? We leave these questions
as open problems for the reader.
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