On the behavior close to the unit circle of the power series whose coefficients are squared Möbius function values

by
Oleg Petrushov (Moscow)

1. Notation and introduction. In this paper we study the series

$$
\mathfrak{M}_{0}(z)=\sum_{n=1}^{\infty} \mu^{2}(n) z^{n} .
$$

We set

$$
e^{2 \pi i \theta}=e(\theta), \quad S_{N}(\beta)=\sum_{n<N} \mu^{2}(n) e(n \beta), \quad \tau(\chi, l)=\sum_{k=1}^{q} \chi(k) e(l k / q)
$$

for a character χ modulo q, and $\bar{\chi}$ is a character conjugate to χ.
Let $g(x) \geq 0$. The equality $f(x)=\Omega(g(x))$ when $x \rightarrow a$ means that there is an infinite sequence $t_{k} \rightarrow a$ such that $\left|f\left(t_{k}\right)\right|>\delta g\left(t_{k}\right)$ for some $\delta>0$. Let $f(x)$ be real. The equality $f(x)=\Omega_{ \pm}(g(x))$ when $x \rightarrow a$ means that there are infinite sequences $t_{k} \rightarrow a, u_{k} \rightarrow a$ such that $f\left(t_{k}\right)>\delta g\left(t_{k}\right)$, $f\left(u_{k}\right)<-\delta g\left(u_{k}\right)$ for some $\delta>0$. The notations $A \ll B$ or $B \gg A$ mean $|A|=O(|B|)$.

In 1991 R. S. Baker and G. Harman [BH] obtained results for $\mu(n)$ from which it follows that if for each Dirichlet character χ the function $L(s, \chi)$ has no zeros in the half-plane $\{\Re s>a\}$ then for any $\beta \in \mathbb{R}$,

$$
\begin{equation*}
\sum_{n=1}^{\infty} \mu(n) e(n \beta) r^{n}=O\left((1-r)^{-b-\varepsilon}\right), \quad r \rightarrow 1-, \tag{1.1}
\end{equation*}
$$

where

$$
b= \begin{cases}a+1 / 4 & \text { if } 1 / 2 \leq a<11 / 20 \\ 4 / 5 & \text { if } 11 / 20 \leq a<3 / 5 \\ (1 / 2)(a+1) & \text { if } 3 / 5 \leq a<1\end{cases}
$$

This result is conditional and depends on the bound on L-function zeros.

[^0]In this paper we study the series $\mathfrak{M}_{0}(z)=\sum_{n=1}^{\infty} \mu^{2}(n) z^{n}$ for which we give an unconditional nontrivial estimate. The $\operatorname{sum} M_{0}(x)=\sum_{n<x} \mu^{2}(n)$ is equal to the number of square-free numbers less than x. From the classical result [HW, p. 269]

$$
M_{0}(x)=\frac{6}{\pi^{2}} x+O(\sqrt{x})
$$

it easily follows that

$$
\begin{equation*}
\mathfrak{M}_{0}(r)=\frac{6}{\pi^{2}}(1-r)^{-1}+O\left((1-r)^{-1 / 2}\right), \quad r \rightarrow 1- \tag{1.2}
\end{equation*}
$$

In 1967 I. Katai Ka proved the following result on the oscillation of the remainder term in 1.2 :

$$
\mathfrak{M}_{0}(r)=\frac{6}{\pi^{2}}(1-r)^{-1}+\Omega_{ \pm}\left((1-r)^{-0.25}\right), \quad r \rightarrow 1-
$$

In our paper we study the series $\mathfrak{M}_{0}(z)$, where z tends to the unit circle along the radius $z=e(\beta) r$ where $\beta \in \mathbb{R}$.

We will use the following notation: $f(q)$ is a function of an integer argument defined by

$$
f(q)= \begin{cases}0 & \text { if } p^{3} \mid q \text { for some prime } p \\ \prod_{p \mid q}\left(-\frac{1}{p^{2}-1}\right) & \text { otherwise }\end{cases}
$$

where the product is taken over prime divisors of q.
In Sections 2-4 we prove some useful estimates.
In Section 5 we prove the following theorem on the behavior of $\mathfrak{M}_{0}(e(\beta) r)$ where $\beta \in \mathbb{Q}$.

Theorem 1.1. For coprime integers $l, q>0$ and real $\varepsilon>0$,

$$
\begin{equation*}
\mathfrak{M}_{0}(e(l / q) r)=\frac{f(q)}{\zeta(2)}(1-r)^{-1}+O\left((1-r)^{-1 / 2-\varepsilon} q^{3 / 4+\varepsilon}\right), \quad r \rightarrow 1- \tag{1.3}
\end{equation*}
$$

The O constant depends only on ε.
Theorem 1.1 is applied to study the behavior of $\mathfrak{M}_{0}(e(\beta) r)$ where β is irrational.

In Section 6 we obtain some results on Diophantine approximation.
Definition. The irrationality exponent of a real number β is the least upper bound of real numbers a such that

$$
0<|\beta-p / q|<1 / q^{a}
$$

is satisfied by an infinite number of integer pairs (p, q) with $q>0$.
In Section 7 using the results of [S] we prove the following theorem.

Main Theorem 1.2. If the irrationality exponent of β is 2 then for any $\varepsilon>0$,

$$
\begin{equation*}
\mathfrak{M}_{0}(e(\beta) r)=O\left((1-r)^{-1 / 2-\varepsilon}\right), \quad r \rightarrow 1- \tag{1.4}
\end{equation*}
$$

The O constant does not depend on r.
In Section 8 we prove that the asymptotic equality (1.4) cannot be extended to all irrational numbers: for each δ we construct an irrational number such that $\mathfrak{M}_{0}(e(\beta) r)=\Omega\left((1-r)^{-1+\delta}\right)$. We first prove

Theorem 1.3. Let β be an irrational number, $\delta>0$ and $\gamma-2>$ $\max \{11 / 2,2 / \delta\}$. If there is a sequence of rational numbers l_{n} / q_{n} with squarefree denominators such that

$$
\left|\beta-l_{n} / q_{n}\right| \leq c / q_{n}^{\gamma}
$$

then

$$
\mathfrak{M}_{0}(e(\beta) r)=\Omega\left((1-r)^{-1+\delta}\right), \quad r \rightarrow 1-
$$

From this theorem we deduce
Main Theorem 1.4. For any $\delta>0$ there exist irrational numbers β such that

$$
\begin{equation*}
\mathfrak{M}_{0}(e(\beta) r)=\Omega\left((1-r)^{-1+\delta}\right), \quad r \rightarrow 1- \tag{1.5}
\end{equation*}
$$

Corollary 1.5. For any $\delta>0$ there exist irrational numbers β such that

$$
\begin{equation*}
\left|S_{N}(\beta)\right|=\Omega\left(N^{1-\delta}\right), \quad N \rightarrow \infty \tag{1.6}
\end{equation*}
$$

2. Preliminary results. Let $\alpha(n)$ be a function of a natural variable. Let

$$
\mathfrak{A}(z)=\sum_{n=1}^{\infty} \alpha(n) z^{n}, \quad F(s)=\sum_{n=1}^{\infty} \alpha(n) n^{-s} .
$$

For the Dirichlet series $F(s)$, a Dirichlet character χ, and $\beta \in \mathbb{R}$ we define

$$
F(s, \chi)=\sum_{n=1}^{\infty} \alpha(n) \chi(n) n^{-s}, \quad F[\beta](s)=\sum_{n=1}^{\infty} \frac{\alpha(n)}{n^{s}} e(\beta n)
$$

We will write $A \ll a_{0}, \ldots, a_{k} B$ if $A=O(B)$ and the O constant depends only on a_{0}, \ldots, a_{k}.

Let q be a positive integer and $q=\prod_{i=1}^{k} p_{i}^{l_{i}}$ be its canonical representation. Let $K(q)=\left\{n \in \mathbb{N} \mid n=\prod_{i=1}^{k} p_{i}^{m_{i}}\right\}$ where the m_{i} are arbitrary nonnegative integers. From the fundamental theorem of arithmetic it easily follows that each $n \in \mathbb{N}$ has a unique representation

$$
\begin{equation*}
n=k m \tag{2.1}
\end{equation*}
$$

where $k \in K(q)$ and $(m, q)=1$.

Lemma 2.1. Let $\alpha(n)$ be an arbitrary sequence of complex numbers, and $l \in \mathbb{Z}$. Suppose that the Dirichlet series $F[l / q](s)=\sum_{n=1}^{\infty} \alpha(n) e(\ln / q) n^{-s}$ is convergent for $\sigma=\Re s>\sigma_{0}>0$. Then

$$
\Gamma(s) F[l / q](s)=\int_{0}^{\infty} t^{s-1} \mathfrak{A}\left(e(l / q) e^{-t}\right) d t
$$

Proof. This follows from the results of $[\mathrm{H}]$.
Let $\beta \in \mathbb{Q}, \beta=l / q, q>0$, where l and q are coprime. For the Dirichlet series $F(s)$ we define

$$
C_{\chi}(s)=\sum_{k \in K(q)} \tau(\bar{\chi}, l k) \alpha(k) k^{-s}
$$

LEMMA 2.2. Let $\alpha(n)$ be an arbitrary sequence of complex numbers, and $q>1$. Suppose the Dirichlet series $F(s)=\sum_{n=1}^{\infty} \alpha(n) n^{-s}$ is absolutely convergent for $\Re s>\sigma_{0}$. Then for any $l \in \mathbb{Z}$ and s with $\Re s>\sigma_{0}$,

$$
\sum_{(n, q)=1} \frac{\alpha(n) e(\ln / q)}{n^{s}}=\frac{1}{\phi(q)} \sum_{\chi(\bmod q)} \tau(\bar{\chi}, l) F(s, \chi)
$$

Proof. We have

$$
\begin{equation*}
\sum_{(n, q)=1} \frac{\alpha(n) e(l n / q)}{n^{s}}=\sum_{n=1}^{\infty} \alpha(n) \frac{u(n)}{n^{s}} \tag{2.2}
\end{equation*}
$$

where $u(n)=e(\ln / q)$ if $(n, q)=1$, and $u(n)=0$ if $(n, q) \neq 1$. Since $u(n)=\frac{1}{\phi(q)} \sum_{\chi(\bmod q)} \tau(\bar{\chi}, l) \chi(n)$ we obtain

$$
\sum_{(n, q)=1} \frac{\alpha(n) e(l n / q)}{n^{s}}=\frac{1}{\phi(q)} \sum_{\chi(\bmod q)} \tau(\bar{\chi}, l) F(s, \chi)
$$

Lemma 2.3. Let $\alpha(n)$ be a multiplicative function and suppose the Dirichlet series $F(s)$ is absolutely convergent in $\left\{\Re s>\sigma_{1}\right\}$. Then

$$
\begin{equation*}
F[\beta](s)=\frac{1}{\phi(q)} \sum_{\chi(\bmod q)} C_{\chi}(s) F(s, \chi) \tag{2.3}
\end{equation*}
$$

Proof. Let A_{k} be the set of natural numbers that have k in the representation (2.1). Then

$$
\mathbb{N}=\bigsqcup_{k \in K} A_{k}
$$

Let $S_{k}=\sum_{n \in A_{k}} \frac{\alpha(n)}{n^{s}} e(\beta n)$. Then

$$
\begin{equation*}
F[\beta](s)=\sum_{k \in K} S_{k}, \tag{2.4}
\end{equation*}
$$

where

$$
S_{k}=\alpha(k) k^{-s} \sum_{(n, q)=1} e(l k n / q) \frac{\alpha(n)}{n^{s}}
$$

By Lemma 2.2,

$$
\begin{equation*}
S_{k}=\frac{\alpha(k)}{k^{s}} \frac{1}{\phi(q)} \sum_{\chi(\bmod q)} \tau(\bar{\chi}, l k) F(s, \chi) \tag{2.5}
\end{equation*}
$$

From 2.4, 2.5 and the definition of $C_{\chi}(s)$ we obtain 2.3).
The following lemma reduces the calculation of $C_{\chi_{0}}(s)$ to the calculation of $C_{\chi_{i}}(s)$ where χ_{i} are principal characters modulo $p_{i}^{m_{i}}$.

Lemma 2.4. Let χ_{0} be a principal character modulo $q=p_{1}^{m_{1}} \ldots p_{r}^{m_{r}}$. Let χ_{i} be principal characters modulo $p_{i}^{m_{i}}$. Then

$$
C_{\chi_{0}}(s)=C_{\chi_{1}}(s) \ldots C_{\chi_{r}}(s)
$$

Proof. From the properties of the Ramanujan sum [MV, p. 110] it easily follows that for any l satisfying $(l, q)=1$ we have $\tau\left(\chi_{0}, l k\right)=\tau\left(\chi_{1}, l k\right) \ldots$ $\tau\left(\chi_{r}, l k\right)=\tau\left(\chi_{1}, p_{1}^{m_{1}}\right) \ldots \tau\left(\chi_{r}, p_{r}^{m_{r}}\right)$. Using the multiplicativity of $\alpha(n)$ we obtain

$$
\begin{aligned}
C_{\chi_{0}}(s) & =\sum_{i_{1}=0, \ldots, i_{r}=0}^{\infty} \frac{\alpha\left(p_{1}^{i_{1}}\right) \ldots \alpha\left(p_{r}^{i_{r}}\right)}{p_{1}^{i_{1} s} \ldots p_{r}^{i_{r} s}} \tau\left(\chi_{1}, p_{1}^{i_{1}}\right) \ldots \tau\left(\chi_{r}, p_{r}^{i_{r}}\right) \\
& =\sum_{i_{1}=0}^{\infty} \alpha\left(p_{1}^{i_{1}}\right) \tau\left(\chi_{1}, p_{1}^{i_{1}}\right) p_{1}^{-i_{1} s} \ldots \sum_{i_{r}=0}^{\infty} \alpha\left(p_{r}^{i_{r}}\right) \tau\left(\chi_{r}, p_{r}^{i_{r}}\right) p_{r}^{-i_{r} s} \\
& =C_{\chi_{1}}(s) \ldots C_{\chi_{r}}(s)
\end{aligned}
$$

Let $\omega(n)$ be the number of prime divisors of n. We will use the simple estimate

$$
\begin{equation*}
\omega(n)=O\left(\frac{\ln n}{\ln \ln n}\right) \tag{2.6}
\end{equation*}
$$

The proof can be found in [MV, p. 55]. From (2.6) we obtain, for all A, ε,

$$
\begin{equation*}
A^{\omega(n)}<_{A, \varepsilon} n^{\varepsilon} \tag{2.7}
\end{equation*}
$$

Hence we easily derive an estimate for the function $f(q)$ of Section 1. Since $f(p)=\frac{1}{p^{2}-1}=\frac{p^{-2}}{1-p^{-2}} \leq 2 p^{-1}, f\left(p^{2}\right)=\frac{1}{p^{2}-1} \leq 2 p^{-2}$, and $f\left(p^{3}\right)=0 \leq 2 p^{-3}$, we have

$$
\begin{equation*}
f(q) \leq q^{-1} 2^{\omega(q)}<_{\varepsilon} q^{-1+\varepsilon} \tag{2.8}
\end{equation*}
$$

3. Residues and asymptotic formulas. In this section, as usual, $\sigma=\Re s, t=\Im s$, and χ_{0} is a principal character modulo q. Denote by $F_{1}(s)$
the function $\zeta(s) / \zeta(2 s)$. It can be represented by the Dirichlet series

$$
\begin{equation*}
F_{1}(s)=\sum_{n=1}^{\infty} \frac{\mu^{2}(n)}{n^{s}} \tag{3.1}
\end{equation*}
$$

For the Dirichlet series $F_{1}(s, \chi)$ we have the representation

$$
F_{1}(s, \chi)=\frac{L(s, \chi)}{L\left(2 s, \chi^{2}\right)}
$$

Using the Mellin inversion formula [FGD, p. 4], Lemma 2.1 and representation (3.1) we deduce

$$
\begin{equation*}
\mathfrak{M}_{0}\left(e(l / q) e^{-x}\right)=\frac{1}{2 \pi i} \int_{2-i \infty}^{2+i \infty} x^{-s} \Gamma(s) F_{1}[l / q](s) d s \tag{3.2}
\end{equation*}
$$

Let Π be the rectangle with vertices $2-i T, 2+i T, 0.5+\varepsilon+i T, 0.5+\varepsilon-i T$. Let $I=[2-i T, 2+i T], I I=[2+i T, 0.5+\varepsilon+i T], I I I=[0.5+\varepsilon+i T, 0.5+\varepsilon-i T]$, $I V=[0.5+\varepsilon-i T, 2-i T]$.

The contour Π
Let $E_{1}(q), E_{2}(q)$ be constants depending only on q and ε. Using, for each character χ modulo q, the simple estimate

$$
\left|\frac{1}{L(s, \chi)}\right| \leq \zeta(\sigma), \quad \sigma>1
$$

and the estimate

$$
|L(s, \chi)| \leq E_{1}(q)|t|, \quad|t| \rightarrow \infty
$$

uniformly with respect to $\sigma \in[0.5+\varepsilon, 2]$, we obtain

$$
\begin{equation*}
\left|\frac{L(s, \chi)}{L\left(2 s, \chi^{2}\right)}\right| \leq E_{2}(q)|t|, \quad|t| \rightarrow \infty \tag{3.3}
\end{equation*}
$$

uniformly with respect to $\sigma \in[0.5+\varepsilon, 2]$. Since $C_{\chi}(s)=\sum_{k \in K(q)} \frac{\mu^{2}(k)}{k^{s}} \tau(\bar{\chi}, l k)$ and $\mu^{2}(n)=0$ if $p^{2} \mid n$ for some prime p, the sum in $C_{\chi}(s)$ is finite. Hence the functions $C_{\chi}(s)$ are entire and

$$
\begin{equation*}
\left|C_{\chi}(s)\right| \leq D(q), \quad \Re s \in[0.5,2] \tag{3.4}
\end{equation*}
$$

where $D(q)$ is a constant depending only on q. Since $\Gamma(s) \ll|t|{ }^{C} e^{-\frac{\pi}{2}|t|}$ when $|t| \rightarrow \infty$ and $\sigma \in[0.5+\varepsilon, 2]$, from (3.3) and (3.4) we deduce

$$
\Gamma(\sigma+i T) F_{1}[l / q](\sigma+i T) \ll e^{-\alpha|T|}
$$

for some $\alpha>0$. Hence

$$
\begin{array}{ll}
\int_{I I} x^{-s} \Gamma(s) F_{1}[l / q](s) d s \rightarrow 0, & |t| \rightarrow \infty \\
\int_{I V} x^{-s} \Gamma(s) F_{1}[l / q](s) d s \rightarrow 0, & |t| \rightarrow \infty \tag{3.6}
\end{array}
$$

Since for each nonprincipal Dirichlet character χ the function $L(s, \chi)$ is holomorphic in Π and $L\left(s, \chi_{0}\right)$ has a simple pole at $s=1$ in Π, by the Cauchy theorem on residues we have

$$
\int_{\Pi} x^{-s} \Gamma(s) F_{1}[l / q](s) d s=\operatorname{res}_{s=1} x^{-s} \Gamma(s) F_{1}[l / q](s) .
$$

Using Lemma 2.3, relations (3.5 - (3.6) and equation (3.2) we obtain

$$
\begin{align*}
\mathfrak{M}_{0}\left(e(l / q) e^{-x}\right) & =\operatorname{res}_{s=1} x^{-s} \Gamma(s) F_{1}[l / q](s) \tag{3.7}\\
& +\frac{1}{2 \pi i} \int_{1 / 2+\varepsilon-i \infty}^{1 / 2+\varepsilon+i \infty} x^{-s} \Gamma(s) F_{1}[l / q](s) d s \\
= & \operatorname{res}_{s=1} x^{-s} \Gamma(s) C_{\chi_{0}}(s) F_{1}\left(s, \chi_{0}\right) \\
& +\frac{1}{2 \pi i} \int_{1 / 2+\varepsilon-i \infty}^{1 / 2+\varepsilon+i \infty} x^{-s} \Gamma(s) \frac{1}{\phi(q)} \sum_{\chi(\bmod q)} C_{\chi}(s) F_{1}(s, \chi) d s .
\end{align*}
$$

Let us calculate the residue. As usual $q=p_{1}^{m_{1}} \ldots p_{r}^{m_{r}}$. Applying Lemma 2.4 to $\mu^{2}(n)$ we obtain

$$
C_{\chi_{0}}(1)=C_{\chi_{1}}(1) \ldots C_{\chi_{r}}(1), \quad \text { where } \quad C_{\chi_{j}}(s)=\sum_{k=0}^{\infty} \frac{\tau\left(\chi_{j}, p_{j}^{k}\right)}{p_{j}^{k s}} \mu^{2}\left(p_{j}^{k}\right)
$$

and χ_{j} are principal characters modulo $p_{j}^{m_{j}}$. Note that $C_{\chi_{j}}(s)=0$ if $m_{j}>2$. If $m_{j}=1$, then $C_{\chi_{j}}(s)=-1+\left(p_{j}-1\right) / p_{j}^{s}$ and $C_{\chi_{j}}(1)=-1+\left(p_{j}-1\right) / p_{j}=$ $-1 / p_{j}$. If $m_{j}=2$, then $C_{\chi_{j}}(s)=-p_{j} / p_{j}^{s}=-1$. Hence

$$
\begin{aligned}
\operatorname{res}_{s=1} x^{-s} \Gamma(s) F_{1}[l / q](s) & =\operatorname{res}_{s=1} x^{-s} \Gamma(s) \frac{C_{\chi_{0}}(s)}{\phi(q)} F_{1}\left(s, \chi_{0}\right) \\
& =\frac{x^{-1}}{\zeta(2)} \frac{C_{\chi_{0}}(1)}{\phi(q)} \prod_{p \mid q}\left(1+\frac{1}{p}\right)^{-1}=\frac{f(q)}{\zeta(2)} x^{-1}
\end{aligned}
$$

where $f(q)$ is the multiplicative function defined in Section 1. Consequently,

$$
\begin{equation*}
\mathfrak{M}_{0}\left(e(l / q) e^{-x}\right)=\frac{f(q)}{\zeta(2)} x^{-1}+\int_{1 / 2+\varepsilon-i \infty}^{1 / 2+\varepsilon+i \infty} x^{-s} \Gamma(s) F_{1}[l / q](s) d s \tag{3.8}
\end{equation*}
$$

4. Inequalities for L-functions. The following lemma enables us to give a uniform (with respect to q) estimate of $L(s, \chi)$.

Lemma 4.1. For each nonprincipal character χ modulo q, and for $0<\sigma<1$,

$$
\left|\sum_{n<x} \chi(n) n^{-\sigma}\right| \ll_{\sigma} q^{\frac{1}{2}(1-\sigma)} \log q
$$

Proof. Let $x>\sqrt{q}$. Then using the Abel transform [K, p. 43] we obtain

$$
\sum_{n<x} \chi(n) n^{-\sigma}=X(x) x^{-\sigma}+\sigma \int_{1}^{x} X(t) t^{-\sigma-1} d t
$$

where $X(t)=\sum_{n \leq t} \chi(n)$. Hence

$$
\sum_{n<x} \chi(n) n^{-\sigma}=X(x) x^{-\sigma}+\sigma \int_{1}^{\sqrt{q}} X(t) t^{-\sigma-1} d t+\sigma \int_{\sqrt{q}}^{x} X(t) t^{-\sigma-1} d t
$$

Using Pólya's estimate $X(x) \ll \sqrt{q} \log q$ (see [MV, p. 307]) we obtain $\left|X(x) x^{-\sigma}\right| \ll q^{1 / 2}(\log q) x^{-\sigma} \leq q^{(1-\sigma) / 2} \log q$. Further, using the trivial inequality $|X(t)| \leq t$ we deduce

$$
\left|\sigma \int_{1}^{\sqrt{q}} X(t) t^{-\sigma-1} d t\right| \leq \sigma \int_{1}^{\sqrt{q}} t^{-\sigma} d t \ll \sigma q^{\frac{1}{2}(1-\sigma)}
$$

Applying Pólya's estimate again we obtain

$$
\begin{aligned}
\left|\int_{\sqrt{q}}^{x} X(t) t^{-\sigma-1} d t\right| & \leq \sqrt{q} \log q \int_{\sqrt{q}}^{x} t^{-\sigma-1} d t \\
& \leq \sqrt{q} \log q \int_{\sqrt{q}}^{\infty} t^{-\sigma-1} d t \ll \sigma \sqrt{q} q^{-\sigma / 2} \log q=q^{\frac{1}{2}(1-\sigma)} \log q
\end{aligned}
$$

so the lemma is proved in the case $x>\sqrt{q}$.

If $x \leq \sqrt{q}$, then

$$
\left|\sum_{n<x} \chi(n) n^{-\sigma}\right| \leq \sum_{n<\sqrt{q}} n^{-\sigma} \ll_{\sigma}(\sqrt{q})^{1-\sigma}=q^{\frac{1}{2}(1-\sigma)}
$$

and the lemma is also proved for $x \leq \sqrt{q}$.
The following result will be applied in the proof of Theorem 1.1 .
TheOrem 4.2. Let χ be a character modulo q, and $\sigma=\Re s, 0<\sigma<1$. Then

$$
|L(s, \chi)| \ll \sigma, \varepsilon|s| q^{(1-\sigma) / 2+\varepsilon}
$$

Proof. Consider first the case $\chi \neq \chi_{0}$ modulo q. Using the Abel transform we get

$$
L(\sigma-\varepsilon+s, \chi)=s \int_{1}^{\infty} u^{-s-1} \sum_{n<u} \chi(n) n^{\varepsilon-\sigma} d u
$$

Hence

$$
L(s, \chi)=|L(\sigma-\varepsilon+\varepsilon+i t, \chi)| \leq|i t+\varepsilon| \int_{1}^{\infty} u^{-\varepsilon-1}\left|\sum_{n<u} \chi(n) n^{\varepsilon-\sigma}\right| d u
$$

Thus by Lemma 4.1.

$$
|L(s, \chi)| \ll|s| q^{(1-\sigma+\varepsilon) / 2}(\log q) \int_{1}^{\infty} u^{-\varepsilon-1} d u \ll_{\varepsilon}|s| q^{(1-\sigma) / 2+\varepsilon} .
$$

If $\chi=\chi_{0}$ modulo q then by (2.7),

$$
\begin{aligned}
\left|L\left(s, \chi_{0}\right)\right| & =\left|\prod_{p \mid q}\left(1-p^{-s}\right) \zeta(s)\right| \ll|s| \prod_{p \mid q}\left(1+p^{-\sigma}\right) \leq|s|\left(1+2^{-\sigma}\right)^{\omega(q)} \\
& \ll{ }_{\sigma, \varepsilon}|s| q^{\varepsilon} .
\end{aligned}
$$

5. Proof of Theorem 1.1

Lemma 5.1. For each $m \in \mathbb{N}$,

$$
\sum_{\chi(\bmod q)}|\tau(\chi, m)|^{2}=\phi^{2}(q)
$$

Proof. We have

$$
\begin{aligned}
\sum_{\chi}|\tau(\chi, m)|^{2} & =\sum_{\chi}\left(\sum_{x=0}^{q-1} \chi(x) e(m x / q) \sum_{y=0}^{q-1} \bar{\chi}(y) e(-m y / q)\right) \\
& =\sum_{\chi} \sum_{x, y}^{\prime} \chi\left(x y^{-1}\right) e(m(x-y) / q)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{x, y}^{\prime}\left(\sum_{\chi} \chi\left(x y^{-1}\right)\right) e(m(x-y) / q) \\
& =\sum_{x=y}^{\prime} \sum_{\chi} \chi(1)=\phi(q)^{2}
\end{aligned}
$$

where $\sum_{x, y}^{\prime}$ is the sum over invertible elements x, y of \mathbb{Z}_{q}.
Proof of Theorem 1.1. Since $\left|\frac{L(s, \chi)}{L\left(2 s, \chi^{2}\right)}\right| \leq|L(s, \chi)| \zeta(2 \sigma)$ for $\Re s \geq 1 / 2+\varepsilon$ we have

$$
\begin{equation*}
\left|\frac{L(s, \chi)}{L\left(2 s, \chi^{2}\right)}\right|<_{\varepsilon}|L(s, \chi)| \tag{5.1}
\end{equation*}
$$

Using the definition of $C_{\chi}(s)$ and Lemma 2.3, and changing the order of summation, we obtain

$$
\begin{equation*}
F_{1}[l / q](s)=\frac{1}{\phi(q)} \sum_{k \in K(q)} \frac{\mu^{2}(k)}{k^{s}} \sum_{\chi(\bmod q)} \tau(\bar{\chi}, l k) \frac{L(s, \chi)}{L\left(2 s, \chi^{2}\right)} \tag{5.2}
\end{equation*}
$$

Using (5.1), (5.2) and Hölder's inequality we deduce

$$
\begin{aligned}
\left|F_{1}[l / q](s)\right| & =\left|\sum_{n=1}^{\infty} \frac{\mu^{2}(n) e(n l / q)}{n^{s}}\right| \\
& \ll \frac{1}{\phi(q)} \sum_{k \in K(q)} \frac{\mu^{2}(k)}{k^{\sigma}} \sum_{\chi(\bmod q)}|\tau(\bar{\chi}, l k)|\left|\frac{L(s, \chi)}{L\left(2 s, \chi^{2}\right)}\right| \\
& \ll \varepsilon \frac{1}{\phi(q)} \sum_{k \in K(q)} \frac{\mu^{2}(k)}{k^{\sigma}} \sum_{\chi(\bmod q)}|\tau(\bar{\chi}, l k)||L(s, \chi)| \\
& \ll \frac{1}{\phi(q)} \sum_{k \in K(q)} \frac{\mu^{2}(k)}{k^{\sigma}} \sqrt{\sum_{\chi(\bmod q)}|\tau(\chi, l k)|^{2}} \sqrt{\sum_{\chi(\bmod q)}|L(s, \chi)|^{2}}
\end{aligned}
$$

By Lemma 5.1 and Theorem 4.2 for $\Re s=1 / 2+\varepsilon$ we obtain

$$
\begin{aligned}
\left|F_{1}[l / q](s)\right| & \ll \varepsilon \frac{1}{\phi(q)} \prod_{p \mid q}\left(1+p^{-1 / 2-\varepsilon}\right) \phi(q) \sqrt{\phi(q)|s|^{2} q^{1 / 2+\varepsilon}} \\
& =|s| \prod_{p \mid q}\left(1+p^{-1 / 2-\varepsilon}\right) \sqrt{\phi(q) q^{1 / 2+\varepsilon}} \leq|s| \prod_{p \mid q}\left(1+p^{-1 / 2-\varepsilon}\right) q^{3 / 4+\varepsilon / 2}
\end{aligned}
$$

Since for fixed $\sigma>0$ by 2.7 we have $\prod_{p \mid q}\left(1+p^{-\sigma}\right) \leq 2^{\omega(q)} \ll_{\varepsilon} q^{\varepsilon / 2}$, for $\Re s=1 / 2+\varepsilon$ we obtain

$$
\left|F_{1}[l / q](s)\right| \ll|s| q^{3 / 4+\varepsilon}
$$

Further, from (3.8) and rapid decrease of $|\Gamma(s)|$ when $|\Im s| \rightarrow \infty$ we deduce

$$
\begin{aligned}
& \mathfrak{M}_{0}\left(e(l / q) e^{x}\right) \\
& \quad=\frac{f(q)}{\zeta(2)} x^{-1}+O\left(\int_{1 / 2+\varepsilon-i \infty}^{1 / 2+\varepsilon+i \infty} x^{-1 / 2-\varepsilon}|\Gamma(1 / 2+\varepsilon+i t)||1 / 2+\varepsilon+i t| q^{3 / 4+\varepsilon} d t\right) \\
& \quad=\frac{f(q)}{\zeta(2)} x^{-1}+O\left(x^{-1 / 2-\varepsilon} q^{3 / 4+\varepsilon}\right) .
\end{aligned}
$$

6. The behavior of convergents of a continued fraction

Lemma 6.1. Let β be a real number with irrationality exponent 2. Let p_{n} / q_{n} be the convergents of its continued fraction. Then for each $\varepsilon>0$,

$$
\begin{equation*}
q_{n+1} \leq q_{n}^{1+\varepsilon} \tag{6.1}
\end{equation*}
$$

where $n>N(\varepsilon, \beta)$.
Proof. Assume that there exist a subsequence $n_{k} \rightarrow \infty$ and $\varepsilon>0$ such that

$$
q_{n_{k}+1} \geq q_{n_{k}}^{1+\varepsilon}
$$

Then using [Kh, p. 16, Theorem 9], we obtain

$$
\begin{equation*}
\left|\beta-\frac{p_{n_{k}}}{q_{n_{k}}}\right| \leq \frac{1}{q_{n_{k}} q_{n_{k}+1}} \leq \frac{1}{q_{n_{k}}^{2+\varepsilon}} \tag{6.2}
\end{equation*}
$$

contrary to the assumption that the irrationality exponent of β equals 2 . Hence there exists an $N(\varepsilon, \beta)$ such that (6.1) is true for all $n>N(\varepsilon, \beta)$.

7. Proof of Main Theorem 1.2

Lemma 7.1. Let β be a real number with irrationality exponent 2. Let q_{n} be the denominators of convergents of its continued fraction. Then for any c, d satisfying $0<c<d$ there exists an x_{0} such that every $x>x_{0}$ can be represented in the form $x=q_{n}^{A}$, where $n \in \mathbb{N}$ and $A \in[c, d]$.

Proof. Note that q_{n}^{c} is an increasing sequence tending to ∞. Take an ε such that $c(1+\varepsilon) \leq d$. Let $x_{0}=q_{N(\epsilon, \beta)}^{c}$, where $N(\varepsilon, \beta)$ is defined in Lemma 6.1. Then if $x>x_{0}$, we have $x \in\left[q_{n}^{c}, q_{n+1}^{c}\right]$, where $n>N(\varepsilon, \beta)$, and by Lemma 6.1. $\log _{q_{n}} x \leq \log _{q_{n}} q_{n+1}^{c} \leq \log _{q_{n}} q_{n}^{c(1+\varepsilon)}=c(1+\varepsilon) \leq d$. Hence $x=q_{n}^{A}$, where $A \in[c, d]$.

Lemma 7.2 (see [S]). If q and a are integers satisfying $|\beta q-a| \leq q^{-1}$, then

$$
\left|S_{N}(\beta)\right| \lll \varepsilon, \beta \quad N^{1+\varepsilon}+N^{\varepsilon} q
$$

Lemma 7.3. We have

$$
S_{N}(\beta)<_{\beta, \varepsilon} N^{1 / 2+\varepsilon}
$$

Proof. Let l_{n} / q_{n} be the convergents of the continued fraction of β. Then $\left|\alpha-l_{n} / q_{n}\right|<1 / q_{n}^{2}$, so by Lemma 7.2,

$$
S_{N}(\beta) \ll_{\beta, \varepsilon} N^{1+\varepsilon} q^{-1}+N^{\varepsilon} q
$$

Since $q_{n+1} \leq q_{n}^{1+\varepsilon}$ if $n>N_{0}$ and $q_{n+1}>q_{n}$, each sufficiently large N satisfies the inequality

$$
q_{n}^{2} \leq N \leq q_{n}^{2(1+\varepsilon)}
$$

Hence $q_{n}^{-1} \leq N^{-\frac{1}{2(1+\varepsilon)}}$ and $q_{n} \leq \sqrt{N}$. Thus $S_{N}(\beta) \ll N^{1 / 2+\varepsilon_{1}}$ for each $\varepsilon_{1}>0$.

Using the Abel transform, from Lemma 7.3 we obtain (1.4). Thus Theorem 1.2 is proved.

Since the irrationality exponent of every algebraic number equals 2 , by Theorem 1.2 we obtain

Corollary 7.4. Let β be an algebraic number. Then

$$
\mathfrak{M}_{0}(e(\beta) r)=O\left((1-r)^{-1 / 2-\varepsilon}\right), \quad r \rightarrow 1-
$$

8. Proof of Theorems 1.3 and 1.4. In this section we consider the case of numbers β that are well approximated by rational numbers with square-free denominators.

LEMMA 8.1. Let β be an irrational number, $\gamma>0$ and l_{m} / q_{m} be a sequence of rational numbers such that

$$
\left|\beta-l_{m} / q_{m}\right|<_{\beta} 1 / q_{m}^{\gamma}
$$

Then

$$
\left|\mathfrak{M}_{0}\left(e(\beta) e^{-x}\right)-\mathfrak{M}_{0}\left(e\left(l_{m} / q_{m}\right) e^{-x}\right)\right| \ll \beta_{\beta} q_{m}^{-\gamma} x^{-2}
$$

Proof. Since $\left|\beta-l_{m} / q_{m}\right| \lll \beta 1 / q_{m}^{\gamma}$ we have

$$
\begin{aligned}
\sum_{n=1}^{\infty} \mu^{2}(n) e(n \beta) e^{-n x}-\sum_{n=1}^{\infty} \mu^{2}(& n) e\left(n l_{m} / q_{m}\right) e^{-n x} \\
& \ll \sum_{n=1}^{\infty} \mu^{2}(n)\left|e\left(n\left(\beta-l_{m} / q_{m}\right)\right)-1\right| e^{-n x}
\end{aligned}
$$

Using the estimate $|e(x)-1| \ll|x|$ we obtain

$$
\begin{aligned}
& \left|\sum_{n=1}^{\infty} \mu^{2}(n) e(n \beta) e^{-n x}-\sum_{n=1}^{\infty} \mu^{2}(n) e\left(n l_{m} / q_{m}\right) e^{-n x}\right| \\
& \quad \ll \sum_{n=1}^{\infty} \mu^{2}(n)\left|n\left(\beta-l_{m} / q_{m}\right)\right| e^{-n x}<_{\beta} \sum_{n=1}^{\infty} \frac{n}{q_{m}^{\gamma}} e^{-n x} \ll x^{-2} q_{m}^{-\gamma}
\end{aligned}
$$

Proof of Theorem 1.3. Let $x=q_{n}^{-A}$, where $A=\frac{1}{2}(\max \{11 / 2,2 / \delta\}+$ $\gamma-2)$. Note that $A>\max \{11 / 2,2 / \delta\}$ and $A<\gamma-2$. By Theorem 1.1 and

Lemma 8.1, for any $\varepsilon>0$,

$$
\begin{aligned}
\mathfrak{M}_{0}\left(e(\beta) e^{-x}\right) & =\frac{f(q)}{\zeta(2)} q_{n}^{A}+O\left(q_{n}^{A(1 / 2+\varepsilon)} q_{n}^{3 / 4+\varepsilon}+q_{n}^{-\gamma} q_{n}^{2 A}\right) \\
& =C\left(q_{n}\right) q_{n}^{A-2}+O\left(q_{n}^{A(1 / 2+\varepsilon)+3 / 4+\varepsilon}+q_{n}^{2 A-\gamma}\right)
\end{aligned}
$$

where $C\left(q_{n}\right) \gg 1$.
Since $A<\gamma-2$ we have $A-2>2 A-\gamma$. The inequality $A>11 / 2$ yields $A(1 / 2+\varepsilon)+3 / 4+\varepsilon<A-2$ for some $\varepsilon>0$. Hence

$$
\mathfrak{M}_{0}\left(e(\beta) e^{-x}\right)=C\left(q_{n}\right) q_{n}^{A-2}+o\left(q_{n}^{A-2}\right), \quad n \rightarrow \infty
$$

Using the inequality $A>2 / \delta$ we obtain $\log _{x^{-1}} q_{n}^{A-2}=\frac{\log q_{n}^{A-2}}{\log q_{n}^{A}}=1-2 / A>$ $1-\delta$. Since $x^{-1}>1$ we have $q_{n}^{A-2}>x^{-1+\delta}$. Hence

$$
\begin{aligned}
\left|\mathfrak{M}_{0}\left(e(\beta) e^{-x}\right)\right| & =\left|q_{n}^{A-2}\left(C\left(q_{n}\right)+o(1)\right)\right|=q_{n}^{A-2}\left(C\left(q_{n}\right)+o(1)\right) \\
& \gg q_{n}^{A-2}>x^{-1+\delta}
\end{aligned}
$$

Proof of Main Theorem 1.4. Such numbers can be constructed by means of the method of inserted segments. Let $\gamma>2+\max \{11 / 2,2 / \delta\}$. Let us find a rational number l_{1} / q_{1} where q_{1} is a square-free integer and find a real θ_{1} with $\left|\theta_{1}\right| \leq 1 / q_{1}^{\gamma}$. Let us find a square-free number q_{2} and an integer l_{2} such that $l_{2} / q_{2} \neq l_{1} / q_{1}$ and

$$
\left[\frac{l_{2}-1}{q_{2}}, \frac{l_{2}+1}{q_{2}}\right] \subset R_{1}=\left[\frac{l_{1}}{q_{1}}-\theta_{1}, \frac{l_{1}}{q_{1}}+\theta_{1}\right],
$$

and a θ_{2} such that $\left|\theta_{2}\right| \leq 1 / q_{2}^{\gamma}$. Let us find a square-free number q_{3} and an integer l_{3} such that $l_{3} / q_{3} \neq l_{2} / q_{2}$ and

$$
\left[\frac{l_{3}-1}{q_{3}}, \frac{l_{3}+1}{q_{3}}\right] \subset R_{2}=\left[\frac{l_{2}}{q_{2}}-\theta_{2}, \frac{l_{2}}{q_{2}}+\theta_{2}\right]
$$

and a θ_{3} such that $\left|\theta_{3}\right| \leq 1 / q_{3}^{\gamma}$, etc. Thus we construct a sequence of segments R_{i} with length tending to zero and with $R_{i+1} \subseteq R_{i}$. Let $\alpha=\bigcap_{i} R_{i}$. Since $\alpha \in R_{i}$ for each i we have $\left|\alpha-l_{i} / q_{i}\right| \leq 2 \theta_{i}=2 / q_{i}^{\gamma}$. By Theorem 1.3 we obtain inequality (1.5).

Using the Abel transform we obtain Corollary 1.5 .

References

[BH] R. S. Baker and G. Harman, Exponential sums formed with the Möbius function, J. London Math. Soc. 43 (1991), 193-198.
[FGD] P. Flajolet, X. Gourdon and P. Dumas, Mellin transforms and asymptotics: Harmonic sums, Theoret. Comput. Sci. 144 (1995), 3-58.
[H] G. H. Hardy, On a case of term-by-term integration of an infinite series, Messenger of Math. 39 (1910), 136-139.
[HW] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford Univ. Press, 1979.
[K] A. A. Karatsuba, Basic Analytic Number Theory, Editorial URSS, Moscow, 2004 (in Russian).
[Ka] I. Katai, On oscillations of number-theoretic functions, Acta Arith. 13 (1967), 107-121.
[Kh] A. Ya. Khinchin, Continued Fractions, Fizmatgiz, Moscow, 1961 (in Russian).
[MV] H. L. Montgomery and R. C. Vaughan. Multiplicative Number Theory I. Classical Theory, Cambridge Univ. Press, 2006.
[S] J. Schlage-Puchta, The exponential sum over squarefree numbers, Acta Arith. 115 (2004), 265-268.

Oleg Petrushov
Moscow State University
Vorobyovy Gory
Moscow, Russia
E-mail: olegAP86@yandex.ru

[^0]: 2010 Mathematics Subject Classification: Primary 11N37; Secondary 30B30.
 Key words and phrases: power series, squared Möbius function, omega-estimates, arithmetic functions, irrationality exponent.

