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0. Introduction. A smooth projective curve X defined over an alge-
braically closed field k is called d-gonal if it admits a map φ : X → P

1 over
k of degree d. If the genus g ≥ 2 and d = 2 then X is called hyperelliptic.

We will say that X is trigonal, tetragonal and pentagonal for d = 3, d = 4
and d = 5 respectively.

Let N be a positive integer, and let

Γ0(N) :=

{(

a

c

b

d

)

∈ SL2(Z)

∣

∣

∣

∣

c ≡ 0 mod N

}

.

Let X0(N) denote the modular curve corresponding to Γ0(N). Then Zograf
[Z] gave a linear bound on the level N of d-gonal modular curves X0(N).
Also Nguyen and Saito [N-Sa] proved an analogue of the strong Uniform
Boundedness Conjecture for elliptic curves defined over function fields of
dimension one by using the connection with giving a bound on the level N
of d-gonal modular curves X0(N).

Recently, Hasegawa and Shimura [H-S] gave a highly sharpened upper
bound for 3 ≤ d ≤ 5 by trying to determine d-gonal modular curves X0(N)
for such d. For d = 2 it was done by Ogg [O]. Actually Hasegawa and
Shimura succeeded in determining all trigonal modular curves X0(N) but
failed for tetragonal and pentagonal X0(N).

The following lists N for which they did not know whether X0(N) was
tetragonal or not:

76, 82, 84, 88, 90, 93, 97, 99, 106, 108, 109, 113, 115, 128, 133, 137,
157, 169.

In this work we prove that X0(N) is tetragonal only for N = 88, 99, 109
among the above 18 numbers. Combining with the result of [H-S] we get the
following:
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Theorem 0.1. The modular curve X0(N) has Gon(X0(N)) = 4 if and

only if
g = 5 : N = 42, 51, 52, 55, 56, 57, 63, 65, 67, 72, 73, 75,

g = 6 : N = 58, 79, 121,

g = 7 : N = 60, 62, 68, 69, 77, 80, 83, 85, 89, 91, 98, 100,

g = 8 : N = 74, 101, 103, 109, 125,

g = 9 : N = 66, 70, 87, 88, 95, 96, 99, 107,

g = 10 : N = 92,

g = 11 : N = 78, 94, 104, 111, 119, 131,

g = 13 : N = 143,

g = 14 : N = 167,

g = 16 : N = 191,

g = 17 : N = 142.

Remark 0.2. Note that rational, elliptic and hyperelliptic curves always
admit tetragonal maps. One can find a list of those curves X0(N) in [O].
For d ≥ 1

2
g + 1, any curve of genus g has a d-gonal map [K-L]. Since all

the modular curves X0(N) with Gon(X0(N)) = 3 are of genus g = 3, 4
(see [H-S]), they are tetragonal. Combining with Theorem 0.1 one can get a
complete list of X0(N) which are tetragonal.

1. Definitions and general results. Let X be a smooth projective
curve of genus g ≥ 4.

1.1. Gonality. For a line bundle L ∈ PicX, a subspace V ⊂ H0(X, L)
is said to be a gr

d if deg(L) = d and dim(V ) = r + 1. The gonality of X is

Gon(X) := min{d | X has a g1
d}.

In this paper, when we say that X is d-gonal it does not mean Gon(X) = d
but just that X admits a g1

d. Thus d-gonal curves X may have Gon(X) < d.
For example all hyperelliptic curves are automatically tetragonal.

1.2. Clifford index. For a line bundle L ∈ PicX, the Clifford index of L
is the integer

Cliff(L) := deg(L) − 2(h0(X, L) − 1)

and the Clifford index of X itself is defined as

Cliff(X) := min{Cliff(L) | h0(X, L) ≥ 2, h1(X, L) ≥ 2}.

It is well known that Cliff(X) + 2 ≤ Gon(X) ≤ Cliff(X) + 3 (see [C-M]).

1.3. Clifford dimension. We will say that L ∈ PicX contributes to the

Clifford index of X if both h0(X, L) ≥ 2, and h1(X, L) ≥ 2, and that L
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computes the Clifford index of X if in addition Cliff(X) = Cliff(L). The
Clifford dimension of X is defined as

min{h0(X, L) − 1 | L computes the Clifford index of X}.

If a line bundle L achieves the minimum and computes the Clifford index,
then we will say that L computes the Clifford dimension. In most cases, the
Clifford dimension ℓ is equal to 1 and the curves with ℓ ≥ 2 are rather rare.
It is a classical result that ℓ = 2 if and only if X is a smooth plane curve
of degree ≥ 5. The case ℓ = 3 was settled by Martens [M]. He proved that
ℓ = 3 if and only if X is a complete intersection of two irreducible cubic
surfaces in P

3, and hence its genus g is 10.

1.4. Property Np. If X is a non-hyperelliptic curve, then the canonical
line bundle ωX defines an embedding X →֒ PH0(X, ωX) = P

g−1. Consider
the minimal free resolution

0 → Fg−2 → · · · → F2 → F1 → S → SX → 0

of the homogeneous coordinate ring SX = S/IX as an S-module where
S = C[X0, X1, . . . , Xg−1] and Fi =

⊕

j∈Z
S(−i − j)βi,j . We call βi,j the

graded Betti numbers. Due to Green and Lazarsfeld [G-L], X →֒ P
g−1 is said

to have property Np if the resolution is of the form

· · · → Sβp,1(−p − 1) → · · · → Sβ2,1(−3) → Sβ1,1(−2) → S → SX → 0.

Therefore property N1 holds if and only if the homogeneous ideal is gen-
erated by quadrics, and property Np holds for p ≥ 2 if and only if it has
property N1 and the kth syzygies among the quadrics are generated by linear
syzygies for all 1 ≤ k ≤ p − 1. Now we recall the following:

Theorem 1.1 (M. Green and R. Lazarsfeld, Appendix in [G]). Let X
be a smooth non-hyperelliptic curve of genus g ≥ 3. Then the canonical

embedding X →֒ P
g−1 fails to have property Np for p ≥ Cliff(X).

Thus if the canonical embedding X →֒ P
g−1 has property Np, then

Cliff(X) ≥ p + 1 and Gon(X) ≥ p + 3.

1.5. Betti numbers. When Cliff(X) ≤ 2, Schreyer clarified the relation
between the minimal free resolution of the canonical embedding X →֒ P

g−1

and the existence of special linear series of divisors on X. For g ≤ 7, see
Table 1 in [Sch1]. For g ≥ 8, the graded Betti number β2,2 has one of the
values given in the following table [Sch2]:

β2,2 (g − 4)(g − 2)
(

g−2

2

)

− 1 g − 4 0

Linear series ∃ g1

3 ∃ g2

6 or g3

8 ∃ a single g1

4 Cliff(C) ≥ 3
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2. Proof. We proceed to prove that X0(N) is tetragonal only for N =
88, 99, 109 among the 18 numbers N in §0. For this purpose we compute
the graded Betti numbers of the canonical embedding of X0(N). We use the
computer programs “Maple” and “Singular”. First we calculate the homo-
geneous ideal of the canonical embedding of X0(N) by using Maple.

Note that, for such N , X0(N) is not hyperelliptic [O]. Thus X0(N) can
be identified with the canonical curve which is the image of the canonical
embedding

X0(N) ∋ P 7→ (f1(P ) : · · · : fg(P )) ∈ P
g−1

where {f1, . . . , fg} is a basis of the space of cusp forms of weight 2 on X0(N).
One can get such a basis and the corresponding Fourier coefficients from [St].
Then to obtain the minimal generating system of the homogeneous ideal
I(X0(N)), we only have to compute the relations of the fifj (1 ≤ i, j ≤ g)
by Petri’s theorem. Since there are (g−2)(g−3)/2 linear relations among the
fifj , we get quadric generators Qk(x1, . . . , xg) with 1 ≤ k ≤ (g−2)(g−3)/2
by assigning xi to fi (for details see [H-S]).

Now we compute the Betti numbers by using Singular. In fact when the
genus of X0(N) is big then Singular does not work efficiently. Note that
since the canonical embedding is always projectively Cohen–Macaulay, the
Betti numbers of the canonical curve are equal to those of the hyperplane
section, which allows us to get Betti numbers easier.

We exhibit the so-called Betti table of the canonical embedding for our
cases in Table 1.

Case 1. The canonical embeddings of X0(N) for

N = 76, 82, 84, 90, 93, 97, 106, 108, 113, 115, 128, 133, 137, 157, 169

have property Np for p ≥ 2. Thus Gon(X0(N)) ≥ 5 by §1.4.

Case 2. The curve X0(88) is of genus 9 and β2,2 = 9− 4 = 5. Thus it is
tetragonal by §1.5.

Case 3. For N = 99 and 109, Cliff(X0(N)) = 2. Indeed, by §1.4,
Cliff(X0(N)) ≥ 2 because the canonical embeddings of these curves have
property N1. Also Cliff(X0(N)) ≤ 2 since they have a g2

6 or a g3
8 by §1.4.

Therefore Cliff(X0(N)) is computed by a gℓ
2+2ℓ where ℓ denotes the Clifford

dimension. It remains to show that ℓ = 1. We already know that ℓ ≤ 3
from the existence of a g2

6 or a g3
8. Since a smooth plane curve of degree d is

of genus (d − 1)(d − 2)/2, the curves X0(99) and X0(109) cannot be plane
curves. Thus ℓ 6= 2 by §1.3. Also ℓ 6= 3 because their genera are less than 10.
Therefore Cliff(X0(N)) is computed by a g1

4 and hence X0(99) and X0(109)
are tetragonal.
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Table 1. The graded Betti numbers for the canonical embedding

Genus X0(N) β1,2 β2,2 β3,2 Genus X0(N) β1,2 β2,2 β3,2

β1,1 β2,1 β3,1 β1,1 β2,1 β3,1

7 X0(97) 0 0 16 9 X0(128) 0 0 0

10 16 0 21 64 70

8 X0(76) 0 0 21 10 X0(108) 0 0 20

15 35 21 28 105 162

X0(109) 0 14 35 11 X0(84) 0 0 0

15 35 35 36 160 315

X0(169) 0 0 21 X0(90) 0 0 0

15 35 21 36 160 315

9 X0(82) 0 0 8 X0(115) 0 0 0

21 64 70 36 160 315

X0(88) 0 5 24 X0(133) 0 0 0

21 64 75 36 160 315

X0(93) 0 0 0 X0(137) 0 0 0

21 64 70 36 160 315

X0(99) 0 20 64 12 X0(106) 0 0 0

21 64 90 45 231 550

X0(113) 0 0 8 X0(157) 0 0 0

21 64 70 45 231 550
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