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On the behavior close to the unit circle of the power series
whose coefficients are squared Möbius function values
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Oleg Petrushov (Moscow)

1. Notation and introduction. In this paper we study the series

M0(z) =

∞∑
n=1

µ2(n)zn.

We set

e2πiθ = e(θ), SN (β) =
∑
n<N

µ2(n)e(nβ), τ(χ, l) =

q∑
k=1

χ(k)e(lk/q)

for a character χ modulo q, and χ̄ is a character conjugate to χ.
Let g(x) ≥ 0. The equality f(x) = Ω(g(x)) when x → a means that

there is an infinite sequence tk → a such that |f(tk)| > δg(tk) for some
δ > 0. Let f(x) be real. The equality f(x) = Ω±(g(x)) when x → a means
that there are infinite sequences tk → a, uk → a such that f(tk) > δg(tk),
f(uk) < −δg(uk) for some δ > 0. The notations A � B or B � A mean
|A| = O(|B|).

In 1991 R. S. Baker and G. Harman [BH] obtained results for µ(n) from
which it follows that if for each Dirichlet character χ the function L(s, χ)
has no zeros in the half-plane {<s > a} then for any β ∈ R,

(1.1)

∞∑
n=1

µ(n)e(nβ)rn = O((1− r)−b−ε), r → 1−,

where

b =


a+ 1/4 if 1/2 ≤ a < 11/20,

4/5 if 11/20 ≤ a < 3/5,

(1/2)(a+ 1) if 3/5 ≤ a < 1.

This result is conditional and depends on the bound on L-function zeros.
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In this paper we study the series M0(z) =
∑∞

n=1 µ
2(n)zn for which we

give an unconditional nontrivial estimate. The sum M0(x) =
∑

n<x µ
2(n) is

equal to the number of square-free numbers less than x. From the classical
result [HW, p. 269]

M0(x) =
6

π2
x+O(

√
x)

it easily follows that

(1.2) M0(r) =
6

π2
(1− r)−1 +O((1− r)−1/2), r → 1−.

In 1967 I. Katai [Ka] proved the following result on the oscillation of the
remainder term in (1.2):

M0(r) =
6

π2
(1− r)−1 +Ω±((1− r)−0.25), r → 1−.

In our paper we study the series M0(z), where z tends to the unit circle
along the radius z = e(β)r where β ∈ R.

We will use the following notation: f(q) is a function of an integer argu-
ment defined by

f(q) =


0 if p3 | q for some prime p,∏
p|q

(
− 1

p2 − 1

)
otherwise,

where the product is taken over prime divisors of q.

In Sections 2–4 we prove some useful estimates.

In Section 5 we prove the following theorem on the behavior of M0(e(β)r)
where β ∈ Q.

Theorem 1.1. For coprime integers l, q > 0 and real ε > 0,

(1.3) M0(e(l/q)r) =
f(q)

ζ(2)
(1− r)−1 +O

(
(1− r)−1/2−εq3/4+ε

)
, r → 1−.

The O constant depends only on ε.

Theorem 1.1 is applied to study the behavior of M0(e(β)r) where β is
irrational.

In Section 6 we obtain some results on Diophantine approximation.

Definition. The irrationality exponent of a real number β is the least
upper bound of real numbers a such that

0 < |β − p/q| < 1/qa

is satisfied by an infinite number of integer pairs (p, q) with q > 0.

In Section 7 using the results of [S] we prove the following theorem.
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Main Theorem 1.2. If the irrationality exponent of β is 2 then for any
ε > 0,

(1.4) M0(e(β)r) = O((1− r)−1/2−ε), r → 1−.
The O constant does not depend on r.

In Section 8 we prove that the asymptotic equality (1.4) cannot be ex-
tended to all irrational numbers: for each δ we construct an irrational number
such that M0(e(β)r) = Ω((1− r)−1+δ). We first prove

Theorem 1.3. Let β be an irrational number, δ > 0 and γ − 2 >
max{11/2, 2/δ}. If there is a sequence of rational numbers ln/qn with square-
free denominators such that

|β − ln/qn| ≤ c/qγn,
then

M0(e(β)r) = Ω((1− r)−1+δ), r → 1−.
From this theorem we deduce

Main Theorem 1.4. For any δ > 0 there exist irrational numbers β
such that

(1.5) M0(e(β)r) = Ω((1− r)−1+δ), r → 1−.
Corollary 1.5. For any δ > 0 there exist irrational numbers β such

that

(1.6) |SN (β)| = Ω(N1−δ), N →∞.

2. Preliminary results. Let α(n) be a function of a natural variable.
Let

A(z) =

∞∑
n=1

α(n)zn, F (s) =

∞∑
n=1

α(n)n−s.

For the Dirichlet series F (s), a Dirichlet character χ, and β ∈ R we define

F (s, χ) =

∞∑
n=1

α(n)χ(n)n−s, F [β](s) =

∞∑
n=1

α(n)

ns
e(βn).

We will write A�a0,...,ak B if A = O(B) and the O constant depends only
on a0, . . . , ak.

Let q be a positive integer and q =
∏k
i=1 p

li
i be its canonical represen-

tation. Let K(q) = {n ∈ N | n =
∏k
i=1 p

mi
i } where the mi are arbitrary

nonnegative integers. From the fundamental theorem of arithmetic it easily
follows that each n ∈ N has a unique representation

(2.1) n = km,

where k ∈ K(q) and (m, q) = 1.
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Lemma 2.1. Let α(n) be an arbitrary sequence of complex numbers, and
l ∈ Z. Suppose that the Dirichlet series F [l/q](s) =

∑∞
n=1 α(n)e(ln/q)n−s

is convergent for σ = <s > σ0 > 0. Then

Γ (s)F [l/q](s) =

∞�

0

ts−1A(e(l/q)e−t) dt.

Proof. This follows from the results of [H].

Let β ∈ Q, β = l/q, q > 0, where l and q are coprime. For the Dirichlet
series F (s) we define

Cχ(s) =
∑

k∈K(q)

τ(χ̄, lk)α(k)k−s.

Lemma 2.2. Let α(n) be an arbitrary sequence of complex numbers, and
q > 1. Suppose the Dirichlet series F (s) =

∑∞
n=1 α(n)n−s is absolutely

convergent for <s > σ0. Then for any l ∈ Z and s with <s > σ0,∑
(n,q)=1

α(n)e(ln/q)

ns
=

1

φ(q)

∑
χ (mod q)

τ(χ̄, l)F (s, χ).

Proof. We have

(2.2)
∑

(n,q)=1

α(n)e(ln/q)

ns
=
∞∑
n=1

α(n)
u(n)

ns
,

where u(n) = e(ln/q) if (n, q) = 1, and u(n) = 0 if (n, q) 6= 1. Since
u(n) = 1

φ(q)

∑
χ (mod q) τ(χ̄, l)χ(n) we obtain∑

(n,q)=1

α(n)e(ln/q)

ns
=

1

φ(q)

∑
χ (mod q)

τ(χ̄, l)F (s, χ).

Lemma 2.3. Let α(n) be a multiplicative function and suppose the Di-
richlet series F (s) is absolutely convergent in {<s > σ1}. Then

(2.3) F [β](s) =
1

φ(q)

∑
χ (mod q)

Cχ(s)F (s, χ).

Proof. Let Ak be the set of natural numbers that have k in the repre-
sentation (2.1). Then

N =
⊔
k∈K

Ak.

Let Sk =
∑

n∈Ak
α(n)
ns e(βn). Then

(2.4) F [β](s) =
∑
k∈K

Sk,
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where

Sk = α(k)k−s
∑

(n,q)=1

e(lkn/q)
α(n)

ns
.

By Lemma 2.2,

(2.5) Sk =
α(k)

ks
1

φ(q)

∑
χ (mod q)

τ(χ̄, lk)F (s, χ).

From (2.4), (2.5) and the definition of Cχ(s) we obtain (2.3).

The following lemma reduces the calculation of Cχ0(s) to the calculation
of Cχi(s) where χi are principal characters modulo pmii .

Lemma 2.4. Let χ0 be a principal character modulo q = pm1
1 . . . pmrr . Let

χi be principal characters modulo pmii . Then

Cχ0(s) = Cχ1(s) . . . Cχr(s).

Proof. From the properties of the Ramanujan sum [MV, p. 110] it easily
follows that for any l satisfying (l, q) = 1 we have τ(χ0, lk) = τ(χ1, lk) . . .
τ(χr, lk) = τ(χ1, p

m1
1 ) . . . τ(χr, p

mr
r ). Using the multiplicativity of α(n) we

obtain

Cχ0(s) =

∞∑
i1=0,...,ir=0

α(pi11 ) . . . α(pirr )

pi1s1 . . . pirsr
τ(χ1, p

i1
1 ) . . . τ(χr, p

ir
r )

=
∞∑
i1=0

α(pi11 )τ(χ1, p
i1
1 )p−i1s1 . . .

∞∑
ir=0

α(pirr )τ(χr, p
ir
r )p−irsr

= Cχ1(s) . . . Cχr(s).

Let ω(n) be the number of prime divisors of n. We will use the simple
estimate

(2.6) ω(n) = O

(
lnn

ln lnn

)
.

The proof can be found in [MV, p. 55]. From (2.6) we obtain, for all A, ε,

(2.7) Aω(n) �A,ε n
ε.

Hence we easily derive an estimate for the function f(q) of Section 1. Since

f(p) = 1
p2−1 = p−2

1−p−2 ≤ 2p−1, f(p2) = 1
p2−1 ≤ 2p−2, and f(p3) = 0 ≤ 2p−3,

we have

(2.8) f(q) ≤ q−12ω(q) �ε q
−1+ε.

3. Residues and asymptotic formulas. In this section, as usual,
σ = <s, t = =s, and χ0 is a principal character modulo q. Denote by F1(s)
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the function ζ(s)/ζ(2s). It can be represented by the Dirichlet series

(3.1) F1(s) =
∞∑
n=1

µ2(n)

ns
.

For the Dirichlet series F1(s, χ) we have the representation

F1(s, χ) =
L(s, χ)

L(2s, χ2)
.

Using the Mellin inversion formula [FGD, p. 4], Lemma 2.1 and representa-
tion (3.1) we deduce

(3.2) M0(e(l/q)e
−x) =

1

2πi

2+i∞�

2−i∞
x−sΓ (s)F1[l/q](s) ds.

Let Π be the rectangle with vertices 2−iT , 2+iT , 0.5+ε+iT , 0.5+ε−iT . Let
I = [2−iT, 2+iT ], II = [2+iT, 0.5+ε+iT ], III = [0.5+ε+iT, 0.5+ε−iT ],
IV = [0.5 + ε− iT, 2− iT ].

-
0.5 + ε− iT

6

2− iT

�
2 + iT

?

0.5 + ε+ iT

I

II

III

IV

-
x

The contour Π

Let E1(q), E2(q) be constants depending only on q and ε. Using, for each
character χ modulo q, the simple estimate∣∣∣∣ 1

L(s, χ)

∣∣∣∣ ≤ ζ(σ), σ > 1,

and the estimate

|L(s, χ)| ≤ E1(q)|t|, |t| → ∞,
uniformly with respect to σ ∈ [0.5 + ε, 2], we obtain

(3.3)

∣∣∣∣ L(s, χ)

L(2s, χ2)

∣∣∣∣ ≤ E2(q)|t|, |t| → ∞,
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uniformly with respect to σ ∈ [0.5+ε, 2]. Since Cχ(s)=
∑

k∈K(q)
µ2(k)
ks τ(χ̄, lk)

and µ2(n) = 0 if p2 |n for some prime p, the sum in Cχ(s) is finite. Hence
the functions Cχ(s) are entire and

(3.4) |Cχ(s)| ≤ D(q), <s ∈ [0.5, 2],

where D(q) is a constant depending only on q. Since Γ (s)� |t|Ce−
π
2
|t| when

|t| → ∞ and σ ∈ [0.5 + ε, 2], from (3.3) and (3.4) we deduce

Γ (σ + iT )F1[l/q](σ + iT )� e−α|T |

for some α > 0. Hence�

II

x−sΓ (s)F1[l/q](s) ds→ 0, |t| → ∞,(3.5)

�

IV

x−sΓ (s)F1[l/q](s) ds→ 0, |t| → ∞.(3.6)

Since for each nonprincipal Dirichlet character χ the function L(s, χ) is
holomorphic in Π and L(s, χ0) has a simple pole at s = 1 in Π, by the
Cauchy theorem on residues we have

�

Π

x−sΓ (s)F1[l/q](s) ds = ress=1 x
−sΓ (s)F1[l/q](s).

Using Lemma 2.3, relations (3.5)–(3.6) and equation (3.2) we obtain

(3.7) M0(e(l/q)e
−x) = ress=1 x

−sΓ (s)F1[l/q](s)

+
1

2πi

1/2+ε+i∞�

1/2+ε−i∞

x−sΓ (s)F1[l/q](s) ds

= ress=1 x
−sΓ (s)Cχ0(s)F1(s, χ0)

+
1

2πi

1/2+ε+i∞�

1/2+ε−i∞

x−sΓ (s)
1

φ(q)

∑
χ (mod q)

Cχ(s)F1(s, χ) ds.

Let us calculate the residue. As usual q = pm1
1 . . . pmrr . Applying Lemma

2.4 to µ2(n) we obtain

Cχ0(1) = Cχ1(1) . . . Cχr(1), where Cχj (s) =
∞∑
k=0

τ(χj , p
k
j )

pksj
µ2(pkj )

and χj are principal characters modulo p
mj
j . Note that Cχj (s) = 0 if mj > 2.

If mj = 1, then Cχj (s) = −1 + (pj − 1)/psj and Cχj (1) = −1 + (pj − 1)/pj =
−1/pj . If mj = 2, then Cχj (s) = −pj/psj = −1. Hence
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ress=1 x
−sΓ (s)F1[l/q](s) = ress=1 x

−sΓ (s)
Cχ0(s)

φ(q)
F1(s, χ0)

=
x−1

ζ(2)

Cχ0(1)

φ(q)

∏
p|q

(
1 +

1

p

)−1
=
f(q)

ζ(2)
x−1,

where f(q) is the multiplicative function defined in Section 1. Consequently,

(3.8) M0(e(l/q)e
−x) =

f(q)

ζ(2)
x−1 +

1/2+ε+i∞�

1/2+ε−i∞

x−sΓ (s)F1[l/q](s) ds.

4. Inequalities for L-functions. The following lemma enables us to
give a uniform (with respect to q) estimate of L(s, χ).

Lemma 4.1. For each nonprincipal character χ modulo q, and for
0 < σ < 1, ∣∣∣∑

n<x

χ(n)n−σ
∣∣∣�σ q

1
2
(1−σ) log q.

Proof. Let x >
√
q. Then using the Abel transform [K, p. 43] we obtain∑

n<x

χ(n)n−σ = X(x)x−σ + σ

x�

1

X(t)t−σ−1 dt,

where X(t) =
∑

n≤t χ(n). Hence

∑
n<x

χ(n)n−σ = X(x)x−σ + σ

√
q�

1

X(t)t−σ−1 dt+ σ

x�
√
q

X(t)t−σ−1 dt.

Using Pólya’s estimate X(x) � √
q log q (see [MV, p. 307]) we obtain

|X(x)x−σ| � q1/2(log q)x−σ ≤ q(1−σ)/2 log q. Further, using the trivial in-
equality |X(t)| ≤ t we deduce∣∣∣σ

√
q�

1

X(t)t−σ−1 dt
∣∣∣ ≤ σ

√
q�

1

t−σ dt�σ q
1
2
(1−σ).

Applying Pólya’s estimate again we obtain∣∣∣ x�
√
q

X(t)t−σ−1 dt
∣∣∣ ≤ √q log q

x�
√
q

t−σ−1 dt

≤ √q log q

∞�
√
q

t−σ−1 dt�σ
√
q q−σ/2 log q = q

1
2
(1−σ) log q,

so the lemma is proved in the case x >
√
q.
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If x ≤ √q, then∣∣∣∑
n<x

χ(n)n−σ
∣∣∣ ≤ ∑

n<
√
q

n−σ �σ (
√
q)1−σ = q

1
2
(1−σ),

and the lemma is also proved for x ≤ √q.

The following result will be applied in the proof of Theorem 1.1.

Theorem 4.2. Let χ be a character modulo q, and σ = <s, 0 < σ < 1.
Then

|L(s, χ)| �σ,ε |s|q(1−σ)/2+ε.

Proof. Consider first the case χ 6= χ0 modulo q. Using the Abel trans-
form we get

L(σ − ε+ s, χ) = s

∞�

1

u−s−1
∑
n<u

χ(n)nε−σ du.

Hence

L(s, χ) = |L(σ − ε+ ε+ it, χ)| ≤ |it+ ε|
∞�

1

u−ε−1
∣∣∣∑
n<u

χ(n)nε−σ
∣∣∣ du.

Thus by Lemma 4.1,

|L(s, χ)| � |s|q(1−σ+ε)/2(log q)

∞�

1

u−ε−1 du�ε |s|q(1−σ)/2+ε.

If χ = χ0 modulo q then by (2.7),

|L(s, χ0)| =
∣∣∣∏
p|q

(1− p−s)ζ(s)
∣∣∣� |s|∏

p|q

(1 + p−σ) ≤ |s|(1 + 2−σ)ω(q)

�σ,ε |s|qε.

5. Proof of Theorem 1.1

Lemma 5.1. For each m ∈ N,∑
χ (mod q)

|τ(χ,m)|2 = φ2(q).

Proof. We have∑
χ

|τ(χ,m)|2 =
∑
χ

( q−1∑
x=0

χ(x)e(mx/q)

q−1∑
y=0

χ̄(y)e(−my/q)
)

=
∑
χ

∑′

x,y

χ(xy−1)e(m(x− y)/q)
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=
∑′

x,y

(∑
χ

χ(xy−1)
)
e(m(x− y)/q)

=
∑′

x=y

∑
χ

χ(1) = φ(q)2,

where
∑′

x,y is the sum over invertible elements x, y of Zq.

Proof of Theorem 1.1. Since
∣∣ L(s,χ)
L(2s,χ2)

∣∣ ≤ |L(s, χ)|ζ(2σ) for <s ≥ 1/2 + ε

we have

(5.1)

∣∣∣∣ L(s, χ)

L(2s, χ2)

∣∣∣∣�ε |L(s, χ)|.

Using the definition of Cχ(s) and Lemma 2.3, and changing the order of
summation, we obtain

(5.2) F1[l/q](s) =
1

φ(q)

∑
k∈K(q)

µ2(k)

ks

∑
χ (mod q)

τ(χ̄, lk)
L(s, χ)

L(2s, χ2)
.

Using (5.1), (5.2) and Hölder’s inequality we deduce

|F1[l/q](s)| =
∣∣∣∣ ∞∑
n=1

µ2(n)e(nl/q)

ns

∣∣∣∣
� 1

φ(q)

∑
k∈K(q)

µ2(k)

kσ

∑
χ (mod q)

|τ(χ̄, lk)|
∣∣∣∣ L(s, χ)

L(2s, χ2)

∣∣∣∣
�ε

1

φ(q)

∑
k∈K(q)

µ2(k)

kσ

∑
χ (mod q)

|τ(χ̄, lk)| |L(s, χ)|

� 1

φ(q)

∑
k∈K(q)

µ2(k)

kσ

√ ∑
χ (mod q)

|τ(χ, lk)|2
√ ∑
χ (mod q)

|L(s, χ)|2.

By Lemma 5.1 and Theorem 4.2 for <s = 1/2 + ε we obtain

|F1[l/q](s)| �ε
1

φ(q)

∏
p|q

(1 + p−1/2−ε)φ(q)
√
φ(q)|s|2q1/2+ε

= |s|
∏
p|q

(1 + p−1/2−ε)
√
φ(q)q1/2+ε≤|s|

∏
p|q

(1 + p−1/2−ε)q3/4+ε/2.

Since for fixed σ > 0 by (2.7) we have
∏
p|q(1 + p−σ) ≤ 2ω(q) �ε q

ε/2, for

<s = 1/2 + ε we obtain

|F1[l/q](s)| � |s|q3/4+ε.
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Further, from (3.8) and rapid decrease of |Γ (s)| when |=s| → ∞ we deduce

M0(e(l/q)e
x)

=
f(q)

ζ(2)
x−1 +O

(1/2+ε+i∞�

1/2+ε−i∞

x−1/2−ε|Γ (1/2 + ε+ it)| |1/2 + ε+ it|q3/4+ε dt
)

=
f(q)

ζ(2)
x−1 +O(x−1/2−εq3/4+ε).

6. The behavior of convergents of a continued fraction

Lemma 6.1. Let β be a real number with irrationality exponent 2. Let
pn/qn be the convergents of its continued fraction. Then for each ε > 0,

(6.1) qn+1 ≤ q1+εn ,

where n > N(ε, β).

Proof. Assume that there exist a subsequence nk → ∞ and ε > 0 such
that

qnk+1 ≥ q1+εnk
.

Then using [Kh, p. 16, Theorem 9], we obtain

(6.2)

∣∣∣∣β − pnk
qnk

∣∣∣∣ ≤ 1

qnkqnk+1
≤ 1

q2+εnk

,

contrary to the assumption that the irrationality exponent of β equals 2.
Hence there exists an N(ε, β) such that (6.1) is true for all n > N(ε, β).

7. Proof of Main Theorem 1.2

Lemma 7.1. Let β be a real number with irrationality exponent 2. Let
qn be the denominators of convergents of its continued fraction. Then for
any c, d satisfying 0 < c < d there exists an x0 such that every x > x0 can
be represented in the form x = qAn , where n ∈ N and A ∈ [c, d].

Proof. Note that qcn is an increasing sequence tending to ∞. Take an
ε such that c(1 + ε) ≤ d. Let x0 = qcN(ε,β), where N(ε, β) is defined in

Lemma 6.1. Then if x > x0, we have x ∈ [qcn, q
c
n+1], where n > N(ε, β), and

by Lemma 6.1, logqn x ≤ logqn q
c
n+1 ≤ logqn q

c(1+ε)
n = c(1 + ε) ≤ d. Hence

x = qAn , where A ∈ [c, d].

Lemma 7.2 (see [S]). If q and a are integers satisfying |βq − a| ≤ q−1,
then

|SN (β)| �ε,β N
1+ε +N εq.

Lemma 7.3. We have

SN (β)�β,ε N
1/2+ε.
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Proof. Let ln/qn be the convergents of the continued fraction of β. Then
|α− ln/qn| < 1/q2n, so by Lemma 7.2,

SN (β)�β,ε N
1+εq−1 +N εq.

Since qn+1 ≤ q1+εn if n > N0 and qn+1 > qn, each sufficiently large N satisfies
the inequality

q2n ≤ N ≤ q2(1+ε)n .

Hence q−1n ≤ N
− 1

2(1+ε) and qn ≤
√
N . Thus SN (β) � N1/2+ε1 for each

ε1 > 0.

Using the Abel transform, from Lemma 7.3 we obtain (1.4). Thus The-
orem 1.2 is proved.

Since the irrationality exponent of every algebraic number equals 2, by
Theorem 1.2 we obtain

Corollary 7.4. Let β be an algebraic number. Then

M0(e(β)r) = O((1− r)−1/2−ε), r → 1−.

8. Proof of Theorems 1.3 and 1.4. In this section we consider the
case of numbers β that are well approximated by rational numbers with
square-free denominators.

Lemma 8.1. Let β be an irrational number, γ > 0 and lm/qm be a
sequence of rational numbers such that

|β − lm/qm| �β 1/qγm.

Then
|M0(e(β)e−x)−M0(e(lm/qm)e−x)| �β q

−γ
m x−2.

Proof. Since |β − lm/qm| �β 1/qγm we have

∞∑
n=1

µ2(n)e(nβ)e−nx −
∞∑
n=1

µ2(n)e(nlm/qm)e−nx

�
∞∑
n=1

µ2(n)|e(n(β − lm/qm))− 1|e−nx.

Using the estimate |e(x)− 1| � |x| we obtain∣∣∣ ∞∑
n=1

µ2(n)e(nβ)e−nx −
∞∑
n=1

µ2(n)e(nlm/qm)e−nx
∣∣∣

�
∞∑
n=1

µ2(n)|n(β − lm/qm)|e−nx �β

∞∑
n=1

n

qγm
e−nx � x−2q−γm .

Proof of Theorem 1.3. Let x = q−An , where A = 1
2(max{11/2, 2/δ} +

γ − 2). Note that A > max{11/2, 2/δ} and A < γ − 2. By Theorem 1.1 and
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Lemma 8.1, for any ε > 0,

M0(e(β)e−x) =
f(q)

ζ(2)
qAn +O(qA(1/2+ε)n q3/4+εn + q−γn q2An )

= C(qn)qA−2n +O(qA(1/2+ε)+3/4+ε
n + q2A−γn ),

where C(qn)� 1.
Since A < γ−2 we have A−2 > 2A−γ. The inequality A > 11/2 yields

A(1/2 + ε) + 3/4 + ε < A− 2 for some ε > 0. Hence

M0(e(β)e−x) = C(qn)qA−2n + o(qA−2n ), n→∞.

Using the inequality A > 2/δ we obtain logx−1 qA−2n = log qA−2
n

log qAn
= 1− 2/A >

1− δ. Since x−1 > 1 we have qA−2n > x−1+δ. Hence

|M0(e(β)e−x)| = |qA−2n (C(qn) + o(1))| = qA−2n (C(qn) + o(1))

� qA−2n > x−1+δ.

Proof of Main Theorem 1.4. Such numbers can be constructed by means
of the method of inserted segments. Let γ > 2+max{11/2, 2/δ}. Let us find
a rational number l1/q1 where q1 is a square-free integer and find a real θ1
with |θ1| ≤ 1/qγ1 . Let us find a square-free number q2 and an integer l2 such
that l2/q2 6= l1/q1 and[

l2 − 1

q2
,
l2 + 1

q2

]
⊂ R1 =

[
l1
q1
− θ1,

l1
q1

+ θ1

]
,

and a θ2 such that |θ2| ≤ 1/qγ2 . Let us find a square-free number q3 and an
integer l3 such that l3/q3 6= l2/q2 and[

l3 − 1

q3
,
l3 + 1

q3

]
⊂ R2 =

[
l2
q2
− θ2,

l2
q2

+ θ2

]
,

and a θ3 such that |θ3| ≤ 1/qγ3 , etc. Thus we construct a sequence of segments
Ri with length tending to zero and with Ri+1 ⊆ Ri. Let α =

⋂
iRi. Since

α ∈ Ri for each i we have |α − li/qi| ≤ 2θi = 2/qγi . By Theorem 1.3 we
obtain inequality (1.5).

Using the Abel transform we obtain Corollary 1.5.
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