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1. Introduction. In the present paper we address an aspect of the
classical question of counting lattice points in balls of large radius. We are
concerned with the lower bounds on the variation of the number of lattice
points when the centre of the ball varies.

We introduce some notation. Let Γ ⊂ R
d be a lattice in the d-dimensional

Euclidean space. For any bounded set C ⊂ R
d we denote by N[C] the number

of lattice points in C, that is,

N[C] = #{γ ∈ Γ : γ ∈ C}.
We omit the dependence on Γ in the notation as the lattice is always fixed.
Denote by

B(r;k) = {ξ : |ξ − k| < r}
the open ball of radius r > 0 centred at the point k ∈ R

d. Obviously,
the function N[B(r;k)] is a periodic function of the variable k with period
lattice Γ, and hence it is bounded. We are interested in the variation of the
quantity N[B(r;k)] as a function of k. Define, for all r > 0,

(1.1) N
+(r) = max

k
N[B(r;k)], N

−(r) = min
k

N[B(r;k)],

and introduce

Definition 1.1. For given real numbers λ ≥ 0 and δ ∈ [0, λ] the δ-
variation is defined by

(1.2) V (λ, δ) = N
+(

√
λ− δ) − N

−(
√
λ+ δ).

Our objective is to find out when the δ-variation is non-negative and to
obtain lower bounds for V (λ, δ) for small δ and large λ. Let us first review the
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results known in the literature. Define the functions R±(r) by the formula

(1.3) N
±(r) =

wd

µΓ

rd + R
±(r),

where wd is the volume of the unit ball in R
d, and µΓ is the volume of the

fundamental domain R
d/Γ. It is clear that R±(r) = o(rd) as r → ∞; more

precise estimates will be stated later on.

Suppose that δ = o(λ) as λ→ ∞. Substituting (1.3) into (1.2), we get

(1.4) V (λ, δ)

= −dwd

µΓ

δλ(d−2)/2 +O(δ2λ(d−4)/2) + R
+(

√
λ− δ) − R

−(
√
λ+ δ).

Clearly the r.h.s. is non-negative if the difference R+ − R− is large in com-
parison with the other two terms. The next proposition provides appropriate
lower bounds for R±.

Proposition 1.2. For an arbitrary lattice Γ and r ≥ 1 we have the

bounds

(1.5) R
+(r) > r(d−1)/2ϕ(r), R

−(r) < −r(d−1)/2ϕ(r),

with

(1.6) ϕ(r) =

{
cΓ if d 6= 1 (mod 4),

cΓ exp(−aΓ(ln ln r)4) if d = 1 (mod 4).

Here cΓ and aΓ are some positive constants independent of r.

As in the above proposition, throughout the paper we denote by C or c,
with or without indices, various positive constants whose value is of no
importance.

For d 6= 1 (mod 4) the bounds (1.5) were established in [1] (see also
[3], [6]). The more delicate case d = 1 (mod4) was handled first in [11],
where (1.5) was proved for ϕ(r) = r−ε with an arbitrarily small ε > 0. The
improved ϕ in (1.6) was obtained in [9].

Using Proposition 1.2 and the relation (1.4) we arrive at the following
result.

Corollary 1.3. Let Γ ⊂ R
d with d ≥ 2 be an arbitrary lattice. Then

for all sufficiently large λ ≥ λ0(Γ) and all δ ∈ [0, δ0(λ)], where

δ0(λ) =
µ

2dwd
λ(3−d)/4ϕ(

√
λ),

we have the bound

(1.7) V (λ, δ) > λ(d−1)/4ϕ(
√
λ).

The function ϕ(·) is given by (1.6).
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For d = 2, 3 the bounds (1.5) are consistent with the natural conjecture
that

R
±(r) = O(r1/2+ε), d = 2, and R

±(r) = O(r1+ε), d = 3,

with an arbitrarily small ε > 0. When one increases the dimension, one
begins to observe the dependence of the error terms R±(r), and hence of the
variation V (λ, δ), on the arithmetic properties of the lattice Γ.

Definition 1.4. A lattice Γ ⊂ R
d is said to be rational if for any two

vectors γ1,γ2 ∈ Γ their inner product satisfies the relation

(1.8) 〈γ1,γ2〉 = βΓr12,

where βΓ 6= 0 is a real-valued constant independent of γ1,γ2, and r12 = r21

is an integer. Otherwise the lattice is called irrational.

It is clear that in order to check the rationality of Γ it suffices to verify
(1.8) only for the basis vectors of Γ. Without loss of generality one may
assume that βΓ = 1, since rescaling the lattice will affect R± and V (λ, δ) in
the obvious (controllable) way.

It was proved in [4] for d ≥ 5 that

(1.9) R
±(r) = O(rd−2),

and that the remainder can be replaced with o(rd−2) if and only if the lattice
Γ is irrational. Furthermore, in [7] examples of irrational lattices Γ ⊂ R

d with
d ≥ 5 were constructed for which

N[B(r;0)] =
wd

µΓ

rd +O(rd/2+ε), r → ∞,

with an arbitrarily small ε > 0. This suggests that (1.7) is quite sharp for
irrational lattices. Our aim is to obtain sharp lower bounds for V (λ, δ) in
the case of rational lattices. The main results of the paper are contained in
Theorems 1.5–1.7.

Theorem 1.5. Let Γ ⊂ R
d be a rational lattice and let d ≥ 5. Then there

are three positive constants δ0 = δ0(Γ), λ0 = λ0(Γ) and cΓ such that for all

δ ∈ [0, δ0] and all λ ≥ λ0, we have

(1.10) V (λ, δ) ≥ cΓλ
(d−2)/2.

Comparing (1.10) with the bound (1.9) we see that (1.10) is sharp. The
next theorem deals with the four-dimensional case:

Theorem 1.6. Let Γ ⊂ R
4 be a rational lattice. Then there are three

positive constants δ0 = δ0(Γ), λ0 = λ0(Γ) and cΓ such that for all δ ∈ [0, δ0]
and all λ ≥ λ0, we have

(1.11) V (λ, δ) ≥ cΓλ(ln lnλ)−1.
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It is not yet clear whether one can get rid of the ln ln factor in (1.11) for
general rational lattices. However, for the case of a cubic lattice Γ, this can
be done:

Theorem 1.7. Let Γ = Z
4. Then for each δ ∈ [0, 2−15], all sufficiently

large λ ≥ λ0 > 0 and some c > 0 one has the bound

(1.12) V (λ, δ) > cλ.

The above theorems are proved simultaneously in a single proof. A more
specific argument allows one to prove the lower bound (1.12) for all δ ∈ [0, δ0]
with δ0 = 40−1 instead of 2−15. However, we are not concerned with a
possible optimisation of the constants.

The authors’ interest in the quantity V (λ, δ) comes from the link with
the spectral theory of periodic operators. The lower bounds for the δ-
variation allow one to justify the Bethe–Sommerfeld conjecture for the peri-
odic Schrödinger operator, that is, to prove that the number of spectral gaps
is finite (see [3], [15], [16], [11], [12] and references therein). More precisely,
Proposition 1.2 is instrumental in the proof of the conjecture in dimensions
d = 2, 3, 4 for arbitrary lattices, whereas Theorems 1.5–1.7 can be used to
handle the rational lattices in dimensions d ≥ 4.

Some facts on the lattice points counting, close in spirit to the Main
Theorems in the present paper, were found in [15]. In fact, our proofs rely on
the idea put forward in [15]: they use the classical results on representation of
integers by integer quadratic forms and some arguments from the geometry
of numbers.

The paper is organised as follows. The necessary facts about integer
quadratic forms are collected in Sect. 2. In Sect. 3 these are used to study
lattice points on spheres. Spherical shells containing no lattice points (the
empty shells) are described in Sect. 4. These empty shells are crucial for the
derivation of the Main Theorems 1.5–1.7 from the Key Lemma 4.3. Finally,
the proof of the Key Lemma is given in Sect. 5.

The reader will notice that some facts about integer forms and geometry
of lattices are discussed in more detail than might be necessary for a number-
theoretic audience. The reason is that the paper is addressed not only to
number theorists, but also to analysts interested in applications of number
theory to spectral problems.

2. Integer quadratic forms

2.1. Representation of integers by quadratic forms. Rational lattices are
closely related to integer quadratic forms. Let Γ ⊂ R

d with d ≥ 2 be a
rational lattice. Recall that we assume without loss of generality that βΓ = 1
in (1.8). Let γ1, . . . ,γd be a basis of the lattice Γ. Representing each vector
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γ ∈ Γ in the form γ =
∑d

j=1 xjγj with x = (x1, . . . , xd) ∈ Z
d, we introduce

the quadratic form

(2.1) f(x) = |γ|2 =
d∑

j,l=1

fjlxjxl, fjl = 〈γj , γl〉, j, l = 1, . . . , d.

By (1.8) the coefficients fjl are integer numbers, and the determinant

D = det{fjl}
is a positive integer.

Let us recall some results on the representation of integers by the form
(2.1). For details we refer to [8], [17], [14] and [10]. Here we follow mainly
[10]. A (positive) integer M is said to be representable by the form (2.1) if
for some x ∈ Z

d one has f(x) = M . Denote by

(2.2) R(M) = Rf (M) = #{x ∈ Z
d : f(x) = M}

the number of representations of M by the form (2.1). For d ≥ 4 the Hardy–
Littlewood method (see [8], [10], [13]) gives the formula

(2.3) R(M) =
(2π)d/2

D1/2Γ (d/2)
Md/2−1σ(M) +O(M (d−1)/4+ε)

as M → ∞, where ε > 0 is arbitrarily small, and σ(M) is the so-called
singular series, which can be explicitly found in the following way. Write
the canonical expansion of M as a product of primes,

(2.4) M =
∏

p

pα(p),

and define

(2.5) λ(2) = α(2) + 3, λ(p) = α(p) + 1, p > 2.

Now denote by ν(p) the number of solutions x ∈ Z
d (mod pλ(p)) of the

following congruence:

(2.6) f(x) = M (mod pλ(p)).

Then the singular series σ(M) is given by

σ(M) =
∏

p

χ(p), χ(p) = p−(d−1)λ(p)ν(p).

Clearly, the formula (2.3) is non-trivial only if the number σ(M) is not
very small, that is, the first term in (2.3) is larger than the remainder. The
following result gives a lower bound for σ(M) (see [10, Chapter III, Theorem
2 and Remark 7]):
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Proposition 2.1. Suppose that the congruence (2.6) is solvable for each

prime p dividing 2D. Then

σ(M) > c if d ≥ 5,(2.7)

σ(M) > c(ln lnM)−1
( ∏

p|2D

pα(p)
)−1

if d = 4.(2.8)

Here c denotes some positive constant independent of M .

In combination with (2.3), the above proposition shows that the first
term on the r.h.s. of (2.3) is dominant for d ≥ 5, and hence the solvability
of the congruence (2.6) suffices for a large number M to be representable
by the form f . On the contrary, for d = 4, in order to guarantee the rep-
resentability of M one needs to assume also that M does not contain large
powers of primes p dividing 2D. In fact, an example shows (see [2, Chapter
11, beginning of Sect. 9]) that the latter condition is essential for quaternary
forms.

We use Proposition 2.1 for the numbersM defined in the following special
way. Choose any integer M0 representable by the form f . For instance, one
can takeM0 = fjj for some j = 1, . . . , d. Consider the arithmetic progression

(2.9) Ms = M0 + Ts, s = 0, 1, 2, . . . ,

where

(2.10) T =
∏

p|2D

pλ(p),

λ(p) being determined as in (2.5) from the representation (2.4) for M0. The
next lemma provides a lower bound for R(Ms) which is more practically
usable than Proposition 2.1.

Lemma 2.2. For all sufficiently large s > s0(f,M0) the integers Ms in

(2.9) are representable by the form f , and the number of representations

satisfies the bound

R(Ms) > cM (d−2)/2
s if d ≥ 5,(2.11)

R(Ms) > c(ln lnMs)
−1Ms if d = 4.(2.12)

Here c = cf > 0 is independent of s.

Proof. From the definitions (2.9) and (2.10) we conclude that

Ms = M0 (mod pλ(p)) for all p | 2D.
Therefore for each p | 2D the congruence (2.6) with M = Ms is solvable, as
M0 is defined to be representable by f . Now the bound (2.11) follows from
(2.7) and (2.3).
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In order to prove (2.12), note that by the definitions (2.9) and (2.10) the
number Ms has the representation

Ms =
∏

p|2D

pα(p)M ′
s,

where M ′
s and 2D are prime to one another. Since the exponents α(p) are

taken from the representation (2.4) for M0, they are independent of s. This
implies that the product over p | 2D in the bound (2.8) does not depend
on s, and therefore (2.8) implies (2.12).

For the sum of four squares the bound (2.12) can be improved. Let

(2.13) f0(x) = x2
1 + x2

2 + x2
3 + x2

4,

so that D = 1. Take M0 = 1, which is clearly representable by f0. Then
T = 8 by (2.10), and the progression (2.9) takes the form

(2.14) Ms = 1 + 8s, s = 1, 2, . . . .

Lemma 2.3. The integers (2.14) are representable by the form (2.13)
and the number Rf0(M) satisfies the bound

(2.15) Rf0(Ms) > 8Ms.

Proof. By Jacobi’s Theorem (see [5, Theorem 386]), for every positive
integer M we have

(2.16) Rf0(M) = 8
∑

q|M
q 6=0 (mod4)

q.

Since Ms = 1 (mod4) by assumption, this formula yields (2.15).

Let us rewrite the estimates obtained in Lemmas 2.2 and 2.3 as one
formula, using the notation

(2.17) ψd(t) =





td−2, d ≥ 5,

t2(ln ln t)−1, d = 4,

t2, Γ = Z
4,

with t > 0. Now we can put together the estimates (2.11), (2.12) and (2.15):

Lemma 2.4. Let d ≥ 4, and let Ms be given either by (2.9) or (2.14)
(for Γ = Z

4). Then for sufficiently large s > s0(f,M0) the numbers Ms are

representable by the form f and

(2.18) R(Ms) > cψd(
√
Ms),

with a constant c = c(Γ, f) > 0 independent of s.
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2.2. Special sequences of integers. In this subsection we derive a version
of Lemma 2.4 for classes of lattice points with fixed residues. Consider the
following arithmetic progressions labelled by q = 1, 2, . . . :

(2.19) M (q)
s = M0 + 2sT q, s = 0, 1, . . . .

Obviously, for each q the numbers M
(q)
s form a subprogression of (2.9),

and hence the estimate (2.18) holds for sufficiently large M
(q)
s . In order to

proceed we need the following remark.

Remark 2.5. Suppose that

x = y (modA)

with A even. Then

f(x) = f(y) (mod 2A).

Indeed, let φ(a,b) = 〈a,b〉 be the symmetric bilinear form associated with
the quadratic form f , so that φ(a,a) = f(a). For the vector x = y +Az we
get

f(x) = f(y) + 2Aφ(y, z) +A2f(z).

As A is even we have 2A |A2, whence the claim.

We now introduce classes of lattice points with fixed residues, important
for our argument in what follows. Denote by F(q) the set of all solutions
y ∈ Z

d ∩ [0, T q)d of the congruence

(2.20) f(y) = M0 (mod 2T q).

Since the number T , defined in (2.10), is even, by Remark 2.5 one can
conclude that any solution x ∈ Z

d of the above congruence has the form
x = y (mod T q) with some y ∈ F(q). In particular, this implies that the
set F(q) is not empty, as M0 is assumed to be representable by the form f .

Denote by R
(q)
f (M

(q)
s ,y),y ∈ F(q), the number of vectors x ∈ Z

d such that

(2.21) f(x) = M (q)
s and x = y (modT q).

Observe that

(2.22) Rf (M (q)
s ) =

∑

y∈F(q)

R
(q)
f (M (q)

s ,y).

Lemma 2.6. Let d ≥ 4. For all sufficiently large s > s0(f,M0), there

exists a vector y
(q)
s ∈ F(q) such that

R
(q)
f (M (q)

s ,y(q)
s ) > cψd(

√
M

(q)
s ).

Here c = c(Γ, f, q) > 0 is independent of s.
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Proof. It follows from (2.22) by the Dirichlet principle that there is at

least one y = y
(q)
s ∈ F(q) such that

R
(q)
f (M (q)

s ,y) ≥ 1

T qd
Rf (M (q)

s ),

since the number of lattice points y ∈ Z
d ∩ [0, T q)d is precisely T qd. This

number is independent of s. Now the proclaimed result follows from the
bound (2.18).

3. Geometry of rational lattices. Now we apply the results of the
previous section to study the distribution of lattice points on spheres.

Let, as before, Γ ⊂ R
d with d ≥ 4 be a rational lattice, and f be the

quadratic form (2.1). We assume that a basis γ1, . . . ,γd of the lattice Γ is
fixed. For the case Γ = Z

4 we take the standard orthonormal basis. Denote
by

S(r;k) = {ξ : |ξ − k| = r},
the sphere of radius r > 0 centred at k ∈ R

d. The radius r is said to be
admissible for k if S(r;k) contains at least one point γ ∈ Γ. Define a special
collection Q(q), q = 1, 2, . . . , of centres k by the formula

(3.1) k ∈ Q
(q) if and only if k =

1

T q

d∑

j=1

yjγj , y = (y1, . . . , yd) ∈ F
(q).

Since F(q) ⊂ [0, T q)d, the set Q(q) is contained entirely in the fundamental
parallelepiped spanned by the basis vectors of the lattice Γ. For the elements
k of Q(q) one can describe the admissible radii:

Lemma 3.1. Consider the sequence of positive numbers r
(q)
s > 0, s =

0, 1, . . . , defined by the relation

(3.2) (r(q)s )2 =
M

(q)
s

T 2q
,

where M
(q)
s are the integers introduced in (2.19). Then

(i) The admissible radii for each k ∈ Q(q) form a subsequence of (3.2).

(ii) For each sufficiently large integer M
(q)
s in the progression (2.19)

there exists k
(q)
s ∈ Q(q) such that r

(q)
s is an admissible radius for

k
(q)
s and

(3.3) N[S(r(q)s ;k(q)
s )] > cψd(r

(q)
s ).

Here c = c(Γ, q) is independent of s.
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Proof. (i) By definition (3.1), for any

k =
1

T q

d∑

j=1

yjγj ∈ Q
(q), y ∈ F

(q), and γ = −
d∑

j=1

zjγj ∈ Γ, z ∈ Z
d,

we have

(3.4) |γ − k|2 =
1

T 2q
f(y + T qz).

Thus by (2.19) and (2.20) one can conclude that

|γ − k|2 =
M

(q)
s

T 2q

with some M
(q)
s from the progression (2.19).

(ii) Now suppose that M
(q)
s is sufficiently large. Then by Lemma 2.6 the

system (2.21) is solvable with some x ∈ Z
d and y

(q)
s ∈ F(q). Therefore, for

some z ∈ Z
d we have

(3.5)
M

(q)
s

T 2q
=

1

T 2q
f(y(q)

s + T qz) = |γ − k(q)
s |2,

where k
(q)
s , y

(q)
s and γ, z are related as in (3.4). The relation (3.5) and the

definition of the number R
(q)
f (M

(q)
s ,y) (see (2.21)) imply that

N[S(r(q)s ;k(q)
s )] = R

(q)
f (M (q)

s ,y(q)
s ).

Now the proclaimed lower bounds follow from Lemma 2.6.

Observe an elementary property of the radii r
(q)
s , which follows from (3.2)

and (2.19):

(3.6) (r
(q)
s+1)

2 − (r(q)s )2 =
2

T q
.

3.1. Spherical caps. Let r > 0, θ ∈ [0, π/2], k ∈ R
d and e ∈ R

d, |e| = 1.
The set defined by the formula

(3.7) K(r, θ;k, e) = {ξ ∈ S(r;k) : 〈ξ − k, e〉 > r cos θ}
is called a spherical cap of radius r and angle θ, centred at k ∈ R

d. The unit
vector e determines the orientation of the spherical cap.

Consider the spherical caps K(r
(q)
s , θ;k

(q)
s , e), where the radius r

(q)
s is

defined in (3.2) and the point k
(q)
s is chosen as in Lemma 3.1, so that r

(q)
s is

an admissible radius for k
(q)
s and the bound (3.3) holds.

Lemma 3.2. For all sufficiently large s > s0 there exists a unit vector es

such that

(3.8) N[K(r(q)s , θ;k(q)
s , es)] > cψd(r

(q)
s ).

Here c = C(Γ, q, θ) is positive for all θ ∈ (0, π/2], and it is independent of s.
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Proof. Consider an arbitrary finite covering of the unit sphere S(1;k)
by spherical caps of angle θ:

S(1;k) =

n(θ)⋃

j=1

K(1, θ;k, ej), so that S(r;k) =

n(θ)⋃

j=1

K(r, θ;k, ej),

with the same number n(θ) of spherical caps. By the Dirichlet principle we
conclude that there exists at least one spherical cap in the above covering
such that

N[K(r(q)s , θ;k(q)
s , e)] ≥ 1

n(θ)
N[S(r(q)s ;k(q)

s )].

It remains to use Lemma 3.1(ii) and relabel the vector e as es.

Certainly, the bound (3.8) can be deduced from the equidistribution of

lattice points on the spheres S(r
(q)
s ;k

(q)
s ) (see [10], [13]). One can even use a

more advanced result from [10] which states the above equidistribution for
spheres centred at arbitrary rational points (with respect to the lattice Γ).
On the other hand, our strategy is to use the most elementary number-
theoretic information available, and hence we content ourselves with a more
elementary proof.

4. Empty spherical shells

4.1. Empty shells. Denote by

L(r1, r2;k) = {ξ : r1 < |ξ − k| < r2}, 0 < r1 < r2,

the open spherical shell with radii r1, r2, centred at k. The boundary of
L(r1, r2;k) consists of two spheres S(r1;k) and S(r2;k). We call them the
interior and exterior boundary of the shell respectively. We call the shell
L(r1, r2;k) empty if it does not contain any points of the lattice Γ. For a
given rational lattice Γ introduce the following spherical shells:

(4.1) L
(q)
1,s = L(r(q)s , r

(q)
s+1;k

(q)
s ), L

(q)
2,s = L(r(q)s , r

(q)
s+1;k

(q)
s+1),

where the radii r
(q)
s are defined by (3.2) and the centres k

(q)
s are defined as

in Lemma 3.1(ii). By Lemma 3.1 the shells (4.1) are empty. Furthermore,

by the same lemma the shell L
(q)
1,s has lattice points on its interior boundary,

whereas L
(q)
2,s has lattice points on its exterior boundary.

Now define the following closed intervals associated with the shells (4.1):

(4.2)

∆−
q,s =

[
(r(q)s )2,

(r
(q)
s )2 + (r

(q)
s+1)

2

2

]
,

∆+
q,s =

[
(r

(q)
s )2 + (r

(q)
s+1)

2

2
, (r

(q)
s+1)

2

]
.
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One can immediately state a few obvious properties of these intervals. First,

(4.3) ∆−
q,s ∪∆+

q,s = [(r(q)s )2, (r
(q)
s+1)

2],
⋃

s≥0

(∆−
q,s ∪∆+

q,s) = [(r
(q)
0 )2,∞),

for each q ≥ 1. Furthermore, in view of (3.6) the intervals (4.2) have constant
length T−q. The intervals with different q may overlap. In order to charac-
terise this overlap, we introduce the function which is naturally called the
overlap length.

Let M = {∆l}, l ≥ 1, 2, . . . , be a collection (finite or infinite) of closed
intervals such that for each R > 0 only finitely many intersections ∆l ∩
[−R,R] are not empty. For each λ ∈ R define

Z(λ) = max
l

max{t : [λ− t, λ+ t] ⊂ ∆l}.

The function 2Z(λ) gives the length of the maximal closed interval centred
at λ which fits in one of the closed intervals∆l. In other words, the inequality
Z(λ) > 0 means that there is a ∆l ∈ M such that [λ−Z(λ), λ+Z(λ)] ⊂ ∆l.
Clearly, the function Z(λ) is continuous and piecewise linear. If Z(λ) is
positive on a subset E ⊂ R, then the intervals ∆l entirely cover E. To
indicate the dependence of Z(λ) on the collection M = {∆l} we use the
notation Z(λ; M).

Lemma 4.1. Let q > 1 be an integer such that

(4.4) T q−1 > 4M0.

Consider the following collection of closed intervals:

(4.5) M = {∆−
q,s, ∆

+
q,s, ∆

−
q+1,s, ∆

+
q+1,s : s = 1, 2, . . . }.

Then for all λ ≥ 1 we have

Z(λ; M) ≥ ζ with ζ =
M0(T

2 − 1)

2T 2q+2
.

In particular , ζ > 2−2−6q if Γ = Z
4.

Proof. By definitions (3.2) and (2.19) the endpoints of the intervals ∆±
q,s

and ∆±
q+1,s are of the form

M0

T 2q
+
m

T q
, m ∈ N ∪ {0}, and

M0

T 2(q+1)
+

n

T q+1
, n ∈ N ∪ {0},

respectively. By the condition (4.4),

0 <
M0

T 2q+2
<
M0

T 2q
≤ 1

4T q+1
.

Consequently,

2Z(λ) ≥ 2ζ =
M0

T 2q
− M0

T 2q+2
> 0.
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To prove the estimate for Γ = Z
4 one recalls (see the line before (2.14)) that

in this case M0 = 1 and T = 8.

Lemma 4.2.

(i) If λ is an interior point of the closed interval ∆−
q,s ∪ ∆+

q,s, then

S(
√
λ;k

(q)
s ) ⊂ L

(q)
1,s and S(

√
λ;k

(q)
s+1) ⊂ L

(q)
2,s.

(ii) Let q satisfy (4.4), and let 0 ≤ δ < ζ. Then for all sufficiently large

λ one can find an s = 1, 2, . . . and a j = q, q+1 such that the empty

shell L
(j)
1,s contains the closure of the shell L(

√
λ− δ,

√
λ+ δ;k

(j)
s ),

and the empty shell L
(j)
2,s contains the closure of the shell

L(
√
λ− δ,

√
λ+ δ;k

(j)
s+1). Moreover ,

N[B(
√
λ− δ;k(j)

s )] = N[B(
√
λ+ δ;k(j)

s )] = N[B(r
(j)
s+1;k

(j)
s )],(4.6)

N[B(
√
λ− δ;k

(j)
s+1)] = N[B(

√
λ+ δ;k

(j)
s+1)] = N[B(r

(j)
s+1;k

(j)
s+1)].(4.7)

Proof. Part (i) follows directly from the definitions (4.2) (see also (4.3)).
(ii) By Lemma 4.1, for λ ≥ 1 one can find an interval ∆ from the col-

lection (4.5) such that [λ − δ, λ + δ] ⊂ ∆. Let ∆ = ∆+
j,s or ∆−

j,s with some
s = 1, 2, . . . and j = q or q + 1. Then by (i) the closures of the shells

L(
√
λ− δ,

√
λ+ δ;k

(j)
s ) and L(

√
λ− δ,

√
λ+ δ;k

(j)
s+1) belong to the shells

L
(j)
1,s and L

(j)
2,s respectively. Since these shells are empty, the relations (4.6)

and (4.7) follow at once.

4.2. The Key Lemma. Proof of the Main Theorems. Recall that the
numbers ψd(t) and N± are defined by (2.17) and (1.1) respectively, and ζ is
defined in Lemma 4.1.

Lemma 4.3. Let Γ ⊂ R
d be a rational lattice, and let q be such that (4.4)

is satisfied. Let ζ be the positive constant defined in Lemma 4.1. Suppose that

j = q or q+ 1. Then for all sufficiently large r > r0(Γ) the following bounds

hold.

(i) If for some s ≥ 1 and j = q or q + 1,

(4.8) [r2, r2 + ζ/100] ⊂ ∆−
j,s,

then

(4.9) N[B(r;k(j)
s )] − N

−(r) ≥ cΓψd(r
(j)
s ).

(ii) If for some s ≥ 1 and j = q or q + 1,

(4.10) [r2 − ζ/100, r2] ⊂ ∆+
j,s,

then

(4.11) N
+(r) − N[B(r;k

(j)
s+1)] ≥ cΓψd(r

(j)
s+1).
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Let us now deduce the Main Theorems from the above Key Lemma:

Proof of Theorems 1.5–1.7. By Lemma 4.1 for all sufficiently large λ
there is an interval ∆ in the collection (4.5) such that [λ − ζ, λ + ζ] ⊂ ∆.
Setting

(4.12) δ0 =
99

100
ζ,

we see that for every µ ∈ [λ− δ, λ+ δ] with 0 ≤ δ ≤ δ0,

[µ− ζ/100, µ+ ζ/100] ⊂ [λ− δ, λ+ δ] ⊂ ∆,

which means that r =
√
µ satisfies at least one of the conditions (4.8) or

(4.10) with suitable j = q, q + 1 and s = 1, 2, . . . .

Suppose that ∆ = ∆−
j,s, i.e. that (4.8) holds. Then, using (4.9) with

r2 = λ+ δ, 0 ≤ δ ≤ δ0 and (4.6), we find that

N
+(

√
λ− δ) − N

−(
√
λ+ δ) ≥ N[B(

√
λ− δ;k(j)

s )] − N
−(

√
λ+ δ)

= N[B(
√
λ+ δ;k(j)

s )] − N
−(

√
λ+ δ)

> cΓψd(r
(j)
s ).

By definition (4.2) and (3.6) the number λ ∈ ∆−
j,s satisfies the estimate

λ ≥ (r
(j)
s )2 ≥ λ − 1, which leads to (1.10)–(1.12) in view of the definition

(2.17).

Similarly, if∆ = ∆+
j,s, i.e. if (4.10) holds, then using (4.11) with r2 = λ−δ

and (4.7), we find that

N
+(

√
λ− δ) − N

−(
√
λ+ δ) ≥ N

+(
√
λ− δ) − N[B(

√
λ+ δ;k

(j)
s+1)]

= N
+(

√
λ− δ) − N[B(

√
λ− δ;k

(j)
s+1)]

> cΓψd(r
(j)
s+1).

By definition (4.2) and (3.6) the number λ ∈ ∆+
j,s satisfies the estimate

λ+ 1 ≥ (r
(j)
s+1)

2 ≥ λ, which again leads to (1.10)–(1.12) in view of (2.17).

To obtain the value δ0 = 2−15 in Theorem 1.7 one notes that for Γ = Z
4

the relation (4.4) holds with M0 = 1, T = 8 and q = 2, so that ζ > 2−14,
and hence (4.12) yields the bound δ0 > 2−15, which completes the proof if
one redefines δ0 = 2−15.

5. Proof of Lemma 4.3

5.1. Idea of the proof. Our approach uses a simple idea which eventually
reduces the problem to an elementary question of planar geometry. Suppose



Lattice points in large balls 259

that a number r satisfies (4.8) and r > r
(j)
s . In order to prove (4.9) we find

a point k′ such that N[B(r,k
(j)
s )] − N[B(r;k′)] > cψd(r

(j)
s ).

The process of finding k′ is based on a simple geometrical observation.

If k′ = k
(j)
s , then, by Lemma 4.2(i), the sphere S(r;k′) lies in the empty

shell L
(j)
1,s = L(r

(j)
s , r

(j)
s+1;k

(j)
s ) and hence the ball B(r;k′) contains the same

number of lattice points as the exterior ball B(r
(j)
s+1;k

(j)
s ). If one moves k′

from k
(j)
s , then the number of lattice points does not change, as long as

the difference k′ − k
(j)
s remains sufficiently small. However, if one keeps

moving k′ until the sphere S(r;k′) crosses the interior sphere S(r
(j)
s ;k

(j)
s ),

remaining entirely inside the exterior one, the ball B(r;k′) does not acquire
new lattice points, but loses some. For instance, the lattice points on the

spherical cap cut off from S(r
(j)
s ;k

(j)
s ) by S(r;k′) are outside B(r;k′). Thus

the number N[B(r;k′)] decreases, and this drop can be estimated with the
help of Lemma 3.2. Thus it remains to find a new suitable position of the
centre, i.e. k′.

The proof of (4.11) uses a similar idea. Namely, we seek a sphere S(r;k′′)

which encloses the interior boundary of the empty shell L
(j)
2,s and crosses the

exterior one. When the centre moves from k
(j)
s+1 to k′′, the ball B(r;k′′) does

not lose any lattice points, but acquires the points γ ∈ Γ that lie on the

spherical cap cut out from S(r
(j)
s+1;k

(j)
s+1) by S(r;k′′). The increase in the

number of points is again estimated by Lemma 3.2.

5.2. Two elementary geometrical problems. In order to implement the
simple idea described above, we need to solve two problems of elementary
geometry concerned with arbitrary shells of the form L(r1, r2;k) with 0 <
r1 < r2 in R

d. The first of the following two lemmas provides the maximal
radius r of a sphere S(r;k′) which is placed inside the closure of the shell
L(r1, r2;k) in such a way that it cuts off a spherical cap of some specified
angle θ from the interior sphere S(r1;k).

Lemma 5.1. For a given spherical shell L(r1, r2;k) with 0 ≤ r1 < r2
and for a given angle θ ∈ [0, π/2], let r− = r−(r1, r2, θ) > 0 and k− =
k−(r1, r2, θ)∈R

d be such that S(r−;k−)⊂B(r2;k) and the sphere S(r−;k−)
satisfies the following requirements:

(1) it touches the exterior sphere S(r2;k),
(2) S(r1;k) \B(r−;k−) is a spherical cap of angle θ centred at k.

Then

t−(r1, r2, θ) := |k− k−| =
r22 − r21

2(r1 cos θ + r2)
,

r− = r−(r1, r2, θ) = r2 − t−(r1, r2, θ).(5.1)
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The next lemma provides the minimal radius r of a sphere S(r;k′′) which
encloses the interior boundary S(r1;k) of the shell L(r1, r2;k), and cuts out
from the exterior boundary a spherical cap of a specified angle θ.

Lemma 5.2. For a given spherical shell L(r1, r2;k) with 0 ≤ r1 < r2
and for a given angle θ ∈ [0, π/2], let r+ = r+(r1, r2, θ) > 0 and k+ =

k+(r1, r2, θ)∈R
d be such that S(r1;k)⊂B(r+;k+) and the sphere S(r+;k+)

satisfies the following requirements:

(1) it touches the interior sphere S(r1;k),
(2) S(r2;k) ∩B(r+;k+) is a spherical cap of angle θ centred at k.

Then

t+(r1, r2, θ) := |k− k+| =
r22 − r21

2(r2 cos θ + r1)
,

r+ = r+(r1, r2, θ) = r1 + t+(r1, r2, θ).(5.2)

Remark 5.3. Due to the rotational symmetry of the problem, along
with the sphere S(r±;k±), any sphere S(r±; k̃) with |k̃ − k| = |k± − k|
satisfies conditions (1) or (2) of Lemma 5.1 or 5.2 respectively. Thus we may
assume that k±−k = |k±−k|e1, where e1 is the first vector of the canonical
basis in R

d.

Moreover, in view of axial symmetry, it suffices to prove Lemmas 5.1
and 5.2 for d = 2 only.

Proof of Lemma 5.1. Referring to Remark 5.3 we consider only the case
d = 2. Furthermore, without loss of generality we may assume that k = 0
and k− lies on the x-axis, so that t− = |k−|. Let x, y be the coordinates
of the point in the upper half plane where S(r−;k−) and S(r1;0) intersect
(see Figure 1). Write the following simple identities:





x2 + y2 = r21,

(x− t−)2 + y2 = r2−,

t− + r− = r2,

x = −r1 cos θ.

From the first two relations we find that

−2t−x+ t2− = r2− − r21.

From the third equality we get

r2− − r21 = (r2 − t−)2 − r21 = r22 − 2r2t− + t2− − r21,

which together with the previous formulae implies that

−2xt− = r22 − 2r2t− − r21.
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r
−

r1

t
−

θ

r2 O

(x, y)

Fig. 1

Inserting x from the fourth relation, we get

2r1 cos θt− + 2r2t− = r22 − r21,

which leads to

t− =
r22 − r21

2(r1 cos θ + r2)
.

The required formula for r− follows from the third relation.

Proof of Lemma 5.2. As in the previous proof, we consider only the
case d = 2. We also assume that k = 0 and k+ lies on the x-axis, so that
t+ = |k+|. Let x, y be the coordinates of the point in the upper half plane
where S(r+;k+) and S(r2;0) intersect (see Figure 2). Write the following
simple identities: 




x2 + y2 = r22,

(x− t+)2 + y2 = r2+,

r+ − t+ = r1,

x = r2 cos θ.

r+

r2

t+

θr1

O

(x, y)

Fig. 2
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From the first two relations we find that

−2t+x+ t2+ = r2+ − r22.

From the third equality we get

r2 − r22 = (r1 − t+)2 − r22 = r21 − 2r1t+ + t2+ − r22,

which together with the previous formulae implies that

−2xt+ = r21 − 2r1t+ − r22.

Inserting x from the fourth relation, we get

2r2 cos θt+ + 2r1t+ = r22 − r21,

which leads to

t+ =
r22 − r21

2(r2 cos θ + r1)
.

The required formula for r+ follows from the third relation.

Let us now investigate the behaviour of the radii r± as r1, r2 → ∞:

Lemma 5.4. Suppose that r1 → ∞ and

(5.3) sup(r22 − r21) ≤ A <∞,

with some A > 0. For a given ω ∈ (0, A) let θ0 = θ0(A,ω) ∈ (0, π/2) be the

angle such that

(5.4) cos θ0 =
A− ω

A+ ω
.

Then for all sufficiently large r1 one has the inequalities

(5.5) r2−(r1, r2, θ0) >
r21 + r22

2
− ω, r2+(r1, r2, θ0) <

r21 + r22
2

+ ω.

Proof. The condition (5.3) implies that

r2 = r1 +O(r−1
1 ), r1 = r2 +O(r−1

2 ),

as r1 → ∞. Consequently, it follows from Lemmas 5.1 and 5.2 that

r−(θ) = r2 −
r22 − r21

2r2(cos θ + 1 +O(r−2
2 ))

= r2 −
r22 − r21

2r2(cos θ + 1)
+O(r−3

2 ),

r+(θ) = r1 +
r22 − r21

2r1(cos θ + 1 +O(r−2
1 ))

= r1 +
r22 − r21

2r1(cos θ + 1)
+O(r−3

1 ).

Here for the sake of brevity we omit the dependence on r1, r2 from the
notation of r±. Squaring these equalities we get

r2−(θ) = r22 −
r22 − r21

cos θ + 1
+O(r−2

2 ),

r2+(θ) = r21 +
r22 − r21

cos θ + 1
+O(r−2

1 ).
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In particular,

r2−(0) = r22 −
r22 − r21

2
+O(r−2

2 ) =
r21 + r22

2
+O(r−2

2 ),

r2+(0) = r21 +
r22 − r21

2
+O(r−2

1 ) =
r21 + r22

2
+O(r−2

1 ).

Consider the differences:

r2−(0) − r2−(θ) = (r22 − r21)g(θ) +O(r−2
2 ),

r2+(θ) − r2+(0) = (r22 − r21)g(θ) +O(r−2
1 ),

with

g(θ) =
1

cos θ + 1
− 1

2
.

Note that g(θ) varies from 0 to 1/2 for θ in [0, π/2]. Define the angle θ0 =
θ0(A,ω) by the requirement

g(θ0) =
ω

2A
.

This condition is equivalent to (5.4). Then

r2−(0) − r2−(θ0) ≤
ω

2
+O(r−2

2 ), r2+(θ0) − r2+(0) ≤ ω

2
+O(r−2

1 ),

and thus for sufficiently large r1 the inequalities (5.5) hold.

Relying on Lemma 5.4 we shall now find intervals of values r for which
the sphere S(r;k′) cuts out a spherical cap either from the interior or from
the exterior boundary of the shell L(r1, r2;k).

Lemma 5.5. Let r1 be sufficiently large and suppose the condition (5.3)
holds with some A > 0. Suppose also that

(5.6) r22 − r21 ≥ 9ω

for some ω ∈ (0, A/9). Let θ0 ∈ (0, π/2) be the angle uniquely defined

by (5.4).

(i) If

(5.7) r21 ≤ r2 ≤ r21 + r22
2

− ω,

then there is k′ ∈ B(r2,k) such that S(r1;k) \B(r;k′) is a spherical

cap of radius r1 and angle θ0 centred at k, and S(r;k′) ⊂ B(r2;k).
(ii) If

(5.8)
r21 + r22

2
+ ω ≤ r2 ≤ r22,

then there is k′′ ∈ R
d such that S(r2;k)∩B(r;k′′) is a spherical cap

of radius r2 and angle θ0 centred at k, and S(r1;k) ⊂ B(r;k′′).
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Proof. Let θ = θ0(A,ω) be as constructed in Lemma 5.4, and let r1 be
a sufficiently large fixed number.

(i) Consider the radius r− in (5.1) as a function of the radius r2 and
write it as r(̺):

r(̺) = ̺− ̺2 − r21
2(r1 cos θ0 + ̺)

=
1

2
(r1 cos θ0 + ̺) +

r21 sin2 θ0
2(r1 cos θ0 + ̺)

.

Here we assume that ̺ ∈ [r1, r2]. Clearly, r(r1) = r1 and r(r2) = r− =
r−(r1, r2, θ0). It is an easy exercise to find that

2∂̺r(̺) = 1 − r21 sin2 θ0
(r1 cos θ0 + ̺)2

> 0, ̺ ∈ [r1, r2].

Consequently, the function r(̺) is strictly increasing on [r1, r2], and thus the
inverse function ̺(r) is strictly increasing on [r1, r−]. In view of Lemma 5.4,

r2− >
r21 + r22

2
− ω.

Consequently, for all r satisfying (5.7), we have ̺(r) < r2, and hence, the
sphere

S(r;k + t−(r1, ̺, θ0)e1)

(see (5.1) for definition of t−) satisfies all the requirements of (i).
Before proving (ii), note that in view of (5.4), the condition ω ∈ (0, A/9)

ensures that cos θ0 ≥ 4/5, which implies that θ0 ∈ (0, π/4), and hence
0 < tan θ0 < 1.

Consider the radius r+ in (5.2) as a function of r1 and write it as r(̺):

r(̺) = ̺+
r22 − ̺2

2(r2 cos θ0 + ̺)
=

1

2
(r2 cos θ0 + ̺) +

r22 sin2 θ0
2(r2 cos θ0 + ̺)

.

Here we assume that ̺ ∈ [r1, r2]. Clearly, r(r1) = r+ = r+(r1, r2, θ0) and
r(r2) = r2. It is an easy exercise to find that

2∂̺r(̺) = 1 − r22 sin2 θ0
(r2 cos θ0 + ̺)2

, ̺ ∈ [r1, r2].

Since 0 < tan θ0 < 1, this derivative is strictly positive for all ̺ ∈ [r1, r2].
Consequently, r(̺) is strictly increasing on [r1, r2], and thus ̺(r) is strictly
increasing on [r+, r2]. In view of Lemma 5.4,

r2+ <
r21 + r22

2
+ ω.

Consequently, for all r satisfying (5.8), we have ̺(r) > r1, and hence, the
sphere

S(r;k + t+(̺, r2, θ0)e1)

(see (5.2) for definition of t+) satisfies all the requirements of (ii).
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5.3. Proof of Lemma 4.3. Let q satisfy (4.4). Now we apply Lemma 5.5

with r1 = r
(j)
s , r2 = r

(j)
s+1 and k = k

(j)
s or k

(j)
s+1 with s = 1, 2, . . . , j = q, q+1.

Note straightaway that the conditions (5.3) and (5.6) are fulfilled in view of
(3.6). More precisely, (5.3) is satisfied with A = 1. Furthermore, by definition
of ζ, we have

(r
(j)
s+1)

2 − (r(j)s )2 ≥ 2ζ >
ζ

100
,

so that (5.6) is fulfilled with ω = ζ/100 < A/9.

Suppose that (4.8) holds for j = q or q + 1, that is,

(r(j)s )2 ≤ r2 ≤
(r

(j)
s )2 + (r

(j)
s+1)

2

2
− ζ

100

(see definition (4.2)). We use Lemma 5.5(i) with r1 = r
(j)
s , r2 = r

(j)
s+1 and

k = k
(j)
s . Let S(r;k′) and K(r

(j)
s , θ0;k

(j)
s , e) = S(r

(j)
s ;k

(j)
s ) \ B(r;k′) with

some unit vector e (see definition (3.7)) be the sphere and the spherical cap

constructed in Lemma 5.5(i). Since S(r;k′) is strictly inside B(r
(j)
s+1;k

(j)
s )

and the shell L(r
(j)
s , r

(j)
s+1;k

(j)
s ) is empty, one can write

N[B(r;k′)] ≤ N[B(r
(j)
s+1;k

(j)
s )] − N[K(r(j)s , θ0;k

(j)
s , e)]

= N[B(r;k(j)
s )] − N[K(r(j)s , θ0;k

(j)
s , e)].

By Remark 5.3 the direction e can be chosen arbitrarily. We choose it as in
Lemma 3.2, that is, e = es. Consequently, by Lemma 3.2,

N[B(r;k(j)
s )] − N

−(r) ≥ N[B(r;k(j)
s )] − N[B(r;k′)]

≥ N[K(r(j)s , θ0;k
(j)
s , es)] ≥ c(θ0)ψd(r

(j)
s ),

which coincides with (4.9).

Similarly one proves the bound (4.11). Precisely, suppose that (4.10)
holds, that is,

(r
(j)
s )2 + (r

(j)
s+1)

2

2
+

ζ

100
≤ r2 ≤ (r

(j)
s+1)

2.

Now we use Lemma 5.5(ii) with r1 = r
(j)
s , r2 = r

(j)
s+1 and k = k

(j)
s+1. Let

S(r;k′′) and K(r
(j)
s+1, θ0;k

(j)
s+1, e) = S(r

(j)
s+1;k

(j)
s+1) ∩ B(r;k′′) be the sphere

and the spherical cap constructed in Lemma 5.5(ii). Since S(r
(j)
s ;k

(j)
s+1) is

strictly inside B(r;k′′) and the shell L(r
(j)
s , r

(j)
s+1;k

(j)
s+1) is empty, one can

write

N[B(r;k′′)] ≥ N[B(r
(j)
s ;k

(j)
s+1)] + N[K(r

(j)
s+1, θ0;k

(j)
s+1, e)]

= N[B(r;k
(j)
s+1)] + N[K(r

(j)
s+1, θ0;k

(j)
s+1, e)].
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Referring again to Remark 5.3 and using Lemma 3.2 again, we get

N
+(r) − N[B(r;k

(j)
s+1)] ≥ N[B(r;k′′)] − N[B(r;k

(j)
s+1)]

≥ N[K(r
(j)
s+1, θ0;k

(j)
s+1, es)] ≥ c(θ0)ψd(r

(j)
s+1),

which is (4.11).
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