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1. Introduction. In this article we give a simple characterization of
the possible dimensions of a set of integral points or a holomorphic curve
on the complement of a union of hyperplanes in projective space. In Vojta’s
Nevanlinna–Diophantine dictionary [13], a holomorphic curve in a complex
variety V , i.e., a holomorphic map f : C→ V , corresponds to a set of integral
points on V , assuming V is defined over a number field. We therefore expect
that the possible dimensions of a holomorphic curve and a set of integral
points on V will be the same, and indeed, we will see that this is the case
when V is the complement of a union of hyperplanes.

Our main theorems generalize a result of Evertse and Győry [4], who
determined when all sets of integral points (over all number fields) on the
complement of a union of hyperplanes are finite, and a result of Ru [11],
who determined when all holomorphic maps to the complement of a union
of hyperplanes are constant. As an application of our main theorems, we also
generalize results of Fujimoto [6] and Green [7], who bounded the dimen-
sion of a holomorphic curve on the complement of hyperplanes in general
position. Recently Ru and Ye [12] have found another use of our results,
applying them in their proof of a certain big Picard theorem.

2. Results. If H is a set of hyperplanes on Pn, we denote their union
by |H|. We denote by L a set of linear forms in x0, . . . , xn which define the
hyperplanes in H. We let (L) be the complex vector space generated by the
elements of L.

Let K be a number field and MK a complete set of inequivalent places
of K. Let S be a finite set of places in MK (which we will always assume
contains the set S∞ of archimedean places of K). Let OK,S denote the ring of
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S-integers of K. If the set |H| is defined over K, we call a set R ⊂ Pn(K)\|H|
a set of S-integral points on Pn\|H| if for every regular function f on Pn\|H|,
defined over K, there exists a ∈ K∗ such that af(P ) ∈ OK,S for all P ∈ R.
Equivalently, R is a set of S-integral points on Pn\|H| if there exists an affine
embedding Pn \|H| ⊂ AN

K such that every P ∈ R has S-integral coordinates.
For a set R ⊂ Pn, we use dimR to denote the dimension of the Zariski-

closure of R in Pn. Similarly, for a holomorphic curve f : C→ Pn, we define
dim f(C) to be the dimension of the Zariski-closure of f(C) in Pn.

We now state our two main theorems.

Theorem 1A. Let H be a set of hyperplanes in Pn defined over a number
field k. Let L be a corresponding set of linear forms. Let m = dim

⋂
H∈HH.

Then there exists a number field K ⊃ k, S ⊂MK , and a set R of S-integral
points on Pn \ |H| with dimR = m + 1. Moreover , there exists a number
field K ⊃ k, S ⊂ MK , and a set R of S-integral points on Pn \ |H| with
dimR = d > m + 1 if and only if there exists a partition of L into d −m
nonempty disjoint subsets Li,

(1) L =
d−m⊔
i=1

Li, Li 6= ∅ for all i,

such that

(2) L ∩
d−m∑
j=1

((Lj) ∩ (L \ Lj)) = ∅.

Theorem 1B. Let H be a set of hyperplanes in Pn. Let L be a corre-
sponding set of linear forms. Let m = dim

⋂
H∈HH. Then there exists a

holomorphic map f : C→ Pn \ |H| with dim f(C) = m+ 1. Moreover , there
exists a holomorphic map f : C→ Pn\|H| with dim f(C) = d > m+1 if and
only if there exists a partition of L into d−m nonempty disjoint subsets Li

satisfying (1) and (2) above.

Note that in these theorems and elsewhere we define dim ∅ = −1. Given
a partition of L, one needs only elementary linear algebra to check (2). So
running over all partitions of L and checking (2), we may determine the
possible dimensions of a set of S-integral points on Pn \ |H| (over all K
and S) or of a holomorphic map f : C → Pn \ |H|. This aspect of our
theorem is not new, however. For instance, in the arithmetic case such an
effective procedure is implicit in Laurent’s theorem (see, e.g., [1, Th. 7.4.7]
and its proof) where, if L = {L0, . . . , Lr}, the set Pn \ |H| is embedded
in Gr

m by the map P 7→
(

L1
L0

(P ), . . . , Lr
L0

(P )
)
. The simple characterizations

in Theorems 1A and 1B have the advantage that they are very explicit and
lend themselves readily to applications, as in Corollaries 3A and 3B or in
the paper [12].



Dimensions of integral points and holomorphic curves 261

For our purposes, it is most convenient to use the language of integral
points on varieties. However, we mention that our arithmetic results could
also be stated in the more classical terminology of decomposable form equa-
tions, i.e., equations of the form

(3) F (x0, . . . , xm) ∈ βO∗K,S , (x0, . . . , xm) ∈ Om+1
K,S ,

where S ⊂ MK , β ∈ OK,S is nonzero, and F ∈ K[x0, . . . , xm] splits into a
product of linear forms over some extension of K. Indeed, sets of integral
points on complements of hyperplanes correspond, essentially, to sets of
solutions to decomposable form equations. More precisely, let Z be the closed
subset of Pm defined by F . To each solution of (3), associate the projective
point (x0, . . . , xm) ∈ Pm, and let R ⊂ Pm be the set of such points. Then
R is a set of S-integral points on Pm \ Z. Note that, over some extension
of K, Z is a finite union of hyperplanes. Conversely, let Z be a closed subset
of Pm, defined by a homogeneous polynomial F ∈ K[x0, . . . , xm], that is
a finite union of hyperplanes over some extension of K. Let R be a set of
S-integral points on Pm \Z. Then it is easy to show that there exist a finite
number of elements β1, . . . , βr ∈ OK,S such that each point P ∈ R has
a representative (x0, . . . , xm) ∈ Om+1

K,S that gives a solution to one of the
decomposable form equations F (x0, . . . , xm) ∈ βiO∗K,S , i = 1, . . . , r.

There is an extensive literature on decomposable form equations. For
instance, in a somewhat different direction from our results, it is known
that the set of solutions to (3) can be naturally divided into a finite number
of families, and the number of such families can be explicitly bounded (see
[3], [5], [8]).

We will prove Theorems 1A and 1B in the next two sections. We now
mention some of their consequences. The next two corollaries are immediate.

Corollary 2A (Evertse and Győry [4]). Let H be a set of hyperplanes
in Pn defined over a number field k. Let L be a corresponding set of linear
forms. Then all sets of S-integral points on Pn \ |H| are finite for every
number field K ⊃ k and S ⊂MK if and only if

⋂
H∈HH = ∅ and for every

proper nonempty subset L1 of L,

L ∩ (L1) ∩ (L \ L1) 6= ∅.

Corollary 2B (Ru [11]). Let H be a set of hyperplanes in Pn. Let
L be a corresponding set of linear forms. Then all holomorphic maps f :
C→ Pn \ |H| are constant if and only if

⋂
H∈HH = ∅ and for every proper

nonempty subset L1 of L,

L ∩ (L1) ∩ (L \ L1) 6= ∅.

Let [x] denote the greatest integer in x.



262 A. Levin

Corollary 3A. Let H be a set of hyperplanes in Pn defined over a
number field k. Suppose that the intersection of any s+1 distinct hyperplanes
in H is empty. Let r = #H. Suppose r > s. Then for every number field
K ⊃ k and S ⊂MK , for all sets R of S-integral points on Pn \ |H|,

(4) dimR ≤
[

s

r − s

]
.

In particular , if r > 2s, then all such R are finite. Furthermore, if the
hyperplanes in H are in general position (s = n), then the bound in (4) is
achieved by some R.

Corollary 3B. Let H be a set of hyperplanes in Pn. Suppose that the
intersection of any s + 1 distinct hyperplanes in H is empty. Let r = #H.
Suppose r > s. Then for all holomorphic maps f : C→ Pn \ |H|,

(5) dim f(C) ≤
[

s

r − s

]
.

In particular , if r > 2s, then all holomorphic maps f : C → Pn \ |H|
are constant. Furthermore, if the hyperplanes in H are in general position
(s = n), then the bound in (5) is achieved by some f .

Corollary 3B generalizes theorems of Fujimoto [6] and Green [7], who
independently proved the case when the hyperplanes are in general posi-
tion. Working in a different direction, Noguchi and Winkelmann [9] have
generalized Fujimoto and Green’s result (and its arithmetic analogue) to
hypersurfaces of projective space in general position.

We now prove both corollaries simultaneously.

Proof of Corollaries 3A and 3B. To prove (4) and (5), let d > s/(r − s)
be an integer. Let L =

⊔d+1
i=1 Li be a partition of L into nonempty disjoint

subsets. Note that since r > s,
⋂

H∈HH = ∅, so m = −1 in Theorems 1A
and 1B. Using d > s/(r − s), we see that there exists an index i0 such that
#L \ Li0 ≥ d

d+1r > s. Since at most s of the hyperplanes meet at a point,
we therefore see that (L \ Li0) is the whole n+ 1-dimensional vector space
of linear forms, and so in particular,

L ∩
d+1∑
j=1

((Lj) ∩ (L \ Lj)) 6= ∅.

Thus, using Theorems 1A and 1B, we obtain the desired inequalities.
For the last assertions of the corollaries, where s = n, let d = [n/(r − n)].

Then we may partition L into nonempty disjoint subsets Li, i = 1, . . . , d+1,
such that #Li ≥ r − n for all i. Suppose that (2) does not hold. Let L ∈ L
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with

L ∈
d+1∑
j=1

((Lj) ∩ (L \ Lj)).

For some index i0, L ∈ Li0 . Note that
d+1∑
j=1

((Lj) ∩ (L \ Lj)) ⊂ (L \ Li0),

so that L ∈ (L \ Li0). From #Li0 ≥ r − n, we have #L \ Li0 ≤ n. This
implies that the set L \ Li0 ∪ {L} of at most n + 1 linear forms is linearly
dependent. This contradicts the hypothesis that the hyperplanes were in
general position. Therefore (2) holds for this partition of L, and so we are
done by Theorems 1A and 1B.

3. A reformulation of the problem. In this section we give a simple
reformulation of the main problem. If Y 6⊂ |H| is a linear subspace of Pn

then we define
H|Y = {H ∩ Y | H ∈ H}.

Note that H|Y may contain fewer hyperplanes than H. We will denote by
L|Y a set of linear forms defining the hyperplanes in H|Y .

Consider the condition

Y ⊂ Pn is a linear space, Y 6⊂ |H|, and(6)
L|Y is a linearly independent set.

We now reformulate our problem in terms of this condition.

Theorem 4A. Let H be a set of hyperplanes in Pn defined over a number
field k. Let L be a corresponding set of linear forms. There exists a number
field K ⊃ k, S ⊂ MK , and a set R of S-integral points on Pn \ |H| with
dimR = d if and only if there exists a Y satisfying (6) with dimY = d.

Theorem 4B. Let H be a set of hyperplanes in Pn. Let L be a cor-
responding set of linear forms. There exists a holomorphic map f : C →
Pn \ |H| with dim f(C) = d if and only if there exists a Y satisfying (6) with
dimY = d.

We will see that these theorems are simple consequences of the following
two fundamental lemmas. We begin by giving the S-unit lemma, due to van
der Poorten and Schlickewei [10] and Evertse [2].

Lemma 5A (S-unit lemma). Let k be a number field and let n > 1 be
an integer. Let Γ be a finitely generated subgroup of k∗. Then all but finitely
many solutions of the equation
(7) u0 + u1 + · · ·+ un = 1, ui ∈ Γ,
satisfy an equation of the form

∑
i∈I ui = 0, where I is a subset of {0, . . . , n}.
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The analytic analogue of the S-unit lemma is Borel’s lemma.

Lemma 5B (Borel’s lemma). Let f1, . . . , fn be entire functions without
zeros on C. Suppose that

(8) f1 + · · ·+ fn = 1.

Then fi is constant for some i.

Lemma 6A. Let H be a set of hyperplanes in Pn defined over a number
field k, and let L be a corresponding set of linear forms. All sets of S-integral
points on Pn \ |H| are non-Zariski-dense, for all choices of K ⊃ k and
S ⊂ MK , if and only if L is a linearly dependent set. Furthermore, in this
case any set R of S-integral points on Pn \ |H| is contained in a finite union
of hyperplanes of Pn.

Proof. Suppose L is a linearly dependent set. Let {L1, . . . , Lm} ⊂ L be
a minimal linearly dependent subset, that is, no proper subset is linearly
dependent. Then

∑m−1
i=1 ciLi = cmLm for some choice of ci ∈ k∗. Let R be

a set of S-integral points on Pn \ |H|. Since all of the poles of Li/Lm lie in
|H|, there exists an a ∈ K∗ such that aLi/Lm takes on S-integral values
on R. Since the poles of Lm/Li also lie in |H|, the same reasoning applies to
Lm/Li. Therefore Li

Lm
(P ) lies in only finitely many cosets of O∗K,S for P ∈ R.

By enlarging S, we may assume without loss of generality that ciLi
cmLm

(P ) is
an S-unit for all P ∈ R and i = 1, . . . ,m. Since

m−1∑
i=1

ciLi

cmLm
(P ) = 1 for all P ∈ R,

by the S-unit lemma, it follows that all P ∈ R either belong to one of the hy-
perplanes defined by

∑
i∈I ciLi = 0 for some subset I⊂{1, . . . ,m− 1} (this

equation is nontrivial by the minimality of the linear dependence relation)
or they belong to a hyperplane defined by ciLi

cmLm
= t ∈ T , where T ⊂ O∗K,S

is a finite subset containing the elements that appear in the exceptional so-
lutions to the S-unit equation

∑m−1
i=1 xi = 1. Thus R is contained in a finite

union of hyperplanes of Pn.
Conversely, suppose that L is a linearly independent set. After a k-linear

change of coordinates, we may assume that L = {x0, . . . , xm} for some
m ≤ n. Let K ⊃ k be a number field with O∗K infinite. Let S be the set
of archimedean places of K. Let R be the set of points in Pn which have
a representation where the coordinates are all (S-)units. Then it is easy to
see that R is a set of S-integral points on Pn \ |H|. We now show that R
is Zariski-dense in Pn. This results from the S-unit lemma, or the following
more elementary argument. Consider the set of homogeneous polynomials
in x0, . . . , xn that vanish on R ⊂ Pn. If this set is nonempty, let p be a
polynomial in this set with a minimal number of terms. Let xi be a variable



Dimensions of integral points and holomorphic curves 265

that appears with different powers in two monomials of p (clearly, p has more
than one term). Let u ∈ O∗K be a unit that is not a root of unity. Let q be
the homogeneous polynomial obtained from p by the substitution xi 7→ uxi.
Then q also vanishes on R. By our choice of u and xi, q is not a scalar
multiple of p. However, p and q contain the same monomials. Therefore,
there exists a linear combination of p and q that vanishes on R and has
strictly fewer terms than p. This contradicts the minimality of p, so R is
Zariski-dense in Pn.

Lemma 6B. Let H be a set of hyperplanes in Pn, and let L be a cor-
responding set of linear forms. There does not exist a holomorphic map
f : C → Pn \ |H| with Zariski-dense image if and only if L is a linearly
dependent set. Furthermore, in this case all such holomorphic maps f have
image contained in a hyperplane of Pn.

Proof. Suppose L is a linearly dependent set. Let {L1, . . . , Lm} ⊂ L
be a minimal linearly dependent set. Then there exist nonzero constants
c1, . . . , cm−1 such that

m−1∑
i=1

ci
Li

Lm
= 1.

Let f : C → Pn \ |H| be a holomorphic map and let gi = Li
Lm
◦ f . Then gi

is an entire function without zeros on C since the image of f omits |H|. We
also have

∑m−1
i=1 cigi = 1. By Borel’s lemma, gi = α for some i and some

constant α ∈ C. Therefore the image of f is contained in the hyperplane
defined by Li − αLm = 0.

Conversely, suppose that L is a linearly independent set. After a linear
change of coordinates, we may assume that L = {x0, . . . , xm} for some
m ≤ n. Let f : C→ Pn \ |H| be defined by f = (1, ez, ez

2
, . . . , ez

n
). Looking

at the growth as z → ∞, it is clear that no homogeneous polynomial can
vanish on f(C), and so f(C) is Zariski-dense in Pn.

Theorems 4A and 4B now follow rather directly from Lemmas 6A
and 6B:

Proof of Theorems 4A and 4B. We first make two general observations.
In condition (6), even in the arithmetic case, we have allowed complex linear
spaces Y . However, when the hyperplanes in H are defined over a number
field k, it is easily seen that

max{dimY | Y satisfies (6)}
= max{dimY | Y is defined over a number field and Y satisfies (6)}.

Secondly, if Y satisfies (6), then for any 0 ≤ d′ ≤ dimY , there exists a
Y ′ satisfying (6) with dimY ′ = d′. To see this, let H|Y = {H1, . . . ,Hr}. If
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r ≥ dimY + 1− d′, then let Y ′ be any linear space Y ′ 6⊂ |H| with
dim Y +1−d′⋂

i=1

Hi ⊂ Y ′

and dimY ′ = d′. Then Y ′ satisfies (6). If r < dimY + 1− d′, then
⋂r

i=1Hi

consists of a single linear space of dimension ≥ d′. Therefore, we may choose
Y ′ to be a linear space Y ′ 6⊂ |H| with dimY ′ = d′ and H|Y ′ consisting of a
single hyperplane (ignoring the trivial case d′ = 0).

Suppose now that there exists a Y satisfying (6). Using the remarks
above, we see that if the hyperplanes in H are defined over a number field,
then there exists a Y ′ satisfying (6) with Y ′ defined over a number field and
dimY ′ = dimY . So, restricting things to Y (or Y ′), it is immediate from
Lemmas 6A and 6B that there exists a number field K ⊃ k, S ⊂MK , a set R
of S-integral points on Pn\|H| with dimR = dimY , and a holomorphic map
f : C→ Pn \ |H| with dim f(C) = dimY .

Let R be a set of S-integral points on Pn \|H| or the image of a holomor-
phic map f : C→ Pn \ |H|. Repeatedly applying Lemma 6A or 6B (bearing
in mind that when L is a linearly dependent set, R is contained in a union
of projective spaces to which the lemmas may be applied again), we see that
there exists a Y satisfying (6) with dimR ≤ dimY . By our earlier remarks,
there then exists a Y ′ satisfying (6) with dimY ′ = dimR.

4. Proof of main theorems. We first make one more definition. We
define the zero set of a set of linear forms L in n + 1 variables to be the
linear variety

Z(L) = {P ∈ Pn | L(P ) = 0 for all L ∈ L}.
Using Theorems 4A and 4B we are reduced to computing, for a given set of
hyperplanes H, the possible dimensions of a linear space Y satisfying (6).
Theorems 1A and 1B are therefore equivalent to the following theorem.

Theorem 7. Let H be a set of hyperplanes in Pn. Let L be a corre-
sponding set of linear forms. Let m = dim

⋂
H∈HH. Then there exists a Y

satisfying (6) with dimY = m + 1. Moreover , there exists a Y satisfying
(6) with dimY = d > m+ 1 if and only if there exists a partition of L into
d−m nonempty disjoint subsets Li satisfying (1) and (2).

Proof. We first prove our assertion about the existence of a Y satisfying
(6) with dimY = m+1. If m = −1 this is trivial. Otherwise, we may take Y
to be any linear subspace of Pn of dimension m+1 with

⋂
H∈HH ⊂ Y 6⊂ |H|.

In this case L|Y consists of a single linear form, which is therefore a linearly
independent set.
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Suppose now that there exists a Y satisfying (6) with dimY = d >
m+ 1. Let m′ = dim

⋂
H′∈H|Y H

′. Then m′ ≤ m. Since Y satisfies (6), H|Y
consists of exactly d − m′ hyperplanes of Y , say H ′1, . . . ,H

′
d−m′ . Let Li,

i = 1, . . . , d −m′, consist of the linear forms in L that define hyperplanes
which intersect Y in H ′i. Then we get a partition L =

⊔d−m′

i=1 Li of L into
d−m′ nonempty disjoint subsets. Let j ∈ {1, . . . , d−m′}. Then

Z((L \ Lj)) ⊃
⋂
i 6=j

H ′i.

It follows from the linear independence of L|Y that
⋂

i 6=j H
′
i contains a point

in Y not contained in H ′j . Therefore

Z((Lj) ∩ (L \ Lj)) ⊃ Span
(
H ′j ,

⋂
i 6=j

H ′i

)
= Y.

So

Z
( d−m′∑

j=1

((Lj) ∩ (L \ Lj))
)
⊃ Y.

Since Y 6⊂ |H|, we must therefore have L ∩
∑d−m′

j=1 ((Lj) ∩ (L \ Lj)) = ∅.
Let M1 =

⋃m+1−m′

i=1 Li and Mi = Li+m−m′ for i = 2, . . . , d−m. Let M =⋃d−m
i=1 Mi. It is straightforward to verify that

d−m∑
j=1

((Mj) ∩ (M\Mj)) ⊂
d−m′∑
j=1

((Lj) ∩ (L \ Lj)).

Therefore (1) and (2) are satisfied (with Li =Mi).
In the other direction, suppose that there exists a partition L =

⊔d−m
i=1 Li

into d−m nonempty disjoint subsets such that (2) is satisfied. Let

U0 =
d−m∑
j=1

((Lj) ∩ (L \ Lj)).

We now define vector spaces Ui, i = 0, . . . , d−m, such that:

1. Ui ⊂ Uj for i < j.
2. dimUi ∩ (Li) = dim(Li)− 1 for i > 0.
3. Ui ∩ L = ∅.
4. Ui =

∑d−m
j=1 (Ui ∩ (Lj)).

Clearly, the space U0 we have defined satisfies these conditions.
We now define Ui inductively. Suppose that we have defined a Ui−1 with

the above properties. Since Ui−1 ∩ L = ∅, it follows that Ui−1 ∩ (Li) is a
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proper subspace of (Li). Therefore, since C is infinite,⋃
L∈Li

(Ui−1 ∩ (Li) + L) 6= (Li).

So we easily see that we may add elements of (Li) to Ui−1 to get a space Ui

with dimUi ∩ (Li) = dim(Li)− 1 and Ui ∩Li = ∅. Also, we have Ui−1 ⊂ Ui,
and since we added only elements of (Li), we deduce from the corresponding
property of Ui−1 that Ui =

∑d−m
j=1 (Ui ∩ (Lj)). In fact, we have

(9) Ui = Ui ∩ (Li) +
∑
j 6=i

(Ui−1 ∩ (Lj)).

To show that Ui has all the required properties, it only remains to show that
Ui ∩ L = ∅.

Suppose that L ∈ Ui ∩ Lj′ for some j′. Since Ui ∩ Li = ∅, we must have
j′ 6= i. By (9), we may write L =

∑d−m
j=1 uj , with uj ∈ (Lj) ∩ Ui−1 for j 6= i

and ui ∈ (Li). Therefore L− uj′ =
∑

j 6=j′ uj and

L− uj′ ∈ (Lj′) ∩ (L \ Lj′).

So L− uj′ ∈ U0 ⊂ Ui−1. But uj′ ∈ Ui−1, which implies that L ∈ Ui−1. This
contradicts the assumption that Ui−1 ∩ L = ∅. Therefore Ui ∩ L = ∅.

Let U0, . . . , Ud−m be vector spaces defined as above. Let Y = Z(Ud−m).
We claim that Y 6⊂ |H|, L|Y is a linearly independent set, and dimY = d.
Since Ud−m ∩ L = ∅, we have Y 6⊂ |H|. As dimUi ∩ (Li) = dim(Li) − 1 for
i > 0, Ui ⊂ Ud−m for all i, and Ud−m ∩ L = ∅, we must have

dimUd−m ∩ (Li) = dim(Li)− 1

for all i. Therefore

dim(Ud−m +(Li)) = dimUd−m +dim(Li)−dimUd−m∩(Li) = 1+dimUd−m.

Let Hi be the set of hyperplanes defined by the elements of Li. The above
equation shows that Hi|Y consists of a single hyperplane of Y . So H|Y
consists of at most d − m hyperplanes of Y . If dimY = d, then the facts
that dim

⋂
H∈H|Y H = m (since Ud−m ⊂ (L)), and that #H|Y ≤ d − m,

imply that L|Y is a linearly independent set. So it remains to show that
dimY = d, or equivalently, that dimUd−m = n − d. Repeatedly applying
the equation dim(U + V ) = dimU + dimV − dimU ∩ V we get

(10) dim
d−m∑
i=1

(Li) = dim(L) = n−m

=
d−m∑
i=1

dim(Li)−
d−m−1∑

j=1

dim
(

(Lj+1) ∩
j∑

i=1

(Li)
)
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and

dimUd−m = dim
d−m∑
i=1

((Li) ∩ Ud−m)(11)

=
d−m∑
i=1

dim(Li) ∩ Ud−m

−
d−m−1∑

j=1

dim
(

(Lj+1) ∩ Ud−m ∩
j∑

i=1

(Ud−m ∩ (Li))
)
.

We claim that

(Lj+1) ∩ Ud−m ∩
j∑

i=1

(Ud−m ∩ (Li)) = (Lj+1) ∩
j∑

i=1

(Li).

One inclusion is trivial. For the other, let u ∈ (Lj+1)∩
∑j

i=1(Li). This means
that we have an equation u =

∑j
i=1 ui where u ∈ (Lj+1) and ui ∈ (Li). It

follows easily from the definition of U0 that u, u1, . . . , uj ∈ U0 ⊂ Ud−m.
The equation then follows. We also have dim (Li) ∩ Ud−m = dim(Li) − 1.
Therefore, from (10) and (11), we get

dimUd−m =
d−m∑
i=1

dim(Li)−
d−m−1∑

j=1

dim
(

(Lj+1) ∩
j∑

i=1

(Li)
)
− (d−m)

= n−m− (d−m) = n− d,
as was to be shown.
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