On torsion in $J_1(N)$, II

by

S. Kamienny (Los Angeles, CA)

1. Introduction. In [5] we studied the primes that may occur as the order of a rational torsion point on $J_1(N)$ defined over a number field of degree d. In this sequel we continue the study of torsion from a different point of view. We use ideas introduced by Serre [12], [13] and later used by Ribet [10], to show that the image of the Gal(\mathbb{Q}/\mathbb{Q})-representation on the kernel of a non-Eisenstein maximal ideal of the Hecke algebra is usually quite large (see §5 for a precise statement). We then apply this result, using a variation of an idea of Boxall and Grant [2], to study the almost rational torsion in quotients of $J_1(N)$.

We would like to thank K. Ribet for many helpful discussions.

2. The modular curve, and its jacobian. Let N be a prime ≥ 13, and let $X_1(N)$ denote the non-singular projective curve over \mathbb{Q} associated to the moduli problem of classifying, up to isomorphism, pairs (E, P) consisting of an elliptic curve E together with a point P of E of order N. As usual, we denote by $X_0(N)$ the non-singular projective curve over \mathbb{Q} whose non-cuspidal points classify isomorphism classes of pairs (E, C), where E is an elliptic curve, and C is a cyclic subgroup of E of order N.

The curve $X_1(N)$ is a cyclic cover of $X_0(N)$ whose covering group Δ is isomorphic to $(\mathbb{Z}/N\mathbb{Z})^*/(\pm 1)$. The covering map $\pi : X_1(N) \to X_0(N)$ is given, on non-cuspidal points, by $\pi(E, P) = (E, C_P)$, where C_P is the subgroup of E generated by the point P. We denote by $\langle a \rangle$ the element of Δ whose action on non-cuspidal points is given by $\langle a \rangle(E, P) = (E, aP)$.

The curve $X_0(N)$ has two cusps 0 and ∞, each rational over \mathbb{Q}. The cusps are unramified in the cover $\pi : X_1(N) \to X_0(N)$, so there are $N - 1$ cusps on $X_1(N)$. One half of these cusps lie above the cusp $0 \in X_0(N)$. These are called the 0-cusps of $X_1(N)$. The other half of the cusps lie above

2000 Mathematics Subject Classification: 11G18, 14G35.

Key words and phrases: modular curve, jacobian, Galois representation, almost rational torsion.

© Instytut Matematyczny PAN, 2008
the cusp \(\infty \in X_0(N) \). We call these the \(\infty \)-cusp of \(X_1(N) \). We work with a model of \(X_1(N) \) in which the 0-cusps are \(\mathbb{Q} \)-rational, while the \(\infty \)-cusps are rational in \(\mathbb{Q}(\zeta_N)^+ \), the maximal totally real subfield of \(\mathbb{Q}(\zeta_N) \).

We denote by \(J_1(N) \) (respectively, \(J_0(N) \)) the jacobian of the modular curve \(X_1(N) \) (respectively, \(X_0(N) \)). The abelian variety \(J_0(N) \) is semi-stable over \(\mathbb{Q} \) with bad reduction only at the prime \(N \). The abelian variety \(J_1(N) \) also has good reduction away from \(N \), and the quotient abelian variety \(A = J_1(N)/\pi^*(J_0(N)) \) attains everywhere good reduction over the field \(\mathbb{Q}(\zeta_N)^+ \). We can actually do a bit better than this. If \(d > 1 \) is a divisor of \((N - 1)/2\), we let \(J_d \) denote the quotient (by a connected subvariety) of \(J_1(N) \) associated to weight two newforms on \(\Gamma_1(N) \) whose nebentypus character has order \(d \). Then \(J_d \) attains everywhere good reduction over the unique subfield \(\mathbb{Q}_d \) of \(\mathbb{Q}(\zeta_N)^+ \) whose degree over \(\mathbb{Q} \) is \(d \).

We embed \(X_1(N) \) into \(J_1(N) \), sending a 0-cusp to \(0 \in J_1(N) \). The divisor classes supported only at the 0-cusps generate a finite subgroup \(C \) of \(J_1(N) \) of order \(M = N \cdot \prod (1/2) \cdot B_{2,\varepsilon} \) (see [6]), where the product is taken over all even characters \(\varepsilon \) of \((\mathbb{Z}/N\mathbb{Z})^* \). The prime-to-2 part of the group \(J_1(N)(\mathbb{Q})_{\text{tors}} \) has order equal to the largest odd divisor of \(M \) (see [5]). The divisor classes supported only at the \(\infty \)-cusps also generate a subgroup \(C^* \) of order \(M \). The points of this group are rational in \(\mathbb{Q}(\zeta_N)^+ \).

3. The Hecke operators. The standard Hecke operators \(T_\ell \) (\(\ell \) a prime \(\neq N \)) and \(U_N \) act as correspondences on the curve \(X_1(N) \). They thus induce endomorphisms of the jacobian \(J_1(N) \). We define the Hecke algebra \(\mathbb{T} \) to be the ring of endomorphisms of \(J_1(N) \) generated over \(\mathbb{Z} \) by the \(T_\ell, U_N, \) and \(\triangle \). It is a commutative ring of finite type over \(\mathbb{Z} \), and all of its elements are defined over \(\mathbb{Q} \). The Hecke algebra \(\mathbb{T} \) induces an algebra (again denoted by \(\mathbb{T} \)) of endomorphisms of the quotients \(J_d \).

Since \(J_1(N) \) and \(J_d \) have good reduction away from the prime \(N \), their Néron models \(J_{1/S} \) and \(J_{d/S} \) over \(S = \text{Spec} \mathbb{Z}[1/N] \) are abelian schemes; we denote their fibers at \(\ell \) by \(J_{1/F_\ell} \) and \(J_{d/F_\ell} \), respectively. The fibers \(J_{1/F_\ell} \) and \(J_{d/F_\ell} \) inherit an action of the appropriate Hecke algebra \(\mathbb{T} \) from the induced action of \(\mathbb{T} \) on the Néron models. The Eichler–Shimura relation (see [14])

\[
T_\ell = \text{Frob}_\ell + \ell(\ell)/\text{Frob}_\ell
\]

holds in \(\text{End}(J_{1/F_\ell}) \) (respectively, \(\text{End}(J_{d/F_\ell}) \)). We can, as usual, lift this relation to the \(p \)-divisible group \(J_p(\mathcal{O}) \) (respectively, \((J_d)_p(\mathcal{O}) \)), where \(p \) is any prime \(\neq \ell, N \) as well as to any étale subgroup of \(J_\ell(\mathcal{O}) \). Of course, in the lifted relation, \(\text{Frob}_\ell \) is any \(\ell \)-Frobenius automorphism in \(\text{Gal}(\mathcal{O}/\mathbb{Q}) \).

4. Maximal ideals of the Hecke algebra. The Hecke algebra \(\mathbb{T} \) preserves the cuspidal groups \(C \) and \(C^* \). The Eisenstein ideal \(I \) (respectively, \(I^* \)
On torsion in $J_1(N)$, II

is the annihilator in T of C (respectively, C^*). It contains all elements of the form $T_\ell - (1 + \ell(\ell))$, for all $\ell \neq N$ (respectively, $T_\ell - (\ell + \langle \ell \rangle)$). The maximal ideals \mathcal{M} of T in the support of I or I^* are called Eisenstein primes. The residue characteristics of the Eisenstein primes are precisely the prime divisors of the order M of the cuspidal group C. There are clearly only a finite number of such ideals, and they are easily distinguished from the non-Eisenstein primes. A consequence of [5] is that if P is a \mathbb{Q}-rational torsion point in $J_1(N)$ of prime order $p > 2$ then p is a divisor of M, and P is cuspidal, i.e., P is annihilated by an Eisenstein prime.

From now on we write J for one of $J_1(N)/\mathbb{Q}$ or J_d/\mathbb{Q}. We will mostly be concerned with non-Eisenstein maximal ideals of the appropriate Hecke algebra T. If \mathcal{M} is such an ideal we assume that \mathcal{M} is unramified in T. The set of ramified maximal ideals is finite, and is easily computable. The next proposition is well known (see [4], for example).

Proposition 4.1. Let \mathcal{M} be an unramified prime of T of residue characteristic p, and let \mathbb{F} be the residue field T/\mathcal{M}. Then the following hold:

1. The \mathcal{M}-adic Tate module $\text{Ta}(\mathcal{M})$ is free of rank two over the \mathcal{M}-adic completion $T_\mathcal{M}$.
2. The kernel $J[\mathcal{M}]$ is free of rank two over \mathbb{F}.
3. If all primes N of T of residue characteristic p are unramified then $T \otimes \mathbb{Z}_p \cong \prod T_N$, where the product is taken over all maximal ideals $N | p$.
4. If all primes N of T of residue characteristic p are unramified then $T/pT \cong \prod T/N$, where the product is taken over all maximal ideals $N | p$.

5. **Galois representations.** In the following we assume that \mathcal{M} is an unramified, non-Eisenstein maximal ideal of T. We also assume that the residue characteristic p of \mathcal{M} is > 5, and $\neq N$. We write $J[\mathcal{M}]$ for the group of \mathcal{M}-torsion points of J, and $\varrho_{\mathcal{M}} : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \text{GL}_2(\mathbb{F})$ for the representation giving the natural action of the absolute Galois group on the \mathcal{M}-torsion points of J.

Proposition 5.1. The above assumptions about \mathcal{M} and p imply that the representation $\varrho_{\mathcal{M}}$ is irreducible.

Proof. We may assume that \mathcal{M} is not an ideal of the Hecke algebra T associated to $J_0(N)$ since Mazur [7] has proved the irreducibility in this case. Now, if $J[\mathcal{M}]$ is reducible, we let \mathcal{L} be a line fixed by $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$. We let \mathcal{O} be the ring of integers of $\mathbb{Q}(\zeta_N)^+$, and let J/\mathcal{O} be the Néron model of $J/\mathbb{Q}(\zeta_N)^+$ over $\text{Spec} \mathcal{O}$. Let \mathcal{G} be the Zariski closure of \mathcal{L} in the kernel of \mathcal{M} on J/\mathcal{O}. Then it follows from [8] that \mathcal{G} is either $(\mathbb{Z}/p\mathbb{Z})_\mathcal{O}^f$ or $\langle \mu_p \rangle_\mathcal{O}^f$, where
f is the residue class degree of M. In either case the arguments of [5] show that M is Eisenstein, contrary to assumption.

The Eichler–Shimura relation shows that $\det(\varrho_M(\text{Frob}_\ell)) = \ell \cdot \varepsilon(\ell)$, where ε is an even character of $(\mathbb{Z}/N\mathbb{Z})^*$ through which Δ acts on $J[M]$. It will be important to note that ε is unramified outside of N. We may thus view the character $\det(\varrho_M) = \ell \cdot \varepsilon(\ell)$, where ε is an even character of $(\mathbb{Z}/N\mathbb{Z})^*$ through which Δ acts on $J[M]$. It will be important to note that ε is unramified outside of N. We may thus view the character $\det(\varrho_M) = \chi \cdot \varepsilon$, where χ is the p-cyclotomic character (which is, of course, unramified outside of p). Since χ is an odd character (i.e., $\chi(c) = -1$, where c is complex conjugation), and ε is even, we see that $\det(\varrho_M)$ is also odd.

Now let $I = I_\ell$ be a ℓ-inertia subgroup of $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$, and write ϱ for ϱ_M. The semi-simplification of $\varrho|_I$ is described by a pair of characters $\phi, \phi^* : I \rightarrow F^*$. Since $\det(\varrho|_I) = \chi$, the cyclotomic character, we must have $\phi \cdot \phi^* = \chi$. Moreover, since the weight (see [13]) of the representation ϱ is 2 it follows that either (1) ϕ or ϕ^* is χ (and the other one is trivial), or (2) ϕ, ϕ^* are the fundamental characters of level two (see [13]). It follows, in either case, that $\varepsilon(\ell)$ is of order $p^\pm 1$.

Proposition 5.2. Suppose that the order of ε is odd. Assume that M is an unramified, non-Eisenstein maximal ideal of residue characteristic $p > 5$. Then the image of ϱ has order divisible by p.

Proof. Let $G = \varrho(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}))$, and assume that p does not divide the order of G. Let \overline{G} be the image of G in $\text{PGL}_2(F)$. Since $p > 5$ we have the following possibilities (see [12]): \overline{G} is either cyclic, dihedral, or one of the exceptional groups S_4, A_4, A_5.

If \overline{G} is cyclic then G is abelian, which contradicts the irreducibility of ϱ. Thus, the case where \overline{G} is cyclic does not occur.

Let \overline{I} be the image of I in \overline{G}. Then \overline{I} is cyclic since it may be viewed as the image of $\phi^* \cdot \phi^{-1}$ (see [13]), which is a finite subgroup of \overline{F}^*. Moreover, the order of \overline{I} is $p \pm 1$. If $p \geq 7$ this rules out the exceptional groups $S_4, A_4,$ and A_5 since none of these groups has an element of order $p \pm 1$.

This leaves only the possibility that \overline{G} is dihedral. Suppose that this is indeed the case. Let \overline{C} be the large cyclic subgroup of \overline{G}. Then \overline{I} is contained in \overline{C} since \overline{I} is cyclic, and of order > 2. The quadratic extension L of \mathbb{Q} corresponding to \overline{C} is thus unramified at p. It follows that only the prime N can ramify in L, so that L must be the quadratic subfield of $\mathbb{Q}(\zeta_N)$. However, since the order of ε is odd the ramification degree of N in L must also be odd. Indeed, let d denote the order of ε. The module $J[M]$ may be realized as a module of torsion points on the quotient J_d, an abelian variety that attains everywhere good reduction over the field \mathbb{Q}_d. It follows immediately that the ramification degree of N must be odd, as claimed. This shows that L is an everywhere unramified extension of \mathbb{Q}, which is an obvious contradiction. Thus, \overline{G} is not dihedral, and p must divide the order of the image of ϱ, as desired.
On torsion in $J_1(N)$, II

Remark. (1) If the order of ε is not divisible by 2 or 3 then we may also include $p = 5$ in Proposition 5.2 as we can then conclude that the exceptional groups S_4, A_4, and A_5 do not occur. To see this note that \bar{G} is either S_4, or A_4 since its order is prime to 5. In fact, \bar{G} must be S_4 since I must be cyclic of order 4, and A_4 has no elements of order 4. We consider the S_3-extension K of \mathbb{Q} arising from the quotient S_3 of S_4. Only the primes 5 and N can ramify in K, and the ramification degree of 5 must be 2. Since the order of ε is not divisible by 2 or 3 we see that N must be unramified in K. However, this means that K is an everywhere unramified extension of $\mathbb{Q}(\sqrt{5})$, which is impossible since $\mathbb{Q}(\sqrt{5})$ has class number one.

(2) If the order of ε is even then $N \equiv 1 \pmod{4}$. In that case the quadratic subfield of $\mathbb{Q}(\zeta_N)$ is a real quadratic field. If we could show that the action of complex conjugation on the quadratic field L was non-trivial then we would again have a contradiction showing that \bar{G} cannot be a dihedral group. We can sometimes do this by mimicking [12] as follows. If G is dihedral then $\rho(G)$ is contained in the normalizer of a Cartan subgroup, but not in the Cartan subgroup itself. If the Cartan subgroup is non-split then complex conjugation c must act non-trivially on L since ± 1 are the only involutions in a non-split Cartan subgroup (so the image of c in \bar{G} falls outside of the large cyclic subgroup C). If we can prove that $\rho(G)$ is never contained in the normalizer of a split Cartan subgroup then we can eliminate the hypothesis, in Proposition 5.2, that the order of ε is odd.

Corollary 5.3. Let \mathcal{M} be an unramified, non-Eisenstein maximal ideal of \mathcal{T} of residue characteristic $p > 5$, and $\neq N$. Assume that the nebentypus character ε associated to \mathcal{M} has odd order. If ρ is the representation of $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ on the \mathcal{M}-torsion points of J then $\text{Im}(\rho)$ contains a subgroup isomorphic to $\text{SL}_2(\mathbb{F}_p)$.

Proof. We closely follow Serre [12, 2.4], and Ribet [10, Corollary 2.3]. Let $G = \rho(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}))$, and let $\sigma \in G$ be an element of order p. If v is a non-zero vector in $\mathbb{F} \oplus \mathbb{F}$ that is fixed by σ then there is a $\tau \in \bar{G}$ such that v and τv form a basis of $\mathbb{F} \oplus \mathbb{F}$ (since the irreducibility of ρ means that G cannot fix the one-dimensional subspace spanned by v). Then the matrix of ρ with respect to the basis $\{v, \tau v\}$ is of the form $A(\alpha) = \begin{pmatrix} 1 & 0 \\ 0 & \alpha \end{pmatrix}$, and the matrix of $\tau \sigma \tau^{-1}$ is of the form $B = \begin{pmatrix} 1 & 0 \\ \beta & 1 \end{pmatrix}$. Multiplying by an appropriate scalar we may assume that $\alpha = 1$. It is well known that the group generated by $A(1)$ and B contains $\text{SL}_2(\mathbb{F}_p)$.

We fix an odd divisor d of $(N - 1)/2$, and work on the abelian variety J_d. We write \mathcal{M} for a maximal ideal of \mathcal{T}, and $\mathcal{T}_\mathcal{M}$ for its completion. We continue to assume that \mathcal{M} is unramified, so $\mathcal{T}_\mathcal{M} \otimes \mathbb{Q}$ is a finite unramified extension of \mathbb{Q}_p, and $\mathcal{T}_\mathcal{M}$ is a discrete valuation ring.
We write $\mathcal{R} = \mathcal{R}_M$ for the representation $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \text{GL}_2(\mathbb{T}_M)$ giving the action of $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ on the M-adic Tate module of J_d. It follows from the Eichler–Shimura relation that the determinant of \mathcal{R} is $\chi \varepsilon$, where χ is the p-adic cyclotomic character $\chi : \text{Gal}(\mathbb{Q}/\mathbb{Q}) \to \mathbb{Z}_p^*$, and ε is a character cutting out the field \mathbb{Q}_d (ε takes values in an unramified extension of \mathbb{Z}_p). Corollary 5.3 implies (as in Lemma 3 of [11, IV-23]) that the image of \mathcal{R} contains $\text{SL}_2(\mathbb{Z}_p)$.

6. Almost rational torsion. Ribet (see [1] and [9]) has introduced the notion of almost rational torsion points on an abelian variety. He used this idea to give a new and beautiful proof of the Manin–Mumford conjecture. It also became immediately useful in proving the conjecture of Coleman, Kaskel, and Ribet (see [3]) that only the cusps and hyperelliptic branch points of $X_0(N)$ give rise to torsion points when the curve is embedded in its jacobian. We recall the definition and basic properties of almost rational torsion points here. Let A be an abelian variety over a field K. A point P in $A(\overline{K})$ is called almost rational over K if, for all $\sigma, \tau \in \text{Gal}(\overline{K}/K)$, the equation $\sigma(P) + \tau(P) = 2P$ holds if and only if $P = \sigma(P) = \tau(P)$. Certainly, any rational point is almost rational, as is any Galois conjugate of an almost rational point. More important for us is the following.

Lemma 6.1.

(a) If P is almost rational over K, and $\sigma \in \text{Gal}(\overline{K}/K)$ is such that $(\sigma - 1)^2 \cdot P = 0$, then σ fixes P.

(b) If L is an extension of K contained in \overline{K}, and P is almost rational over K, then P is almost rational over L.

Proof. (a) To see this one calculates $(\sigma - 1)^2 \cdot P = \sigma^2(P) - 2\sigma(P) + P = 0$. Applying σ^{-1} we see that $\sigma(P) + \sigma^{-1}(P) = 2P$. Since P is almost rational we must have $\sigma(P) = \sigma^{-1}(P) = P$.

(b) is clear from the definition of almost rational.

We wish to describe the primes p for which there exists an almost rational torsion point of order p^α on J_d. Let S be the set of all primes q such that if M is a maximal ideal of \mathbb{T} of residue characteristic q then $\mathcal{R}_M(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}))$ does not contain $\text{SL}_2(\mathbb{Z}_q)$. At worst S contains the primes 2, 3, 5, N, the prime divisors of M, and the residue characteristics of those M that are ramified in \mathbb{T}. Let $p \notin S$ be a prime, and suppose that there exists an almost rational point P of order p^α on J_d. If we write \mathcal{R}_p for the $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$-representation on the p-adic Tate module, then, by the remarks at the end of §5, we know that $\mathcal{R}_p(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}))$ contains a subgroup G isomorphic to $\prod \text{SL}_2(\mathbb{Z}_p)$ (for us even $\prod \text{SL}_2(\mathbb{Z})$ will suffice), where the product is taken over all maximal ideals of \mathbb{T} of residue characteristic p. We let K be the extension of \mathbb{Q} such that $\mathcal{R}_p(\text{Gal}(\overline{K}/K)) = G$.
By Lemma 6.1(b) the point P is almost rational over K. If $\sigma \in \text{Gal}(\overline{K}/K)$ is such that $R_p(\sigma)$ is an element all of whose components in $G \approx \prod \text{SL}_2(\mathbb{Z}_p)$ are transvections then $(\sigma - 1)^2 \cdot P = 0$. Since P is almost rational, Lemma 6.1(a) tells us that $\sigma(P) = P$. Since P is fixed by all such σ, we see that P must be 0. We have thus proved the following.

Theorem 6.2. Let N be a prime ≥ 13, and let d be an odd divisor of $(N-1)/2$. If there is an almost rational point P on J_d of prime power order p^α then $p \in \mathcal{S}$.

References

Department of Mathematics
University of Southern California
3620 South Vermont Ave.
Los Angeles, CA 90089-2532, U.S.A.
E-mail: kamienny@usc.edu

Received on 4.12.2007
and in revised form on 7.3.2008