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1. Introduction and results. Let E be an elliptic curve defined over
Q of conductor N . For a prime p of good reduction (i.e. p - N), let Ep be the
reduction mod p of E. It is known that Ep(Fp), the group of rational points
of E over the finite field Fp, is the product of at most two cyclic groups,
namely

Ep(Fp) ∼= (Z/iE(p)Z)× (Z/eE(p)Z),

where iE(p) divides eE(p). Thus, eE(p) is the exponent of Ep(Fp) and iE(p)
is the index of the largest cyclic subgroup of Ep(Fp). In recent years there
has been a lot of interest in studying the distribution of the invariants iE(p)
and eE(p).

Borosh, Moreno, and Porta [8] were the first to study iE(p) computation-
ally and conjectured that, for some elliptic curves, iE(p) = 1 occurs often.
We note that iE(p) = 1 if and only if Ep(Fp) is cyclic. Let

(1.1) NE(x) = #{p ≤ x; p - N and Ep(Fp) is cyclic}.

Then Serre [29], under the assumption of the generalized Riemann hypoth-
esis (GRH) for division fields Q(E[k]), proved that NE(x) ∼ cE li(x) as
x → ∞, where cE > 0 if and only if Q(E[2]) 6= Q. Here li(x) =

	x
2 dt/log t.

For the curves with complex multiplication (CM), Murty [28] removed the
assumption of the GRH. Also, he showed that under GRH one can obtain
the estimate O(x log log x/(log x)2) for the error term in the asymptotic for-
mula for NE(x) for any elliptic curve E. The value of the error term is
improved to O(x5/6(log x)2/3) in [10]. In [3], following the method of [28] in
the CM case, the error term O(x/(log x)A) for any A > 1 is established.

Another problem closely related to cyclicity is finding the average value
of the number of divisors of iE(p) as p varies over primes. Let τ(n) denote
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the number of divisors of n. In [1], Akbary and Ghioca proved that∑
p≤x

τ(iE(p)) = cE li(x) +O(x5/6(log x)2/3)

if GRH holds, and∑
p≤x

τ(iE(p)) = cE li(x) +O

(
x

(log x)A

)
,

for A > 1, if E has CM. In the above asymptotic formulas, cE is a positive
constant which depends only on E.

The average value of iE(p) is a more challenging problem. In [26], Kowal-
ski proposed this problem and proved unconditionally that the lower bound
log log x holds for

1

x/log x

∑
p≤x

iE(p)

if E has CM. He also showed that, for a non-CM curve, the above quantity
is bounded from below.

A more approachable problem is finding the average value of eE(p).
Freiberg and Kurlberg [16] were the first to consider this problem and es-
tablished conditional (unconditional in the CM case) asymptotic formulas
for
∑

p≤x eE(p). Felix and Murty [14] proved, for k a fixed positive integer,
the following more general asymptotic formula:∑

p≤x
ekE(p) = cE,k li(xk+1) +O(xkE(x)),

where

E(x) =

{
x/(log x)A if E has CM,

x5/6(log x)2 if GRH holds,

and cE,k is a positive constant depending on E and k. (For k = 1 and a
non-CM curve E, Wu [33] has obtained a slightly better error term under
GRH.) Felix and Murty derived their result as a consequence of a more
general theorem on asymptotic distribution of iE(p)’s. Their general theorem
also implies the best known results on the cyclicity, the Titchmarsh divisor
problem, and several other similar problems. To state their result, let g(n)
be an arithmetic function such that

(1.2)
∑
n≤x
|g(n)| � x1+β(log x)γ ,

where β and γ are arbitrary, and let

(1.3) f(n) =
∑
d|n

g(d).

Then the following is proved in [14, Theorem 1.1(c)].
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Theorem 1.1 (Felix and Murty). Under the assumption of GRH and
the bound (1.2) for β < 1/2 and arbitrary γ, we have∑

p≤x
f(iE(p)) = cE(f) li(x) +O

(
x

5+2β
6 (log x)

(2−β)(1+γ)
3

)
,

where cE(f) is a constant depending only on E and f .

They also proved an unconditional version of the above theorem for CM
elliptic curves (see [14, Theorem 1.1(a)]).

Our goal in this paper is to prove that Theorem 1.1 holds unconditionally
on average over the family of all elliptic curves in a box. More precisely, we
consider the family C of elliptic curves

Ea,b : y2 = x3 + ax+ b,

where |a| ≤ A and |b| ≤ B. It is not that difficult to prove a version of
Theorem 1.1 on average over a large box. However it is a challenging problem
to establish the same over a thin box. By a thin box we mean that, as a
function of x, either A or B can be as small as xε for any ε > 0. Here
we prove a stronger result in which one of A and B can be as small as
exp(c1(log x)1/2) for a suitably chosen constant c1 > 0. Before stating our
main theorem, we note that, at the expense of replacing β and γ by larger
non-negative values, we can assume that β and γ are non-negative.

Theorem 1.2. Let c > 1 be a positive constant and let f be the sum-
matory function (1.3) of a function g that satisfies (1.2) for certain non-
negative values of β and γ. Assume that AB > x(log x)4+2c if 0 ≤ β < 1/2
and AB > x1/2+β(log x)2γ+6+2c(log log x)2 if 1/2 ≤ β < 1. Then there is a
positive constant c1 > 0 such that if A,B > exp(c1(log x)1/2), we have

1

|C|
∑

Ea,b∈C

∑
p≤x

f(iEa,b(p)) = c0(f) li(x) +O

(
x

(log x)c

)
,

where

(1.4) c0(f) :=
∑
d≥1

g(d)

dψ(d)ϕ(d)2
.

The implied constant depends on g, β, γ, and c. Here ϕ(n) = n
∏
p|n(1−1/p)

and ψ(n) = n
∏
p|n(1 + 1/p).

Remark 1.3. We note that if f is a non-zero multiplicative function,
then the constant c0(f) has an Euler product. More precisely, for multiplica-
tive f we have

c0(f) =
∏

` prime

(
1− 1

(`2 − 1)(`2 − `)
+

(`4 − 1)

(`2 − 1)(`2 − `)
∑
α≥1

f(`)

`4α

)
.
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Moreover, if f is completely multiplicative, then

c0(f) =
∏

` prime

(
1− `4(1− f(`))

(`2 − 1)(`2 − `)(`4 − f(`))

)
.

If f(n)� n, then c0(f) = 0 if and only if

f(`) =
`3(1− `+ `2 + `3 − `4)

`2 + `− 1
for some prime `. One can verify that the right hand side of the above
expression is less than or equal to −`3. Thus we can conclude that if f is
completely multiplicative and f(n)� n, then c0(f) 6= 0.

Observe that it is possible that c0(f) = 0 for f multiplicative but not
completely multiplicative. For example, let f : N → C be a multiplicative
function such that f(2) = −16/3, f(2α) = 0 for α ≥ 2, and f(`α) = 0 for
` ≥ 3 and α ≥ 1. Then from the above expression for c0(f) we conclude that
c0(f) = 0.

We would also like to point out that, following [16, Section 7], for an el-
liptic curve E and a multiplicative function f there exists a constant κE(f)
that can be expressed in terms of data associated to Galois representations
on the torsion points of E, such that cE(f) = κE(f)c0(f), where cE(f) is
the constant given in Theorem 1.1. In particular, if f(n) is completely mul-
tiplicative and f(N) ⊂ Q, then κE(f) ∈ Q. This phenomenon also occurs in
Artin’s conjecture and its related problems (see [27]). It would be interesting
to know whether

1

|C|
∑
E∈C

cE(f)→ c0(f) as x→∞.

The work of Jones [24, Notation 4 and Corollary 8] establishes, under certain
conditions, this relation in the case f(n) =

∑
d|n µ(d).

Theorem 1.2 is comparable to Stephens’s average result on Artin’s primi-
tive root conjecture. Let a be a positive integer and let Aa(x) be the number
of primes not exceeding x and for which a is a primitive root. The following
result has been proved in [31] and [32].

Theorem 1.4 (Stephens). There exists a constant c1 > 0 such that, if
N > exp(c1(log x)1/2), then

1

N

∑
a≤N

Aa(x) = A li(x) +O

(
x

(log x)c

)
,

where A =
∏
` prime(1 − 1/`(` − 1)) and c is an arbitrary constant greater

than 1.

The line of research on Artin’s primitive root conjecture on average
started with the work of Goldfeld [19], who used multiplicative character
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sums and the large sieve inequality to establish a weaker version of The-
orem 1.4. The extension of the method of character sums to the average
questions on a two-parameter family, in the case of elliptic curves inside a
box, was pioneered by the work of Fouvry and Murty [15] on the average
Lang–Trotter conjecture for supersingular primes. This was extended to the
general Lang–Trotter conjecture by David and Pappalardi [13]. The best
result on the size of the box (|a| ≤ A and |b| ≤ B) is due to Baier [4] who
established the Lang–Trotter conjecture on average under the condition

(1.5) A,B > x1/2+ε and AB > x3/2+ε,

where ε > 0. The supersingular case of this result is due to Fouvry and
Murty [15, Theorem 6]. Baier [5] also established an average result for the
Lang–Trotter conjecture in the range

(1.6) A,B > (log x)60+ε and x3/2(log x)10+ε < AB < ex
1/8−ε

,

where ε > 0. Note that (1.6) is superior to (1.5) if A and B are not very large.
Another notable result is due to James [23] who proved the Lang–Trotter
conjecture on averages over elliptic curves with given fixed torsion.

There are also average results for other distribution problems for el-
liptic curves. Banks and Shparlinski [7] considered such average problems
in a very general setting by employing multiplicative characters, and con-
sequently proved average results for the cyclicity problem, the Sato–Tate
conjecture, and the divisibility problem on a box |a| ≤ A, |b| ≤ B satisfying
the conditions

(1.7) A,B ≤ x1−ε and AB ≥ x1+ε,

where ε > 0. Another notable result is related to the Koblitz conjecture. Let

πtwin
E (x) := #{p ≤ x; #Ep(Fp) is prime}.

A conjecture of Koblitz [25] predicts that

πtwin
E (x) ∼ cE

x

(log x)2

as x → ∞, where cE is a constant depending on E. Balog, Cojocaru, and
David [6] proved the following result on Koblitz conjecture on average over
the family C.

Theorem 1.5 (Balog, Cojocaru, and David [6, Theorem 1]). Let A,B
> xε and AB > x(log x)10. Then, as x→∞,

1

|C|
∑
E∈C

πtwin
E (x) =

∏
prime `

(
1− `2 − `− 1

(`− 1)3(`+ 1)

)
x

(log x)2
+O

(
x

(log x)3

)
.

The error term in the above theorem is estimated by a careful analysis
of some multiplicative character sums. We prove our Theorem 1.2 by a
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generalization of a modified version of [6, Lemma 6] (see our Lemma 3.1).
We have used some results of Stephens [32] to sharpen the estimates given
in [6, Lemma 6], and thus we could establish our results, for β < 1/2, on a
box of size

(1.8) A,B > exp(c1(log x)1/2) and AB > x(log x)δ,

for appropriate positive constants c1 and δ. As far as we know, this is the
thinnest box used for an elliptic curve average problem.

Our Theorem 1.2 has many applications. Here we mention some direct
consequences of it to the cyclicity problem, the Titchmarsh divisor prob-
lem for elliptic curves, and computation of the kth power moment of the
exponent eE(p).

Corollary 1.6. Let c > 1 and AB > x(log x)4+2c. There is c1 > 0 such
that if A,B > exp(c1(log x)1/2), then, as x → ∞, the following statements
hold:

(i) We have

1

|C|
∑
E∈C

NE(x) =
∏

` prime

(
1− 1

(`2 − 1)(`2 − `)

)
li(x) +O

(
x

(log x)c

)
,

whereNE(x) is the cyclicity counting function and µ(d) is the Möbius
function.

(ii) We have

1

|C|
∑
E∈C

∑
p≤x

τ(iE(p))

=
∏

` prime

(
1 +

`3

(`− 1)(`2 − 1)(`4 − 1)

)
li(x) +O

(
x

(log x)c

)
.

(iii) For k ∈ N we have

1

|C|
∑
E∈C

∑
p≤x

ekE(p)

=
∏

` prime

(
1− `3(`k − 1)

(`− 1)(`2 − 1)(`k+4 − 1)

)
li(xk+1) +O

(
xk+1

(log x)c

)
.

Part (i) of the above corollary gives a strengthening of a result of Banks
and Shparlinski [7, Theorem 18] where the asymptotic formula in (i) was
proved in the weaker range (1.7). Parts (ii) and (iii) establish unconditional
average versions of some results given in [1] and [14]. In (iii), if k = 1, then
we obtain the universal constant in [16].
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Remarks 1.7. (i) As corollaries of Theorem 1.2, we can also establish
unconditional average results for f(iE(p)), where f(n) is one of the functions
(log n)α, ω(n)k, Ω(n)k, 2kω(n), or τk(n)r. Here α is an arbitrary positive real
number and k and r are fixed non-negative integers. See [14, p. 276] for
conditional results related to these functions in the case of a single elliptic
curve.

(ii) Under the conditions of Theorem 1.2 one can also obtain average
results for f(n) = nβ and f(n) = σβ(n) =

∑
m|nm

β as long as β < 1. More
precisely, for A and B satisfying the conditions of Theorem 1.2 we have, for
c > 1,

1

|C|
∑
E∈C

∑
p≤x

iβE(p) =

(∑
d≥1

g(d)

dψ(d)ϕ(d)2

)
li(x) +O

(
x

(log x)c

)
,

where g is the unique arithmetic function satisfying

nβ =
∑
m|n

g(m).

This stops short of providing an answer on average to a problem proposed
by Kowalski [26, Problem 3.1] that asks about the asymptotic behavior of∑

p≤x iE(p).

(iii) Following the proof of Theorem 1.2, one can improve the condition
A,B > xε in Theorem 1.5 to A,B > exp(c1(log x)1/2) for some suitably
chosen constant c1.

(iv) Lemma 3.1 is the difficult part of the proof of Theorem 1.2. The
proof of Lemma 3.1 follows the method used in the proof of [6, Lemma 6]
(which itself is based on [7]) and combines it with some devices from [32].
A new ingredient is an asymptotic estimate due to Howe (see Lemma 2.1)
for the number of elliptic curves over Fp which have d-torsion subgroup over
Fp isomorphic to two copies of Z/dZ. Another new feature is a successful
application of Burgess’s bound (see Lemma 2.6) in handling terms obtained
from the error term of Howe’s estimate.

(v) One other novel feature of the proof of Theorem 1.2 is sharp estimates
of the error terms arising from the curves of j-invariant 0 or 1728, which
are estimated using some results from the theory of CM curves (see Lemma
2.3). A trivial estimate of these terms will result in unsatisfactory bounds
on admissible values of A and B in Theorem 1.2.

Following the ideas of the proof of Theorem 1.2 and by a careful analysis
of some character sums one can show that c0(f) li(x) closely approximates∑

p≤x f(iE(p)) for almost all curves E ∈ C. Here we prove the following
more general theorem.
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Theorem 1.8. Let 0 ≤ β < 1/2 and γ ≥ 0. Let f(n) =
∑

d|n g(d) be an
arithmetic function satisfying

(1.9) f(n)� nβ(log n)γ .

Suppose AB > x2(log x)6 if 0 ≤ β < 1/4 and AB > x3/2+2β(log x)4γ+14

× (log log x)4 if 1/4 ≤ β < 1/2. Then there is a positive constant c1 > 0
such that, if A,B > exp(c1(log x)1/2), we have

1

|C|
∑
E∈C

(∑
p≤x

f(iE(p))− c0(f) li(x)
)2

= O

(
x2

(log x)2

)
,

where c0(f) is defined by (1.4).

The following is a direct consequence of Theorem 1.8.

Corollary 1.9. Let h(x) be a positive real function such that
limx→∞ h(x) = 0. Under the assumptions of Theorem 1.8, for any x > 1 we
have

(1.10)
∣∣∣∑
p≤x

f(iE(p))− c0(f) li(x)
∣∣∣ ≤ x

h(x) log x

for almost all E ∈ C. More precisely, (1.10) holds except possibly for
O(h(x)2|C|) of curves in C.

We note that one can take f to be any of the functions mentioned in
Corollary 1.6(i), (ii), and Remarks 1.7(i), (ii). For Corollary 1.6(i), the corre-
sponding function f(n) is the characteristic function of the singleton set {1}.

Remarks 1.10. It is possible to establish a version of Theorem 1.8 using
the bound ∑

n≤x
|g(n)|2 � x1+2β(log x)2γ

instead of (1.9). However, we find that (1.9) will make the presentation of
the proof more convenient. Note that if

f(n) =
∑
d|n

g(d)� nβ(log n)γ ,

then, by the Möbius inversion formula, we have∑
n≤x
|g(n)|2 � x1+2β(log x)2γ+1.

The structure of the paper is as follows. In Section 2 we summarize
results that will be used in the proof of our two theorems. Section 3 is
dedicated to a detailed proof of Theorem 1.2 and Corollary 1.6. In Section
4 we briefly summarize the proof of a technical lemma, which is a two-
dimensional version of Lemma 3.1. The proof is tedious and divided into
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several subcases. We treat some cases and briefly comment on the remaining
ones. Finally in Section 5 we prove Theorem 1.8.

Notation 1.11. Throughout the paper p and q denote primes (for sim-
plicity in most cases we assume that p, q 6= 2, 3), ϕ(n) is the Euler func-
tion, ω(n) is the number of distinct prime divisors of n, Ω(n) is the total
number of prime divisors of n, τ(n) is the total number of divisors of n,
p(n) is the largest prime factor of n, τk(n) is the number of representa-
tions of n as a product of k natural numbers, µ(n) is the Möbius function,
ψ(n) = n

∏
p|n(1+1/p), and π(x; d, a) is the number of primes not exceeding

x that are congruent to a modulo d. Moreover, K is an imaginary quadratic
number field of class number 1, N(a) is the norm of an ideal a of K, N(α) is
the norm of an element α in K, p always denotes a degree 1 prime ideal of
K with N(p) = p, and dsp is the largest divisor of d composed of primes that
split completely in K. We denote the finite field of p elements by Fp and its
multiplicative group by F×p . For two functions f(x) and g(x) 6= 0, we use
the notation f(x) = O(g(x)), or alternatively f(x)� g(x), if |f(x)/g(x)| is
bounded as x→∞.

2. Lemmas. Let Es,t denote an elliptic curve over Fp (with p 6= 2, 3)
given by the equation

y2 = x3 + sx+ t, s, t ∈ Fp,
where at least one of s or t is non-zero. Let Es,t[d](Fp) denote the set of
d-torsion points of Es,t with coordinates in Fp. The following lemma is es-
sentially due to Howe (see [21, p. 245]).

Lemma 2.1.

(i) For d ∈ N and a fixed prime p, let

Sd(p) := {(s, t) ∈ Fp×Fp; 4s3+27t2 6= 0 and Es,t[d](Fp) ∼= Z/dZ×Z/dZ}.
For d | p− 1, we have

#Sd(p) =
p(p− 1)

dψ(d)ϕ(d)
+O(p3/2).

Moreover, if d - p− 1 or d >
√
p+ 1, then #Sd(p) = 0.

(ii) The assertions in (i) hold if we replace Sd(p) with S̃d(p), where

S̃d(p) := {(s, t) ∈ F×p ×F×p ; 4s3 + 27t2 6= 0 and Es,t[d](Fp) ∼= Z/dZ×Z/dZ}.
Proof. (i) We know that elliptic curves isomorphic (over Fp) to Es,t are

of the form Esu4,tu6 , where u ∈ F×p . Let AutFp(Es,t) be the group of au-
tomorphisms (over Fp) of the elliptic curve Es,t. So the number of elliptic
curves isomorphic to Es,t (over Fp) is (p−1)/|AutFp(Es,t)|. Let [Es,t] denote
the class of all elliptic curves over Fp that are isomorphic over Fp to Es,t.
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We have

#Sd(p) =
∑

[Es,t]⊂Sd(p)

p− 1

|AutFp(Es,t)|
.

Now the result follows since by [21, p. 245] we have, for d | p− 1,

(2.1)
∑

[Es,t]⊂Sd(p)

1

|AutFp(Es,t)|
=

p

dψ(d)ϕ(d)
+O(p1/2).

Moreover, by [30, Corollary III.8.1.1], if d - p−1 then (Z/dZ)2 6∼= Es,t(Fp)[d],
and so #Sd(p) = 0. Also if d >

√
p+1 and (Z/dZ)2 ∼= Es,t(Fp)[d] ⊆ Es,t(Fp),

then p + 2
√
p + 1 < d2 ≤ #Es,t(Fp). On the other hand #Es,t(Fp) ≤ p +

2
√
p+ 1, by Hasse’s theorem. This is a clear contradiction.

(ii) We can deduce this by following the proof of part (i) and observing
that there are O(1) isomorphism classes over Fp containing a curve of the
form E0,t or Es,0.

Remark 2.2. (i) For any prime p, we know that |AutFp(Es,t)| = O(1).
In fact, for p 6= 2, 3, from [30, Theorem III.10.1] we know that

|AutFp(Es,t)| =


6 if s = 0 and p ≡ 1 (mod 6),

4 if t = 0 and p ≡ 1 (mod 4),

2 otherwise.

(ii) We note that, using Howe’s notation [21, p. 245], we have∑
[Es,t]⊂Sd(p)

1

|AutFp(Es,t)|
=

p

dψ(d)ϕ(d)
+O(ψ(d/d)2ω(d)√p),

where the implied constant is absolute. However, the term 2ω(d) is a bound
for
∑

j|gcd(d,p−1)/d µ(j). In our case, gcd(d, p− 1)/d = 1, since d | p−1. Thus,

the term 2ω(d) can be removed. Also, ψ(d/d) = 1, and thus (2.1) is correct.

Let K be an imaginary quadratic number field of class number 1. Let
p be a degree 1 prime ideal of K with N(p) = p. Let πp be the unique
generator of p. Note that if p is unramified, then πp is unique up to units,
and if it is ramified, then πp is unique up to units and complex conjugation.
We have N(p) = N(πp) = p.

Lemma 2.3. Suppose that dsp is the largest divisor of a positive integer
d composed of primes that split completely in K.

(i) For d2 ≤ x/log x we have∑
N(p)≤x

d|(πp−1)(π̄p−1)

1� 2ω(dsp)τ(dsp)

ϕ(d)

x

log(x/d2)
.
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(ii) For all positive integers d, we have∑
N(p)≤x

d|(πp−1)(π̄p−1)

1� τ(dsp)x

d
.

(iii) Let Es,t : y2 = x3 + sx+ t be an elliptic curve over Fp with st = 0.
Then #Es,t(Fp) = p + 1 or #Es,t(Fp) = (πp − 1)(π̄p − 1) and
N(πp) = p, where πp ∈ Z[(1 + i

√
3)/2] or Z[i].

(iv) Let g(d) be an arithmetic function satisfying (1.2) with β < 1. Then∑
p≤x

1

p

∑
s,t∈Fp
st=0

∑
d|p−1

Es,t(Fp)[d]∼=(Z/dZ)2

|g(d)| � x

log x
.

Proof. The proofs of (i) and (ii) are identical to the proofs of [2, Propo-
sitions 2.2 and 2.3].

(iii) See [22, Chapter 18, Theorems 4 and 5].

(iv) We observe that the condition Es,t(Fp)[d] ∼= (Z/dZ)2 implies that
d | p − 1 and d2 |#Es,t(Fp). By part (iii), we know the possibilities for
#Es,t(Fp). Now if #Es,t(Fp) = p + 1, then we conclude that d = 2 (since
d | p − 1 and d | p + 1). On the other hand, if #Es,t(Fp) = (πp − 1)(π̄p − 1)
where πp ∈ Z[(1 + i

√
3)/2] or Z[i], we let 0 < ε < 1−β. So by employing (i)

and (ii), the sum in (iv) is bounded by∑
p≤x

p≡−1 (mod 4)

1 +
∑

d≤
√
x+1

|g(d)|
∑

N(p)≤x
d|(πp−1)(π̄p−1)

1

� x

log x
+

x

log x

∑
d≤x1/5

|g(d)|
d2−ε + x

∑
d>x1/5

|g(d)|
d2−ε �

x

log x
.

We next recall a version of the large sieve inequality for multiplicative
characters.

Lemma 2.4 (Gallagher [18, p. 16]). Let M and N be positive integers
and (an)M+N

n=M+1 be a sequence of complex numbers. Then

∑
q≤Q

q

ϕ(q)

∑∗

χ (mod q)

∣∣∣ M+N∑
n=M+1

anχ(n)
∣∣∣2 � (N +Q2)

M+N∑
n=M+1

|an|2,

where Q is any positive real number, and
∑∗

χ (mod q) denotes a sum over all
primitive Dirichlet characters χ modulo q.

To state the next lemma, we need some notation. Let

τk,B(n) := #{(a1, . . . , ak) ∈ [1, B]k ∩ Nk; n = a1 · · · ak}.
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We also set
Ψ(X,Y ) :=

∑
n≤X
p(n)≤Y

1,

where p(m) is the largest prime factor of m. Note that we define p(0) =
p(±1) =∞.

Lemma 2.5 (Stephens [32, Lemmas 8–10]).

(i) For k ∈ N, if Bk ≤ x8, then∑
b≤Bk

τk,B(n)2 < Bk(Ψ(B, 9 log x))k.

(ii) For a sufficiently large constant c1 > 0 there exists c2 > 0 such that,
if exp(c1(log x)1/2) < B ≤ x8, then

x−1/2k(Ψ(B, 9 log x))1/2 � exp
(
−c2(log x)1/2/log log x

)
,

where
k = [2 log x/logB] + 1.

(iii) For a sufficiently large constant c1 > 0 there exists c3 > 0 such that,
if exp(c1(log x)1/2) < B ≤ x4, then

x−1/k(Ψ(B, 9 log x))1/2 � exp
(
−c3(log x)1/2/log log x

)
,

where
k = [4 log x/logB] + 1.

Lemma 2.6 (Burgess [9, Theorems 1 and 2]).

(i) For any prime p, non-principal character χ, r ∈ N, and B ≥ 1,∑
b≤B

χ(b)� B1−1/rp
r+1

4r2 log p,

where the implied constant is absolute.
(ii) Let ε > 0, n > 1, χ be a non-principal character, r ∈ N, and B ≥ 1.

Then, if n is cube-free or r = 2, we have∑
b≤B

χ(b)� B1−1/rn
r+1

4r2
+ε,

where the implied constant may depend on ε and r.

Lemma 2.7.

(i) (Friedlander and Iwaniec [17, Lemma 3]) Let Q and N be positive
integers. Then ∑∗

χ (modQ)

∣∣∣∑
n≤N

χ(n)
∣∣∣4 � N2Q log6Q,

where ∗ denotes a sum over all primitive Dirichlet characters mod-
ulo Q.
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(ii) Suppose that Q is the product of two distinct primes. Then∑
χ (modQ)
χ 6=χ0

∣∣∣∑
n≤N

χ(n)
∣∣∣4 � N2Q log6Q.

Proof. (ii) Let Q = pq with p 6= q. To see that the result is true if
the summation is over all non-principal characters, we need to consider the
inequality for imprimitive characters. The only non-principal imprimitive
characters modulo pq are of the form χ′χ′′0 or χ′0χ

′′, where χ′0 and χ′′0 are the
principal characters modulo p and q, respectively, and χ′ and χ′′ are primi-
tive characters modulo p and q, respectively. Then partition the summation
over all characters into a summation over primitive characters modulo pq,
primitive characters modulo p, and primitive characters modulo q. Hence,
the assertion can be obtained by using the triangle inequality and the result
for primitive characters in part (i).

We summarize several elementary estimations that are used in the proofs
in the next sections.

Lemma 2.8.

(i) (Brun–Titchmarsh inequality) Let ε > 0. Then, for 1 ≤ d ≤ x1−ε,
we have

π(x; d, a)� x

ϕ(d) log x
.

(ii) Let θ < 1 and ε > 0. Then, for 1 ≤ d ≤ x1−ε, we have∑
p≤x

p≡1 (mod d)

1

pθ
� x1−θ

ϕ(d) log x
.

(iii) For x ≥ 3 and d ≥ 1 we have∑
p≤x

p≡1 (mod d)

1

p
� log log x+ log d

ϕ(d)
.

(iv) We have
1

ϕ(d)
� log log d

d
.

(v) Under the assumption of the bound (1.2), for any real θ, we have∑
d≤y

|g(d)|
dθ

� 1 + y1+β−θ(log y)γ+1.

Proof. For (i), see [11, Theorem 7.3.1]; (ii) is a consequence of partial
summation and (i); for (iii), see [11, Section 13.1, Exercise 9]; for (iv), see
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[20, p. 267, Theorem 328]; and (v) comes by straightforward applications of
partial summation and (1.2).

3. Proofs of Theorem 1.2 and Corollary 1.6

3.1. Basic set up. Let C be the family of elliptic curves

Ea,b : y2 = x3 + ax+ b,

where |a| ≤ A, |b| ≤ B, and at least one of a or b is non-zero. Note that

|C| = 4AB +O(A+B).

Let

f(n) =
∑
d|n

g(d)

for all n ∈ N. We have

1

|C|
∑

Ea,b∈C

∑
p≤x

f(iEa,b(p))

=
1

|C|
∑
p≤x

∑
s,t∈Fp

|AutFp(Es,t)|f(iEs,t(p))

p− 1

∑
|a|≤A, |b|≤B: ∃1≤u<p

a≡su4 (mod p)
b≡tu6 (mod p)

1.

Next, by applying Remark 2.2(i) in the above identity (recall that p 6= 2, 3),
we have

1

|C|
∑

Ea,b∈C

∑
p≤x

f(iEa,b(p))

=
2

|C|
∑
p≤x

∑
s,t∈F×p

f(iEs,t(p))

p− 1

∑
|a|≤A, |b|≤B: ∃1≤u<p

a≡su4 (mod p)
b≡tu6 (mod p)

1 + Error Term 1,

where

(3.1) Error Term 1 =
1

|C|
∑
p≤x

∑
s,t∈Fp
st=0

|AutFp(Es,t)|f(iEs,t(p))

p− 1

∑
|a|≤A, |b|≤B
ab≡0 (mod p)

1.

Now, by considering∑
|a|≤A, |b|≤B: ∃1≤u<p

a≡su4 (mod p)
b≡tu6 (mod p)

1 =
2AB

p
+

( ∑
|a|≤A, |b|≤B: ∃1≤u<p

a≡su4 (mod p)
b≡tu6 (mod p)

1− 2AB

p

)
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and applying it in the previous identity, we arrive at

1

|C|
∑

Ea,b∈C

∑
p≤x

f(iEa,b(p)) = Main Term + Error Term 1 + Error Term 2,

where

Main Term =
4AB

|C|
∑
p≤x

∑
s,t∈F×p

f(iEs,t(p))

p(p− 1)
,

Error Term 2 =
2

|C|
∑
p≤x

∑
s,t∈F×p

f(iEs,t(p))

p− 1

( ∑
|a|≤A, |b|≤B:∃1≤u<p

a≡su4 (mod p)
b≡tu6 (mod p)

1− 2AB

p

)
.

3.2. The Main Term. We have

Main Term =
4AB

|C|
∑
p≤x

∑
s,t∈F×p

f(iEs,t(p))

p(p− 1)

=
4AB

|C|
∑
p≤x

1

p(p− 1)

∑
s,t∈F×p

∑
d|iEs,t (p)

g(d)

=
4AB

|C|
∑
p≤x

1

p(p− 1)

∑
d|p−1

g(d)#S̃d(p).

Let

G1(p) =
∑
d|p−1

d≤√p+1

g(d)

dψ(d)ϕ(d)
and G2(p) =

∑
d|p−1

d≤√p+1

|g(d)|.

By using these notations and employing Lemma 2.1, we obtain

Main Term =
4AB

|C|

(∑
p≤x

G1(p) +O

(∑
p≤x

G2(p)
√
p

))
=

4AB

|C|
(S1 +O(S2)).

3.2.1. Estimation of S1. Let α ∈ R>0 be fixed. The Siegel–Walfisz
Theorem implies

π(x; d, 1) =
li(x)

ϕ(d)
+O

(
x

(log x)C

)
for any d ≤ (log x)α and any C > 0. Then, by the Brun–Titchmarsh in-
equality (Lemma 2.8(i)), the fact that ψ(d) ≥ d, and (1.2), we have
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S1 =
∑

d≤(log x)α

g(d)π(x; d, 1)

dψ(d)ϕ(d)
+

∑
(log x)α<d≤

√
x+1

g(d)π(x; d, 1)

dψ(d)ϕ(d)

= li(x)
∑
d≥1

g(d)

dψ(d)ϕ(d)2
+O

(
x

(log x)C

∑
d≥1

|g(d)|
dψ(d)ϕ(d)

)

+O

(
x

log x

∑
d>(log x)α

|g(d)|
dψ(d)ϕ(d)2

)
.

Note that, for any ε > 0, we have∑
d>y

|g(d)|
dψ(d)ϕ(d)

�
∑
d>y

|g(d)|
d3−ε/2 �

1

y2−β−ε .

Thus, for β < 2,

c0(f) :=
∑
d≥1

g(d)

dψ(d)ϕ(d)2

is a constant and

S1 = c0(f) li(x) +O

(
x

(log x)C′

)
,

where C ′ := C ′(C,α, β, ε) is an appropriate positive constant. Since α is
arbitrary, we can choose α so that C ′ is any constant greater than 1. So

(3.2) S1 = c0(f) li(x) +O

(
x

(log x)c

)
,

where c can be chosen as any number greater than 1.

3.2.2. Estimation of S2. We first employ the Brun–Titchmarsh inequal-
ity (Lemma 2.8(i)) and (1.2) to deduce∑

p≤x
G2(p) =

∑
d≤
√
x+1

|g(d)|π(x; d, 1)(3.3)

�
{
x1+β/2(log x)γ−1 log log x if β 6= 0,

x1+β/2(log x)γ log log x if β = 0.

By partial summation and (3.3), we have

S2 =
∑
p≤x

G2(p)
√
p
� x

1+β
2 (log x)γ log log x.(3.4)

In conclusion, since β < 1,

(3.5) Main Term =
4AB

|C|

(
c0(f) li(x) +O

(
x

(log x)c

))
,

where c can be taken as any number greater than 1.
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3.3. Error Term 1. Recall expression (3.1) for Error Term 1. We
have

Error Term 1� 1

|C|
∑
p≤x

∑
s,t∈Fp
st=0

|f(iEs,t(p))|
p

(
AB

p
+A+B

)

�
∑
p≤x

1

p2

∑
s,t∈Fp
st=0

∑
d|p−1

Es,t(Fp)[d]∼=(Z/dZ)2

|g(d)|

+

(
1

A
+

1

B

)∑
p≤x

1

p

∑
s,t∈Fp
st=0

∑
d|p−1

Es,t(Fp)[d]∼=(Z/dZ)2

|g(d)|.

An application of Lemma 2.3(iv) in the latter sum yields

Error Term 1�
∑
p≤x

1

p

∑
d|p−1

d≤√p+1

|g(d)|+
(

1

A
+

1

B

)
x

log x
.(3.6)

By employing Lemma 2.8(iii), (iv) and usual estimates, the first of these
summations is bounded as follows:∑

p≤x

1

p

∑
d|p−1

d≤√p+1

|g(d)| =
∑

d≤
√
x+1

|g(d)|
∑
p≤x

p≡1 (mod d)

1

p
(3.7)

� (log log x)(log x)
∑

d≤
√
x+1

|g(d)|
d

.

By applying Lemma 2.8(v) in (3.7), we obtain

(3.8) Error Term 1� xβ/2(log x)γ+2(log log x) +

(
1

A
+

1

B

)
x

log x
.

3.4. Error Term 2. We summarize the main result of this section in
the following lemma, which can be considered as a generalization and an
improvement of [6, Lemma 6].

Lemma 3.1. Let r ∈ N, 0 ≤ β < 3/2, γ ∈ R≥0, and g : N → C be a
function such that ∑

d≤x
|g(d)| � x1+β(log x)γ .

Then there are positive constants c1 and c2 such that, if A,B >
exp(c1(log x)1/2), we have
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2

|C|
∑
p≤x

∑
d|p−1

g(d)
∑

1≤s,t<p
Es,t(Fp)[d]∼=(Z/dZ)2

1

p− 1

( ∑
|a|≤A, |b|≤B: ∃1≤u<p

a≡su4 (mod p)
b≡tu6 (mod p)

1− 2AB

p

)

� x
β−1
2 (log x)γ+1 log log x+ (log x)γ log log x+ x exp

(
−c2

(log x)1/2

log log x

)
+

(
1

A
+

1

B

)(
x

log x
+ x

1+β
2 (log x)γ log log x

)
+

(
1

A1/r
+

1

B1/r

)
x

1+β
2

+ r+1

4r2 (log x)γ+1 log log x+
x3/2(log x)2

√
AB

+
1√
AB

(
x1+β/2(log x)γ+3(log log x)5/4 + x

5+2β
4 (log x)γ+3 log log x

)
.

Proof. Throughout, χ, with or without subscript, will denote a character
modulo p. As usual, χ0 will be the principal character modulo p. Let p be a
fixed prime, and let s, t ∈ F×p be fixed. By [6, Equation (12)], we have∑

|a|≤A, |b|≤B: ∃1≤u<p
a≡su4 (mod p)
b≡tu6 (mod p)

1 =
1

2(p− 1)

∑
χ1,χ2

χ4
1χ

6
2=χ0

χ1(s)χ2(t)A(χ1)B(χ2),

where

A(χ) :=
∑
|a|≤A

χ(a) and B(χ) :=
∑
|b|≤B

χ(b).

We use the identity

1

2(p− 1)

∑
χ1,χ2

χ4
1χ

6
2=χ0

χ1(s)χ2(t)A(χ1)B(χ2)

=
1

2(p− 1)
χ0(s)χ0(t)A(χ0)B(χ0) +

1

2(p− 1)

∑
χ0 6=χ2

χ6
2=χ0

χ0(s)χ2(t)A(χ0)B(χ2)

+
1

2(p− 1)

∑
χ1 6=χ0

χ4
1=χ0

χ1(s)χ0(t)A(χ1)B(χ0)

+
1

2(p− 1)

∑
χ1 6=χ0
χ2 6=χ0

χ4
1χ

6
2=χ0

χ1(s)χ2(t)A(χ1)B(χ2)

and note that
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1

2(p− 1)
χ0(s)χ0(t)A(χ0)B(χ0) =

1

2(p− 1)

∑
|a|≤A

χ0(a)
∑
|b|≤B

χ0(b)

=
2AB

p
+O

(
AB

p2
+
A+B

p

)
.

Therefore,

2

|C|
∑
p≤x

∑
d|p−1

g(d)
∑

1≤s,t<p
Es,t(Fp)[d]∼=(Z/dZ)2

1

p− 1

( ∑
|a|≤A, |b|≤B: ∃1≤u<p

a≡su4 (mod p)
b≡tu6 (mod p)

1− 2AB

p

)

=
2

|C|
∑
p≤x

∑
d|p−1

g(d)
∑

1≤s,t<p
Es,t(Fp)[d]∼=(Z/dZ)2

1

p− 1
O

(
AB

p2
+
A+B

p

)

+
2

|C|
∑
p≤x

∑
d|p−1

g(d)
∑

1≤s,t<p
Es,t(Fp)[d]∼=(Z/dZ)2

1

2(p− 1)2

∑
χ2 6=χ0

χ6
2=χ0

χ0(s)χ2(t)A(χ0)B(χ2)

+
2

|C|
∑
p≤x

∑
d|p−1

g(d)
∑

1≤s,t<p
Es,t(Fp)[d]∼=(Z/dZ)2

1

2(p− 1)2

∑
χ1 6=χ0

χ4
1=χ0

χ1(s)χ0(t)A(χ1)B(χ0)

+
2

|C|
∑
p≤x

∑
d|p−1

g(d)
∑

1≤s,t<p
Es,t(Fp)[d]∼=(Z/dZ)2

1

2(p− 1)2

∑
χ1 6=χ0
χ2 6=χ0

χ4
1χ

6
2=χ0

χ1(s)χ2(t)A(χ1)B(χ2)

=: Σ1 +Σ2 +Σ3 +Σ4.

We will evaluate each sum separately.

3.4.1. Estimation of Σ1. We have

Σ1 :=
2

|C|
∑
p≤x

∑
d|p−1

g(d)
∑

1≤s,t<p
Es,t(Fp)[d]∼=(Z/dZ)2

1

p− 1
O

(
AB

p2
+
A+B

p

)

� 1

|C|
∑
p≤x

(
AB

p3
+
A+B

p2

) ∑
d|p−1

|g(d)|
∑

1≤s,t<p
Es,t(Fp)[d]∼=(Z/dZ)2

1

� AB

|C|
∑
p≤x

1

p3

∑
d|p−1

d≤√p+1

|g(d)|
(

p(p− 1)

dψ(d)ϕ(d)
+O(p3/2)

)

+
A+B

|C|
∑
p≤x

1

p2

∑
d|p−1

d≤√p+1

|g(d)|
(

p(p− 1)

dψ(d)ϕ(d)
+O(p3/2)

)
.
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We denote the first sum by Σ1,1 and the second by Σ1,2. By partial summa-
tion and (3.3), we have

(3.9) Σ1,1 � x
β−1
2 (log x)γ+1 log log x+ (log x)γ log log x

as β < 3/2. By (3.2) and (3.4), we have

Σ1,2 �
(

1

A
+

1

B

)(∑
p≤x

∑
d|p−1

d≤√p+1

|g(d)|
dψ(d)ϕ(d)

+
∑
p≤x

1

p1/2

∑
d|p−1

d≤√p+1

|g(d)|
)(3.10)

�
(

1

A
+

1

B

)(
x

log x
+ x

1+β
2 (log x)γ log log x

)
.

Therefore, Σ1 is bounded by the error terms in the lemma.

3.4.2. Estimations of Σ2 and Σ3. For Σ2, we see that

Σ2 :=
1

|C|
∑
p≤x

∑
d|p−1

d≤√p+1

g(d)
∑

1≤s,t<p
Es,t(Fp)[d]∼=(Z/dZ)2

1

(p− 1)2

∑
χ2 6=χ0

χ6
2=χ0

χ0(s)χ2(t)A(χ0)B(χ2)

� 1

|C|
∑
p≤x

∑
d|p−1

d≤√p+1

|g(d)|
∑

1≤s,t<p
Es,t(Fp)[d]∼=(Z/dZ)2

1

p2

∑
χ2 6=χ0

χ6
2=χ0

|B(χ2)|
∑

−A≤a≤A
p-a

1

� A

|C|
∑
p≤x

1

p2

∑
d|p−1

d≤√p+1

|g(d)|
∑
χ2 6=χ0

χ6
2=χ0

|B(χ2)|
∑

1≤s,t<p
Es,t(Fp)[d]∼=(Z/dZ)2

1.

By Lemma 2.1, we have

Σ2 �
1

B

∑
p≤x

1

p2

∑
d|p−1

d≤√p+1

|g(d)|
∑
χ2 6=χ0

χ6
2=χ0

|B(χ2)|
(

p(p− 1)

dψ(d)ϕ(d)
+O(p3/2)

)

� 1

B

∑
p≤x

∑
d|p−1

d≤√p+1

|g(d)|
dψ(d)ϕ(d)

∑
χ2 6=χ0

χ6
2=χ0

|B(χ2)|

+
1

B

∑
p≤x

1

p1/2

∑
d|p−1

d≤√p+1

|g(d)|
∑
χ2 6=χ0

χ6
2=χ0

|B(χ2)|

=: Σ2,1 +Σ2.2.

Now,

(3.11) Σ2,1 =
1

B

∑
d≤
√
x+1

|g(d)|
dψ(d)ϕ(d)

∑
p≤x

p≡1 (mod d)

∑
χ2 6=χ0

χ6
2=χ0

|B(χ2)|.
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Let k = [2 log x/logB] + 1. By Hölder’s inequality we deduce

(3.12)
∑
p≤x

p≡1 (mod d)

∑
χ2 6=χ0

χ6
2=χ0

|B(χ2)|

≤
( ∑

p≤x
p≡1 (mod d)

∑
χ2 6=χ0

χ6
2=χ0

1

)1− 1
2k
( ∑

p≤x
p≡1 (mod d)

∑
χ2 6=χ0

χ6
2=χ0

∣∣∣∑
b≤B

χ2(b)
∣∣∣2k) 1

2k

� (π(x; d, 1))1− 1
2k

(∑
p≤x

∑
χ2 6=χ0

∣∣∣∑
b≤Bk

τk,B(b)χ2(b)
∣∣∣2) 1

2k
,

where τk,B(n) := #{(a1, . . . , ak) ∈ [1, B]k ∩ Nk; n = a1 · · · ak}. By Lemma
2.4, we have

(3.13)
∑
p≤x

∑
χ 6=χ0

∣∣∣∑
b≤Bk

τk,B(b)χ(b)
∣∣∣2 � (x2 +Bk)

∑
b≤Bk

τk,B(b)2.

Suppose k = 1, that is, B > x2. Then∑
p≤x

∑
χ2 6=χ0

∣∣∣∑
b≤Bk

τB1 (b)χ2(b)
∣∣∣2 � B2.

Therefore from (3.12) we get∑
p≤x

p≡1 (mod d)

∑
χ2 6=χ0

χ6
2=χ0

|B(χ2)| � B
x1/2

ϕ(d)1/2(log x)1/2

after using Lemma 2.8(i). Substituting this inequality into (3.11), we obtain

Σ2,1 �
x1/2

(log x)1/2

∑
d≤x

|g(d)|
dψ(d)ϕ(d)3/2

� x1/2

(log x)1/2
,

as β < 3/2.

Now suppose k = [2 log x/logB] + 1 > 1. Then B ≤ x2 and x2 < Bk ≤
Bx2 ≤ x4. Therefore, by Lemma 2.5(i), (ii), (3.12), (3.13), and the trivial
bound for π(x; d, 1), we have

∑
p≤x

p≡1 (mod d)

∑
χ2 6=χ0

χ6
2=χ0

|B(χ2)| �
(
x

d

)1− 1
2k
(

(x2 +Bk)Bk(Ψ(B, 9 log x))k
) 1

2k

(3.14)

� B
x

d3/4
x−

1
2k

(
Ψ(B, 9 log x)

)1/2

� B
x

d3/4
exp

(
−c2

(log x)1/2

log log x

)
,
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where c2 > 0, if B > exp(c1(log x)1/2) for sufficiently large c1. Substituting
(3.14) into (3.11), we obtain

Σ2,1 � x exp

(
−c2

(log x)1/2

log log x

)∑
d≤x

|g(d)|
d7/4ψ(d)ϕ(d)

� x exp

(
−c2

(log x)1/2

log log x

)
,

as β < 3/2.
For Σ2,2, by Lemma 2.6(i), (1.2) and Lemma 2.8(i), (ii), (v), we have

Σ2,2 =
1

B

∑
p≤x

1

p1/2

∑
d|p−1

d≤√p+1

|g(d)|
∑
χ2 6=χ0

χ6
2=χ0

|B(χ2)(b)|

� 1

B

∑
d≤
√
x+1

|g(d)|
∑
p≤x

p≡1 (mod d)

1

p1/2

∑
χ2 6=χ0

χ6
2=χ0

∣∣∣∑
b≤B

χ2(b)
∣∣∣

� 1

B1/r

∑
d≤
√
x+1

|g(d)|
∑
p≤x

p≡1 (mod d)

p
−2r2+r+1

4r2 log p
∑
χ2 6=χ0

χ6
2=χ0

1

� x
1
2

+ r+1

4r2 log log x

B1/r

∑
d≤
√
x+1

|g(d)|
d
� x

1+β
2

+ r+1

4r2 (log x)γ+1 log log x

B1/r
.

The proof of the bound for Σ2 gives us the same bound for Σ3, mutatis
mutandis.

3.4.3. Estimation of Σ4. For Σ4, we have

Σ4 =
2

|C|
∑
p≤x

∑
d|p−1

d≤√p+1

g(d)
∑

1≤s,t<p
Es,t(Fp)[d]∼=(Z/dZ)2

1

2(p− 1)2

∑
χ1 6=χ0
χ2 6=χ0

χ4
1χ

6
2=χ0

χ1(s)χ2(t)A(χ1)B(χ2)

=
1

|C|
∑

d≤
√
x+1

g(d)
∑
p≤x

p≡1 (mod d)

1

(p− 1)2

∑
χ1 6=χ0
χ2 6=χ0

χ4
1χ

6
2=χ0

A(χ1)B(χ2)
∑

1≤s,t<p
Es,t(Fp)[d]∼=(Z/dZ)2

χ1(s)χ2(t)

=
1

|C|
∑

d≤
√
x+1

g(d)
∑
p≤x

p≡1 (mod d)

1

(p− 1)2

∑
χ1 6=χ0
χ2 6=χ0

χ4
1χ

6
2=χ0

A(χ1)B(χ2)Wp,d(χ1, χ2),

where

Wp,d(χ1, χ2) :=
∑

1≤s,t<p
Es,t(Fp)[d]∼=(Z/dZ)2

χ1(s)χ2(t).
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Applying the Cauchy–Schwarz inequality twice, we obtain∣∣∣∣ ∑
χ1 6=χ0
χ2 6=χ0

χ4
1χ

6
2=χ0

A(χ1)B(χ2)Wp,d(χ1, χ2)

∣∣∣∣4

≤
( ∑

χ1 6=χ0
χ2 6=χ0

χ4
1χ

6
2=χ0

∣∣Wp,d(χ1, χ2)
∣∣2)2( ∑

χ1 6=χ0
χ2 6=χ0

χ4
1χ

6
2=χ0

|A(χ1)|4
)( ∑

χ1 6=χ0
χ2 6=χ0

χ4
1χ

6
2=χ0

|B(χ2)|4
)
.

By Lemma 2.7, we have∑
χ1 6=χ0

∣∣∣∑
a≤A

χ1(a)
∣∣∣4 � A2p(log p)6.

Hence,∑
χ1 6=χ0
χ2 6=χ0

χ4
1χ

6
2=χ0

|A(χ1)|4 =
∑
χ1 6=χ0
χ2 6=χ0

χ4
1χ

6
2=χ0

∣∣∣ ∑
|a|≤A

χ1(a)
∣∣∣4 ≤ 16

∑
χ1 6=χ0

∣∣∣∑
a≤A

χ1(a)
∣∣∣4 ∑

χ2 6=χ0

χ4
1χ

6
2=χ0

1

�
∑
χ1 6=χ0

∣∣∣∑
a≤A

χ1(a)
∣∣∣4 � A2p(log p)6.

Similarly, ∑
χ1 6=χ0
χ2 6=χ0

χ4
1χ

6
2=χ0

|B(χ2)|4 � B2p(log p)6.

Also,

(3.15)
∑
χ1,χ2

∣∣Wp,d(χ1, χ2)
∣∣2

=
∑
χ1,χ2

∑
1≤s,t<p

Es,t(Fp)[d]∼=(Z/dZ)2

χ1(s)χ2(t)
∑

1≤s′,t′<p
Es′,t′ (Fp)[d]∼=(Z/dZ)2

χ1(s′)χ2(t′)

=
∑

1≤s,t<p
Es,t(Fp)[d]∼=(Z/dZ)2

∑
1≤s′,t′<p

Es′,t′ (Fp)[d]∼=(Z/dZ)2

∑
χ1

χ1(s)χ1(s′)
∑
χ2

χ2(t)χ2(t′)

= (p− 1)2
∑

1≤s,t<p
Es,t(Fp)[d]∼=(Z/dZ)2

1� p4

dψ(d)ϕ(d)
+ p7/2
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by Lemma 2.1. Putting all this information together, we obtain∣∣∣∣ ∑
χ1 6=χ0
χ2 6=χ0

χ4
1χ

6
2=χ0

A(χ1)B(χ2)Wp,d(χ1, χ2)

∣∣∣∣4

� (AB)2p10(log p)12

d2ψ(d)2ϕ(d)2
+

(AB)2p19/2(log p)12

dψ(d)ϕ(d)
+ (AB)2p9(log p)12.

Hence,

Σ4 �
1

|C|
∑

d≤
√
x+1

|g(d)|
∑
p≤x

p≡1 (mod d)

√
AB(log p)3

×
(

p1/2

d1/2ψ(d)1/2ϕ(d)1/2
+

p3/8

d1/4ψ(d)1/4ϕ(d)1/4
+ p1/4

)
� 1√

AB

(
x3/2(log x)2 + x1+β/2(log x)γ+3(log log x)5/4

+ x
5+2β

4 (log x)γ+3 log log x
)
,

as β < 3/2.

This completes the proof of Lemma 3.1.

3.5. Proof of Theorem 1.2. By combining (3.5), (3.8), and Lemma
3.1, we obtain

1

|C|
∑

Ea,b∈C

∑
p≤x

f(iEa,b(p)) =
(∑
d≥1

g(d)

dψ(d)ϕ(d)2

)
li(x) + E,

where

E � x

(log x)c
+

(
1

A
+

1

B

)(
x

log x
+ x

1+β
2 (log x)γ+2

)
+

(
1

A1/r
+

1

B1/r

)
x

1+β
2

+ r+1

4r2 (log x)γ+1 log log x+
x3/2(log x)2

√
AB

+
1√
AB

(x1+β/2(log x)γ+3(log log x)5/4 + x
5+2β

4 (log x)γ+3 log log x)

for given c > 1 and A,B > exp(c1(log x)1/2). Now we choose r large enough

so that 1+β
2 + r+1

4r2
< 1. (Note that we can do this if β < 1.) So we arrive at

the upper bound

E � x

(log x)c
+ x exp

(
−c1

r
(log x)1/2

)
+

1√
AB

(x3/2(log x)2 + x
5+2β

4 (log x)γ+3 log log x).
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Now the result follows by choosing AB ≥ x(log x)4+2c if β < 1/2, and
AB ≥ x1/2+β(log x)2γ+6+2c(log log x)2 if 1/2 ≤ β < 1.

3.6. Proof of Corollary 1.6. Parts (i) and (ii) hold since the charac-
teristic function of {1} can be written as∑

d|n

µ(d)

and the divisor function can be written as

τ(n) =
∑
d|n

1.

Thus, g(d) = µ(d) and g(d) = 1 both satisfy (1.2) with β = 0 and γ = 1.

For (iii), let f(n) = 1/nk, where k ∈ N. Then writing

f(n) =
∑
d|n

g(d)

gives us

|g(n)| =
∑
d|n

|µ(n/d)f(d)| ≤
∑
d|n

1 = τ(n).

Therefore, by Theorem 1.2, we have

(3.16)
1

|C|
∑
E∈C

∑
p≤x

1

iE(p)k
= Ck li(x) +O

(
x

(log x)c

)
,

where Ck is defined in the corollary. Let ap(E) be defined by #Ep(Fp) =
p+ 1− ap(E). Hasse’s Theorem says that |ap(E)| ≤ 2

√
p. Note that

∑
E∈C

∑
p≤x

eE(p)k =
∑
E∈C

∑
p≤x

(
p+ 1− aE(p)

iE(p)

)k

=
∑
E∈C

∑
p≤x

(
pk

iE(p)k
+

k∑
j=1

(
k

j

)
pk−j(1− ap(E))j

iE(p)k

)

=
∑
E∈C

∑
p≤x

pk

iE(p)k
+Ok

(
xk−1/2

∑
E∈C

∑
p≤x

1

ip(E)k

)

=
∑
E∈C

∑
p≤x

pk

iE(p)k
+Ok

(
|C|xk+1/2

log x

)
.

For the first part in the above, by (3.16), we have
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1

|C|
∑
E∈C

∑
p≤x

pk

iE(p)k
= Ckx

k li(x) +O

(
xk+1

(log x)c

)

− Ckk
x�

2

tk−1 li(t) dt+Ok

(x�
2

tk

(log t)c
dt
)

= Ckx
k li(x)− Ckk

x�

2

tk−1 li(t) dt+O

(
xk+1

(log x)c

)
.

Then the result holds since there exists a constant C such that

li(xk+1) + C = xk li(x)− k
x�

2

tk−1 li(t) dt.

4. A technical lemma

Lemma 4.1. Let r ∈ N and ε > 0 be fixed. Let g : N → C be a function
such that ∑

d≤x
|g(d)| � x1+β(log x)γ ,

where 0 ≤ β < 3/4 and γ ∈ R≥0. Then there are positive constants c1 and
c3 such that if

A,B > exp(c1(log x)1/2),

we have

4

|C|
∑
p,q≤x
p6=q

1

(p− 1)(q − 1)

×
∑
s,t∈F×p
s′,t′∈F×q

∑
d|iEs,t (p)
d′|iEs′,t′ (q)

g(d)g(d′)

( ∑
|a|≤A, |b|≤B: ∃1≤u<p, 1≤u′<q
a≡su4 (mod p), a≡s′(u′)4 (mod q)
b≡tu6 (mod p), b≡t′(u′)6 (mod q)

1− AB

pq

)

� x(log x)γ−1(log log x) +

(
1

A
+

1

B

)
x2

(log x)2
+ x2 exp

(
−c3

(log x)1/2

log log x

)
+

(
1

A1/r
+

1

B1/r

)
x

3+β
2

+ r+1

2r2
+2ε(log x)γ log log x

+
1√
AB

(
x3(log x) + x

11+2β
4 (log x)2γ+3(log log x)2

)
.

Proof. Throughout, a prime ′ will denote that the underlying object is
related to the prime q. Note that, for p, q prime, s, t ∈ F×p and s′, t′ ∈ F×q
fixed, by orthogonality relations, we have
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|a|≤A, |b|≤B:∃1≤u<p, 1≤u′<q
a≡su4 (mod p), a≡s′(u′)4 (mod q)
b≡tu6 (mod p), b≡t′(u′)6 (mod q)

1

=
1

4

∑
1≤u<p

∑
1≤u′<q

∑
|a|≤A

∑
|b|≤B

(
1

p− 1

∑
χ1 (mod p)

χ1(su4)χ1(a)

)

×
(

1

p− 1

∑
χ2 (mod p)

χ2(tu6)χ2(b)

)(
1

q − 1

∑
χ′1 (mod q)

χ′1(s′(u′)4)χ′1(a)

)

×
(

1

q − 1

∑
χ′2 (mod q)

χ′2(t′(u′)6)χ2(b)

)

=
1

4(p− 1)(q − 1)

∑
χ1,χ2 (mod p)
χ4
1χ

6
2=χ0

χ1(s)χ2(t)

×
∑

χ′1,χ
′
2 (mod q)

(χ′1)4(χ′2)6=χ′0

χ′1(s′)χ′2(t′)A(χ1χ′1)B(χ2χ′2),

where

A(χ) :=
∑
|a|≤A

χ(a) and B(χ) :=
∑
|b|≤B

χ(b).

Thus, ∑
|a|≤A, |b|≤B: ∃1≤u<p, 1≤u′<q
a≡su4 (mod p), a≡s′(u′)4 (mod q)
b≡tu6 (mod p), b≡t′(u′)6 (mod q)

1 =
16∑
j=1

Sj(p, q, s, t, s
′, t′),

where Sj corresponds to one of the cases arising from choices of each of the
following conditions:

χ1 = χ0, χ2 = χ0

χ1 = χ0, χ2 6= χ0 : χ6
2 = χ0

χ1 6= χ0, χ2 = χ0 : χ4
1 = χ0

χ1 6= χ0, χ2 6= χ0 : χ4
1χ

6
2 = χ0

×


χ′1 = χ′0, χ
′
2 = χ′0

χ′1 = χ′0, χ
′
2 6= χ′0 : (χ′2)6 = χ′0

χ′1 6= χ′0, χ
′
2 = χ′0 : (χ′1)4 = χ′0

χ′1 6= χ′0, χ
′
2 6= χ′0 : (χ′1)4(χ′2)6 = χ′0

 .

From these 16 cases, there are essentially five different cases to handle.

Case 1: All four of χ1, χ2, χ
′
1, χ
′
2 are principal. Let this correspond to

j = 1. Then, for p 6= q, we have

S1(p, q, s, t, s′, t′) =
AB

pq
+O

(
AB

p2q

)
+O

(
AB

pq2

)
+O

(
A+B

pq

)
.
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Thus,

4

|C|
∑
p,q≤x
p6=q

1

(p− 1)(q − 1)

×
∑
s,t∈F×p
s′,t′∈F×q

∑
d|iEs,t (p)
d′|iEs′,t′ (q)

g(d)g(d′)

( ∑
|a|≤A, |b|≤B: ∃1≤u<p, 1≤u′<q
a≡su4 (mod p), a≡s′(u′)4 (mod q)
b≡tu6 (mod p), b≡t′(u′)6 (mod q)

1− AB

pq

)

=
4

|C|
∑
p,q≤x
p 6=q

1

(p− 1)(q − 1)

∑
s,t∈F×p
s′,t′∈F×q

∑
d|iEs,t (p)
d′|iEs′,t′ (q)

g(d)g(d′)

×
( 16∑
j=2

S(p, q, s, t, s′, t′) +O

(
AB

p2q
+
AB

pq2
+
A+B

pq

))
.

The sums corresponding to j = 2, . . . , 16 are dealt with in Cases 2–5. Here,
we will bound the sums corresponding to the error terms above. We have

4

|C|
∑
p,q≤x
p6=q

1

(p− 1)(q − 1)

∑
s,t∈F×p
s′,t′∈F×q

∑
d|iEs,t (p)
d′|iEs′,t′ (q)

g(d)g(d′)
AB

p2q

�
(∑
p≤x

1

p3

∑
s,t∈F×p

∑
d|iEs,t (p)

|g(d)|
)(∑

q≤x

1

q2

∑
s′,t′∈F×q

∑
d|iEs′,t′ (q)

|g(d′)|
)
.

The first sum can be bounded just as Σ1,1 in Subsection 3.4.1, and the
second as Σ1,2 in Subsection 3.4.1. That is, by (3.9), (3.10), and β < 3/4,
we have
4

|C|
∑
p,q≤x

1

(p− 1)(q − 1)

∑
s,t∈F×p
s′,t′∈F×q

∑
d|iEs,t (p)
d′|iEs′,t′ (q)

g(d)g(d′)
AB

p2q
�x(log x)γ−1 log log x.

The same bound holds for the term coming from O(AB/(pq2)). For the last
error term, by (3.10), we have

4

|C|
∑
p,q≤x
p6=q

1

(p− 1)(q − 1)

∑
s,t∈F×p
s′,t′∈F×q

∑
d|iEs,t (p)
d′|iEs′,t′ (q)

g(d)g(d′)
A+B

pq

�
(

1

A
+

1

B

)(∑
p≤x

1

p2

∑
s,t∈F×p

∑
d|iEs,t (p)

|g(d)|
)(∑

q≤x

1

q2

∑
s′,t′∈F×q

∑
d|iEs′,t′ (q)

|g(d′)|
)

�
(

1

A
+

1

B

)
x2

(log x)2
.
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Case 2: Exactly two of χ1, χ2, χ
′
1, χ
′
2 are principal. We have two sub-

cases to consider.

Subcase 2a: Exactly one of χ1 or χ2 is principal and exactly one of χ′1
or χ′2 is principal. We will bound the sum when χ1 = χ0 and χ′1 = χ′0. The
bound when χ1 = χ0 and χ′2 = χ′0 is similar.

The estimation is analogous to those of Σ2 and Σ3 in Subsection 3.4.2.
We note that χ0χ

′
0 is the principal character modulo pq since p 6= q. Hence,

|A(χ0χ
′
0)| � A. Thus,

(4.1)
4

|C|
∑
p,q≤x
p 6=q

1

(p− 1)(q − 1)

∑
s,t∈F×p
s′,t′∈F×q

∑
d|iEs,t (p)
d′|iEs′,t′ (q)

g(d)g(d′)
1

4(p− 1)(q − 1)

×
∑

χ2 6=χ0, χ′2 6=χ′0
χ6
2=χ0, (χ′2)6=χ′0

χ2(t)χ′2(t′)A(χ0χ′0)B(χ2χ′2)

� 1

B

∑
p,q≤x
p6=q

1

p2q2

∑
d|p−1

d≤√p+1
d′|q−1
d≤√q+1

|g(d)| · |g(d′)|
∑
s,t∈F×p

Es,t(Fp)[d]∼=(Z/dZ)2

s′,t′∈F×p
Es′,t′ (Fq)[d′]∼=(Z/d′Z)2

∑
χ2 6=χ0, χ′2 6=χ′0
χ6
2=χ0, (χ′2)6=χ′0

|B(χ2χ′2)|

� 1

B

∑
d≤
√
x+1

|g(d)|
∑

d′≤
√
x+1

|g(d′)|
∑
p≤x

p≡1 (mod d)

1

p2

∑
q≤x

q≡1 (mod d′)

1

q2

∑
χ2 6=χ0, χ′2 6=χ′0
χ6
2=χ0, (χ′2)6=χ′0

|B(χ2χ′2)|

×
(

p(p− 1)

dψ(d)ϕ(d)
+O(p3/2)

)(
q(q − 1)

d′ψ(d′)ϕ(d′)
+O(q3/2)

)
= σ1 + σ2 + σ3 + σ4,

where σ1 is the sum corresponding to the product of the main terms in (4.1),
σ4 corresponds to the product of the error terms in (4.1), and σ2, σ3 corre-
spond to the mixed terms. We will evaluate each of these sums separately.

For the first sum we have

(4.2)

σ1 =
1

B

∑
d≤
√
x+1

|g(d)|
dψ(d)ϕ(d)

∑
d′≤
√
x+1

|g(d′)|
d′ψ(d′)ϕ(d′)

∑
p,q≤x

p≡1 (mod d)
q≡1 (mod d′)

∑
χ2 6=χ0, χ′2 6=χ′0
χ6
2=χ0, (χ′2)6=χ′0

|B(χ2χ′2)|.

Let k = [4 log x/logB] + 1. By Hölder’s inequality, we have
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(4.3)∑
p,q≤x

p≡1 (mod d)
q≡1 (mod d′)

∑
χ2 6=χ0, χ′2 6=χ′0
χ6
2=χ0, (χ′2)6=χ′0

|B(χ2χ′2)| ≤
( ∑

p,q≤x
p≡1 (mod d)
q≡1 (mod d′)

∑
χ2 6=χ0, χ′2 6=χ′0
χ6
2=χ0, (χ′2)6=χ′0

1

)1− 1
2k

×
( ∑

p,q≤x
p≡1 (mod d)
q≡1 (mod d′)

∑
χ2 6=χ0, χ′2 6=χ′0
χ6
2=χ0, (χ′2)6=χ′0

∣∣∣∑
b≤B

χ2χ
′
2(b)

∣∣∣2k) 1
2k

� (π(x; d, 1)π(x; d′, 1))1− 1
2k

(∑
p,q≤x

∑
χ2 6=χ0, χ′2 6=χ′0

∣∣∣∑
b≤Bk

τk,B(b)χ2χ
′
2(b)

∣∣∣2) 1
2k
,

where τk,B(n) := #{(a1, . . . , ak) ∈ [1, B]k ∩ Nk; n = a1 · · · ak}. By Lemma
2.4, we have

(4.4)
∑
p,q≤x

∑∗

χ 6=χ0

∣∣∣∑
b≤Bk

τk,B(b)χ(b)
∣∣∣2 � (x4 +Bk)

∑
b≤Bk

τk,B(b)2.

Suppose k = 1. That is, B > x4. Then∑
p,q≤x

∑
χ2 6=χ0

χ′2 6=χ′0

∣∣∣∑
b≤Bk

τ1,B(b)χ2χ
′
2(b)

∣∣∣2 � B2.

Therefore by employing Lemma 2.8(i) in (4.3), we have∑
p,q≤x

p≡1 (mod d)
q≡1 (mod d′)

∑
χ2 6=χ0, χ′2 6=χ′0
χ6
2=χ0, (χ′2)6=χ′0

|B(χ2χ′2)| � B
x

ϕ(d)1/2ϕ(d′)1/2(log x)
.

Substituting this into (4.2), we obtain

σ1 �
x

log x

∑
d≤x

|g(d)|
dψ(d)ϕ(d)3/2

∑
d′≤x

|g(d′)|
d′ψ(d′)ϕ(d′)3/2

� x

log x
,

as β < 3/4.

Now suppose k = [4 log x/logB] + 1 > 1. Then B ≤ x4 and x4 < Bk ≤
Bx4 ≤ x8. Then, by Lemma 2.5(i), (iii), (4.3), (4.4), and the trivial bounds
for π(x; d, 1) and π(x; d′, 1), we have
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(4.5)
∑
p≤x

p≡1 (mod d)
q≡1 (mod d′)

∑
χ2 6=χ0, χ′2 6=χ′0
χ6
2=χ0, (χ′2)6=χ′0

|B(χ2χ′2)|

�
(
x2

dd′

)1− 1
2k (

(x4 +Bk)Bk(Ψ(B, 9 log x))k
) 1

2k

� B
x2

(dd′)3/4
x−1/k(Ψ(B, 9 log x))1/2

� B
x2

(dd′)3/4
exp

(
−c3

(log x)1/2

log log x

)
,

where c3 > 0, if B > exp(c1(log x)1/2) for sufficiently large c1. Substituting
(4.5) into (4.2), we obtain

σ1 � x2 exp

(
−c3

(log x)1/2

log log x

)∑
d≤x

|g(d)|
d7/4ψ(d)ϕ(d)

∑
d′≤x

|g(d′)|
(d′)7/4ψ(d′)ϕ(d′)

� x2 exp

(
−c3

(log x)1/2

log log x

)
,

as β < 3/4.

By Lemma 2.6(ii), for any r ∈ N and ε > 0, our second sum σ2 is

� 1

B

∑
d,d′≤

√
x+1

|g(d)|
dψ(d)ϕ(d)

|g(d′)|
∑
p,q≤x

p≡1 (mod d)
q≡1 (mod d′)

1

q1/2

∑
χ2 6=χ0, χ′2 6=χ′0
χ6
2=χ0, (χ′2)6=χ′0

∣∣∣∑
b≤B

χ2χ
′
2(b)

∣∣∣

� r,ε
1

B

∑
d,d′≤

√
x+1

|g(d)|
dψ(d)ϕ(d)

|g(d′)|
∑
p,q≤x

p≡1 (mod d)
q≡1 (mod d′)

1

q1/2

∑
χ2 6=χ0, χ′2 6=χ′0
χ6
2=χ0, (χ′2)6=χ′0

B1−1/r(pq)
r+1

4r2
+ε

� x1+ r+1

4r2
+ε

B1/r log x

∑
d≤
√
x+1

|g(d)|
dψ(d)ϕ(d)2

∑
d′≤
√
x+1

|g(d′)|
∑
q≤x

q≡1 (mod d′)

q
−2r2+r+1

4r2
+ε

� x
3
2

+ r+1

2r2
+2ε(log log x)

B1/r(log x)2

∑
d′≤
√
x+1

|g(d′)|
d′

� 1

B1/r
x

3+β
2

+ r+1

2r2
+2ε(log x)γ−1 log log x.

In the above estimations we employed Lemma 2.8(v) and the fact that
β < 3/4.

We obtain a similar bound for σ3.
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Finally, by Lemmas 2.6(ii) and 2.8(v), for any r ∈ N and ε > 0, we find
that our fourth sum σ4 is

� 1

B

∑
d,d′≤

√
x+1

|g(d)| · |g(d′)|
∑
p,q≤x

p≡1 (mod d)
q≡1 (mod d′)

1

p1/2q1/2

∑
χ2 6=χ0, χ′2 6=χ′0
χ6
2=χ0, (χ′2)6=χ′0

∣∣∣∑
b≤B

χ2χ
′
0(b)

∣∣∣

� 1

B1/r

∑
d,d′≤

√
x+1

|g(d)| · |g(d′)|
∑
p≤x

p≡1 (mod d)

∑
q≤x

q≡1 (mod d′)

(pq)
−2r2+r+1

4r2
+ε

� x1+ r+1

2r2
+2ε(log log x)2

B1/r(log x)2

∑
d≤
√
x+1

|g(d)|
d

∑
d′≤
√
x+1

|g(d′)|
d′

� 1

B1/r
x1+β+ r+1

2r2
+2ε(log x)2γ(log log x)2.

Adding the above bounds for σ1, σ2, σ3, σ4 concludes Subcase 2a.

Subcase 2b: Either both χ1 and χ2 are principal or both χ′1 and χ′2 are
principal. Without loss of generality we assume that χ′1 = χ′0 and χ′2 = χ′0.
We have

(4.6)
4

|C|
∑
p,q≤x
p 6=q

1

(p− 1)(q − 1)

∑
s,t∈F×p
s′,t′∈F×q

∑
d|iEs,t (p)
d′|iEs′,t′ (q)

g(d)g(d′)
1

4(p− 1)(q − 1)

×
∑
χ1 6=χ0
χ2 6=χ0

χ4
1χ

6
2=χ0

χ1(s)χ2(t)A(χ1χ′0)B(χ2χ′0)

=
1

|C|
∑

d≤
√
x+1

g(d)
∑

d′≤
√
x+1

g(d′)
∑
p,q≤x
p6=q

p≡1 (mod d)
q≡1 (mod d′)

1

(p− 1)2(q − 1)2

×
∑
χ1 6=χ0
χ2 6=χ0

χ4
1χ

6
2=χ0

A(χ1χ′0)B(χ2χ′0)Wp,q(χ1, χ2),

where

Wp,q(χ1, χ2) :=
∑
s,t∈F×p

Es,t(Fp)[d]∼=(Z/dZ)2

∑
s′,t′∈F×q

Es′,t′ (Fq)[d′]∼=(Z/d′Z)2

χ1(s)χ2(t).
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By applying the Cauchy–Schwarz inequality twice, we obtain∣∣∣ ∑
χ1 6=χ0
χ2 6=χ0

χ4
1χ

6
2=χ0

A(χ1χ′0)B(χ2χ′0)Wp,q(χ1, χ2)
∣∣∣4

≤
( ∑

χ1 6=χ0
χ2 6=χ0

χ4
1χ

6
2=χ0

|Wp,q(χ1, χ2)|2
)2( ∑

χ1 6=χ0
χ2 6=χ0

χ4
1χ

6
2=χ0

|A(χ1χ′0)|4
)( ∑

χ1 6=χ0
χ2 6=χ0

χ4
1χ

6
2=χ0

|B(χ2χ′0)|4
)
.

From Lemma 2.7 we deduce∑
χ1 6=χ0
χ2 6=χ0

χ4
1χ

6
2=χ0

|A(χ1χ′0)|4 � A2pq(log pq)6,
∑
χ1 6=χ0
χ2 6=χ0

χ4
1χ

6
2=χ0

|B(χ2χ′0)|4 � B2pq(log pq)6.

We have∑
χ1 6=χ0
χ2 6=χ0

χ4
1χ

6
2=χ0

|Wp,q(χ1, χ2)|2 ≤
∑
χ1,χ2

Wp,q(χ1, χ2)Wp,q(χ1, χ2)

=
∑
χ1,χ2

∑
s,t∈F×p , s′,t′∈F×q

Es,t(Fp)[d]∼=(Z/dZ)2

Es′,t′ (Fq)[d′]∼=(Z/d′Z)2

χ1(s)χ2(t)
∑

u,v∈F×p , u′,v′∈F×q
Eu,v(Fp)[d]∼=(Z/dZ)2

Eu′,v′ (Fq)[d′]∼=(Z/d′Z)2

χ1(u)χ2(v)

=
∑

s,t∈F×p , s′,t′∈F×q
Es,t(Fp)[d]∼=(Z/dZ)2

Es′,t′ (Fq)[d′]∼=(Z/d′Z)2

∑
u,v∈F×p , u′,v′∈F×q

Eu,v(Fp)[d]∼=(Z/dZ)2

Eu′,v′ (Fq)[d′]∼=(Z/d′Z)2

∑
χ1

χ1(s)χ1(u)
∑
χ2

χ2(t)χ2(v).

Thus,∑
χ1 6=χ0
χ2 6=χ0

χ4
1χ

6
2=χ0

|Wp,q(χ1, χ2)|2 ≤
∑

s,t∈F×p , s′,t′,u′,v′∈F×q
Es,t(Fp)[d]∼=(Z/dZ)2

Es′,t′ (Fq)[d′]∼=(Z/d′Z)2

Eu′,v′ (Fq)[d′]∼=(Z/d′Z)2

(p− 1)(q − 1)

� pq

(
p2

dψ(d)ϕ(d)
+ p3/2

)(
q4

(d′ψ(d′)ϕ(d′))2
+ q3

)
� p3q5

d(d′)2ψ(d)ψ(d′)2ϕ(d)ϕ(d′)2
+

p3q4

dψ(d)ϕ(d)

+
p5/2q5

(d′ψ(d′)ϕ(d′))2
+ p5/2q4,
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which implies

(4.7)

∣∣∣∣ ∑
χ1 6=χ0
χ2 6=χ0

χ4
1χ

6
2=χ0

A(χ1χ′0)B(χ2χ′0)Wp,q(χ1, χ2)

∣∣∣∣

�
√
AB(log pq)3 p2q3

(dψ(d)ϕ(d))1/2d′ψ(d′)ϕ(d′)

+
√
AB(log pq)3 p2q5/2

(dψ(d)ϕ(d))1/2
+

p7/4q3

d′ψ(d′)ϕ(d′)
+
√
AB(log pq)3p7/4q5/2.

In the above inequalities, we have used the facts that (a + b + c + d)2 �
a2 + b2 + c2 + d2 and (a + b + c + d)1/4 � a1/4 + b1/4 + c1/4 + d1/4, where
the implied constants are absolute.

Substituting the first term in (4.7) into the original sum in (4.6), we
obtain

(4.8)
1√
AB

∑
d≤
√
x+1

|g(d)|
d1/2ψ(d)1/2ϕ(d)1/2

∑
d′≤
√
x+1

|g(d′)|
d′ψ(d′)ϕ(d′)

∑
p,q≤x

p≡1 (mod d)
q≡1 (mod d′)

q(log pq)3

� 1√
AB

x3(log x)
∑

d≤
√
x+1

|g(d)|
d1/2ψ(d)1/2ϕ(d)3/2

∑
d′≤
√
x+1

|g(d′)|
(d′)ψ(d′)ϕ(d′)2

� 1√
AB

x3(log x),

as β < 3/4. Similarly by substituting the second, third, and fourth terms in
(4.7) into the original summation in (4.6), we obtain

(4.9)
1√
AB

(
x(5+β)/2(log x)γ+2(log log x) + x(11+2β)/4(log x)γ+2(log log x)

)
+
x(9+4β)/4(log x)2γ+3(log log x)2

√
AB

.

Adding (4.8) to (4.9) concludes Subcase 2b.

Case 3: Exactly three of χ1, χ2, χ′1, χ′2 are principal. Then by following
the method of Subcase 2a, we conclude that the sum in question is bounded
by the same bound as in that subcase.

Case 4: Exactly one of χ1, χ2, χ
′
1, χ
′
2 is principal. Then follow the method

of Subcase 2b.

Case 5: All four of χ1, χ2, χ
′
1, χ
′
2 are non-principal. Again we follow the

method of Subcase 2b.
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5. Proof of Theorem 1.8. We will evaluate the following sum:

(5.1)
1

|C|
∑
E∈C

∑
p≤x

(
f(iE(p))− c0(f) li(x)

)2
=

1

|C|
∑
E∈C

∑
p,q≤x
p 6=q

f(iE(p))f(iE(q))

+
1

|C|
∑
E∈C

(∑
p≤x

f(iE(p))2 − 2c0(f) li(x)
∑
p≤x

f(iE(p)) + c0(f)2 li(x)2
)
.

For the first sum in (5.1) we have

(5.2)
1

|C|
∑
E∈C

∑
p,q≤x
p 6=q

f(iE(p))f(iE(q))

=
4

|C|
∑
p,q≤x
p 6=q

1

(p− 1)(q − 1)

×
∑
s,t∈F×p
s′,t′∈F×q

∑
d|iEs,t (p)
d′|iEs′,t′ (q)

g(d)g(d′)
∑

|a|≤A, |b|≤B: ∃1≤u<p, 1≤u′<q
a≡su4 (mod p), a≡s′(u′)4 (mod q)
b≡tu6 (mod p), b≡t′(u′)6 (mod q)

1

+
1

|C|
∑
p,q≤x
p 6=q

|AutFp(Es,t)| · |AutFq(Es′,t′)|
(p− 1)(q − 1)

×
∑
s,t∈Fp
st=0

s′,t′∈F×q

∑
d|iEs,t (p)
d′|iEs′,t′ (q)

g(d)g(d′)
∑

|a|≤A, |b|≤B:∃1≤u<p, 1≤u′<q
a≡su4 (mod p), a≡s′(u′)4 (mod q)
b≡tu6 (mod p), b≡t′(u′)6 (mod q)

1

+
1

|C|
∑
p,q≤x
p 6=q

|AutFp(Es,t)| · |AutFq(Es′,t′)|
(p− 1)(q − 1)

×
∑
s,t∈F×p
s′,t′∈Fq
s′t′=0

∑
d|iEs,t (p)
d′|iEs′,t′ (q)

g(d)g(d′)
∑

|a|≤A, |b|≤B: ∃1≤u<p, 1≤u′<q
a≡su4 (mod p), a≡s′(u′)4 (mod q)
b≡tu6 (mod p), b≡t′(u′)6 (mod q)

1

+
1

|C|
∑
p,q≤x
p 6=q

|AutFp(Es,t)| · |AutFq(Es′,t′)|
(p− 1)(q − 1)

×
∑
s,t∈Fp
st=0

s′,t′∈Fq
s′t′=0

∑
d|iEs,t (p)
d′|iEs′,t′ (q)

g(d)g(d′)
∑

|a|≤A, |b|≤B: ∃1≤u<p, 1≤u′<q
a≡su4 (mod p), a≡s′(u′)4 (mod q)
b≡tu6 (mod p), b≡t′(u′)6 (mod q)

1

= S1 + S2 + S3 + S4.
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Let S be the bound in Lemma 4.1 corresponding to a function g(n) satisfying∑
n≤x
|g(n)| � x1+β(log x)γ+1.

We have

S1 = O(S)+
4AB

|C|
∑
p,q≤x
p 6=q

1

p(p− 1)q(q − 1)

∑
s,t∈F×p
s′,t′∈F×q

f(iEs,t(p))f(iEs′,t′ (q))(5.3)

= O(S)+
4AB

|C|

(∑
p≤x

1

p(p− 1)

∑
s,t∈F×p

f(iEs,t(p))

)2

− 4AB

|C|
∑
p≤x

1

p2(p− 1)2

( ∑
s,t∈F×p

f(iEs,t(p))
)2
.

From the calculation of the Main Term in Section 3.2, we have

(5.4)
∑
p≤x

1

p(p− 1)

∑
s,t∈F×p

f(iEs,t(p)) = c0(f) li(x) +O

(
x

(log x)c′

)
for any c′ > 1. Since iEs,t(p) ≤

√
p+ 1 and f(n)� nβ(log n)γ , we see that

(5.5)
∑
p≤x

1

p2(p− 1)2

( ∑
s,t∈F×p

f(iEs,t(p))
)2
� x1+β(log x)2γ−1.

As β < 3/4, applying (5.3) and (5.4) in (5.5) yields

(5.6) S1 = c0(f)2 li(x)2 +O(S) +O

(
x2

(log x)2c′

)
for any c′ > 1.

We will next bound S2 (and a similar argument will deal with S3). We
have

(5.7) S2 �
1

|C|
∑
p,q≤x
p6=q

|AutFp(Es,t)| · |AutFq(Es′,t′)|
(p− 1)(q − 1)

×
∑
s,t∈Fp
st=0

s′,t′∈F×q

∑
d|iEs,t (p)
d′|iEs′,t′ (q)

|g(d)| |g(d′)|
∑

|a|≤A, |b|≤B:∃1≤u<p, 1≤u′<q
a≡su4 (mod p), a≡s′(u′)4 (mod q)
b≡tu6 (mod p), b≡t′(u′)6 (mod q)

1

� 1

|C|
∑
p,q≤x
p 6=q

|AutFp(Es,t)| · |AutFq(Es′,t′)|
(p− 1)(q − 1)

×
∑
s,t∈Fp
st=0

s′,t′∈F×q

∑
d|iEs,t (p)
d′|iEs′,t′ (q)

|g(d)| |g(d′)|
∑

|a|≤A, |b|≤B: ∃1≤u′<q
a≡s′(u′)4 (mod q)
b≡t′(u′)6 (mod q)

1
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�
(∑
p≤x

1

p

∑
s,t∈Fp
st=0

∑
d|iEs,t (p)

|g(d)|
)

×
(

1

|C|
∑
q≤x

∑
s′,t′∈F×q

|AutFq(Es′,t′)|
q − 1

∑
d′|iEs′,t′ (q)

|g(d′)|
∑

|a|≤A, |b|≤B:∃1≤u′<q
a≡s′(u′)4 (mod q)
b≡t′(u′)6 (mod q)

1

)
.

By Lemma 2.3(iv), the first term in the above product is bounded by x/log x.
The second term can be bounded by

� 1

|C|
∑
q≤x

1

q

∑
s′,t′∈F×q

∑
d′|iEs′,t′ (q)

|g(d′)|
( ∑
|a|≤A, |b|≤B:∃1≤u′<q
a≡s′(u′)4 (mod )′q
b≡t′(u′)6 (mod )′q

1− 2AB

q

)

+
1

|C|
∑
q≤x

1

q

∑
s′,t′∈F×q

∑
d′|iEs′,t′ (q)

|g(d′)|2AB
q

.

Following the computations in Section 3.2, we conclude that∑
q≤x

1

q

∑
s′,t′∈F×q

∑
d′|iEs′,t′ (q)

|g(d′)|2AB
q
� AB

x

log x
.

This together with Lemma 3.1 implies that, under the assumptions of Theo-
rem 1.8, the second term of the product in (5.7) is also bounded by x/log x.
Thus,

S2 �
x2

(log x)2
.(5.8)

For S4, we have

S4 �
1

|C|
∑
p,q≤x
p6=q

1

pq

∑
s,t∈Fp
st=0

s′,t′∈Fq
s′t′=0

∑
d|iEs,t (p)
d′|iEs′,t′ (q)

|g(d)| |g(d′)|
∑

|a|≤A, |b|≤B
ab≡0 (mod p)
ab≡0 (mod q)

1.

Note that∑
|a|≤A, |b|≤B
ab≡0 (mod pq)

1� AB

pq
+O

(
A+B +

B

q
+
B

p
+
B

pq

)
� AB

pq
+O(A+B).

Thus,

S4 �
1

|C|
∑
p,q≤x
p6=q

1

pq

∑
s,t∈Fp
st=0

s′,t′∈Fq
s′t′=0

∑
d|iEs,t (p)
d′|iEs′,t′ (q)

|g(d)| |g(d′)|
(
AB

pq
+A+B

)
.(5.9)
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The sum in (5.9) corresponding to AB/(pq) can be bounded by( ∑
d≤
√
x+1

|g(d)|
∑
p≤x

p≡1 (mod d)

1

p

)2

� (log log x)2(log x)2

( ∑
d≤
√
x+1

|g(d)|
d

)2

� xβ(log log x)2(log x)2γ+4.

By employing Lemma 2.3(iv), the sum in (5.9) corresponding to A+B can
in turn be bounded by

�
(

1

A
+

1

B

)(∑
p≤x

1

p

∑
s,t∈Fp
st=0

∑
d|iEs,t (p)

|g(d)|
)2

�
(

1

A
+

1

B

)
x2

(log x)2
.

In conclusion we have

(5.10) S4 � xβ(log log x)2(log x)2γ+4 +

(
1

A
+

1

B

)
x2

(log x)2
.

Thus, under the assumptions of Theorem 1.8, by applying (5.6), (5.8),
and (5.10) in (5.2), we obtain

(5.11)
1

|C|
∑
E∈C

∑
p,q≤x
p 6=q

f(iE(p))f(iE(q)) = c0(f)2 li(x)2+O(S)+O

(
x2

(log x)2

)
.

Next we bound
∑

p≤x f(iE(p))2. Let G : N→ C be defined by

f(n)2 =
∑
d|n

G(d).

Then∑
n≤x
|G(n)| ≤

∑
d≤x
|f(d)|2

∑
n≤x
d|n

1 ≤ x
∑
d≤x

|f(d)|2

d
� x1+2β(log x)2γ+1.

The proof of Theorem 1.2 for G and f2 yields

1

|C|
∑
E∈C

∑
p≤x

f(iE(p))2 � x

log x
+

(
1

A
+

1

B

)(
x

log x
+ x

1+2β
2 (log x)2γ+3

)
+

(
1

A1/r
+

1

B1/r

)
x

1+2β
2

+ r+1

4r2 (log x)2γ+2 log log x

+
1√
AB

(
x3/2(log x)2 + x1+β(log x)2γ+4(log log x)5/4

)
+

1√
AB

(
x

5+4β
4 (log x)2γ+4 log log x

)
.

Therefore

(5.12)
1

|C|
∑
E∈C

∑
p≤x

f(iE(p))2 = O(S).
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Now by applying (5.11) and (5.12) to (5.1), we conclude that, under the
assumptions of Theorem 1.8, we have

1

|C|
∑
E∈C

(∑
p≤x

f(iE(p))− c0(f) li(x)
)2

= O(S) +O

(
x2

(log x)2

)
.

Since S = O(x2/(log x)2) the result follows.
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