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Beilinson–Kato elements in K2 of modular curves
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Introduction. Let X be a smooth projective curve over Q, and let
L(h1(X), s) be the associated L-function. A very special case of Beilinson’s
conjectures predicts that the special value L(h1(X), 2) can be expressed in
terms of a suitable regulator map on the algebraic K-group K2(X) (see [8]
for a nice overview and a precise statement of this conjecture). Beilinson
proved a part of his conjecture in the case where X is a modular curve [18].
Beilinson’s work was also partially anticipated by Bloch, who studied the
particular case of CM elliptic curves [1].

Despite these profound results, the K-group itself remains very myste-
rious. There is quite an art to constructing special elements in this group
and, as soon as the genus of X is not zero, it is not even known whether
K2(X)⊗Z Q is a finite-dimensional Q-vector space.

I showed in [4] how Beilinson’s theorem can be made explicit in the case
of the modular curve X1(N). This raised the question of determining linear
dependence relations in the group K2(X1(N)) [4, §8].

The main point of this article is to make these relations explicit. Let
Y (N) be the open modular curve associated to the congruence subgroup
Γ (N). By taking cup-products of Siegel units, there is a natural map

(1) % : M2(Z/NZ)→ K2(Y (N))⊗Q.

Under the hypothesis that N is not divisible by 3, I show that % satisfies
the Manin relations (Theorem 1.4). This was also proved by Goncharov [9]
using a different method, and his proof works for all N . Thus % can be seen
as a Manin symbol (or modular symbol) with values in K2(Y (N))⊗Q. This
result is similar to constructions of Borisov and Gunnells [2, 3] and Paşol [17]
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in the case of modular forms. In these works, the product of two Eisenstein
series plays the role of the cup-product.

I then use this result to study the case of the modular curves X1(p)
and X0(p), where p is prime (Theorems 4.2, 4.4 and 4.8). In particular, the
Beilinson conjecture implies that the elements so constructed span the vector
space K2(X0(p))Z ⊗Q, and I determine all the relations between them.

Some questions would deserve further study. I do not know (even con-
jecturally) whether the image of % spans K2(Y (N)) ⊗ Q (see Remark 1.7).
In view of the arithmetic applications of Kato’s Euler system [10], it would
be also of interest to describe the action of Hecke correspondences on these
elements, in the spirit of Merel’s result on modular symbols [15].

1. The Beilinson–Kato elements in K2. Let us first state some stan-
dard facts on modular curves (see [20, 13, 7, 11] for more detailed accounts).
Let N ≥ 3 be an integer and Y (N) be the modular curve classifying el-
liptic curves E with a level N structure, that is, a basis (e1, e2) of E[N ]
over Z/NZ. The curve Y (N) is a smooth projective curve defined over Q,
whose affine ring O(Y (N)) contains the cyclotomic field Q(ζN ) generated
by ζN := e2iπ/N . The curve Y (N) is not geometrically connected. Indeed,
there is an isomorphism Y (N)(C) ∼= (Z/NZ)∗ × (Γ (N)\H), where H is the
Poincaré upper half-plane and Γ (N) ⊂ SL2(Z) is the congruence subgroup
of matrices satisfying (

a b

c d

)
≡
(

1 0
0 1

)
(mod N).

For any z ∈ H and λ ∈ Q, let us set q = e2iπz and qλ = e2iπλz.
The curve Y (N) has a smooth compactification X(N) over Q which

is obtained by adding on the cusps. The function field of X(N) will be
referred to by Q(X(N)). It is naturally embedded into the function field
of the compactification of Γ (N)\H. There is also a natural inclusion of
Q(X(N)) into the field of formal Laurent series Q(ζN )((q1/N )), by looking
at the q-expansion.

1.1. Siegel units. Let us give the definition of Siegel units (see [6, 10, 12]).
The group of modular units of X(N) will be denoted by O∗(Y (N)). In order
to avoid torsion problems, Siegel units will always be considered in the Q-
vector space O∗(Y (N))⊗Z Q.

Let B2(X) = X2 −X + 1/6 be the second Bernoulli polynomial.

Definition 1.1. For any (α, β) ∈ (Z/NZ)2 − {(0, 0)} let us define

(2) gα,β(z) = q
1
2
B2(eα/N)

∏
n≥0

(1− qnqeα/NζβN )
∏
n≥1

(1− qnq−eα/Nζ−βN ),
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where α̃ ∈ Z is the unique representative of α satisfying 0 ≤ α̃ < N . By
convention g0,0 = 1.

Thus gα,β is a holomorphic function on H. It is known that some power
of gα,β (in fact g12N

α,β ) is modular with respect to Γ (N), and lies in O∗(Y (N))
[13, Chap. 19, §2]. Therefore gα,β is well-defined as an element of O∗(Y (N))
⊗Q.

Let G be the group GL2(Z/NZ). It acts from the left on Y (N), by the
rule

(3)
(
a b

c d

)
· (E, e1, e2) = (E, ae1 + be2, ce1 + de2)

((
a b

c d

)
∈ G

)
.

This induces on O∗(Y (N))⊗Q a right action of G. It turns out that G acts
on the set of Siegel units. More precisely, we have [10, Lemma 1.7]

(4) gα,β|γ = g(α,β)·γ (γ ∈ G).

Since −1 ∈ G acts trivially on Y (N), we get the relation g−α,−β = gα,β. Ku-
bert and Lang proved that the Siegel units of level N generate O∗(Y (N))⊗
Q [12].

1.2. The construction of Beilinson and Kato. Let us consider the Quillen
K-group K2(Y (N)), which enjoys a right action of G by functoriality. Beilin-
son constructed special elements in it using cup-products of modular units.
This motivates the following definition.

Definition 1.2. Let % be the map

(5) % : M2(Z/NZ)→ K2(Y (N))⊗Z Q,
(
s t

u v

)
7→ {gs,t, gu,v}.

Remark 1.3. Colmez [6, 1.4.2] constructed an algebraic distribution on
M2(Q ⊗ Ẑ) with values in K2, which generalizes Definition 1.2. I shall not
use this more conceptual point of view in what follows.

Let ε (resp. σ, τ) be the image of
(−1 0

0 1

)
(resp.

(
0 −1
1 0

)
,
(

0 −1
1 −1

)
) in G.

Theorem 1.4. The elements %(M) satisfy the following relations:

(6) %(εM) = %(M), %(M) + %(σM) = 0 (M ∈M2(Z/NZ)).

Suppose further that 3 does not divide N . Then

(7) %(M) + %(τM) + %(τ2M) = 0 (M ∈M2(Z/NZ)).

Remark 1.5. The Manin relations (6) and (7) have also been established
by Goncharov [9, Corollary 2.17], without any assumption on the level N ,
using a different method.

Remark 1.6. The Manin relations (6) and (7) are consistent with the
formula of Kato [10, Thm. 2.6] giving the regulator of zN = %(I). The
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element zN plays a prominent role in the construction of Kato’s Euler system
[10, §5].

Remark 1.7. It would be interesting to know whether the elements
%(M) span the Q-vector space K2(Y (N)) ⊗ Q. A related question is to
determine whether K2(Y (N)) is generated by the symbols {u, v} with u, v ∈
O∗(Y (N)). Since K2(Y (N))⊗Q is in general not known to be finite-dimen-
sional, it is more reasonable to ask whether the Manin relations make up
a complete set of relations between the elements %(M). A natural way to
tackle this problem would be to compute the Beilinson regulator of %(M).
However, the formula of Kato [10, Thm. 2.6] seems to indicate that in general
%(G) cannot span K2(Y (N))⊗Q.

Proposition 1.8. For any M ∈M2(Z/NZ) the relations (6) hold.

Proof. Let M = ( s tu v ). We have

%(εM) = {g−s,−t, gu,v} = {gs,t, gu,v} = %(M),
%(σM) = {g−u,−v, gs,t} = −{gs,t, gu,v} = −%(M),

because of the relation g−s,−t = gs,t and the antisymmetry of the Milnor
symbol.

The relation (7) can be seen as an analogue of the Manin 3-term relation
for modular symbols. The proof of this relation lies deeper, and will be given
in the next two sections.

2. Weierstrass units. For any z ∈ H, we let ℘(z, u) be the Weierstrass
℘-function associated to the lattice Λz = Zz + Z ⊂ C. It is defined for
u ∈ C− Λz.

Definition 2.1. For any a = (a1, a2) ∈ (Z/NZ)2−{(0, 0)}, let us define

(8) ℘a(z) = ℘

(
z,
ã1z + ã2

N

)
(z ∈ H),

where ã1 and ã2 are any representatives of a1 and a2 in Z.

We use these functions to construct the Weierstrass units. This classical
construction is accomplished in [12, Chap. 2, §6]. We give some details for
the sake of completeness.

Theorem ([12]). Let a, b, c, d be four nonzero elements of (Z/NZ)2 sat-
isfying a 6= ±b and c 6= ±d. The function

(9)
℘a − ℘b
℘c − ℘d

defines an element of O∗(Y (N)).
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Proof. The function ℘a is holomorphic on H and defines a modular form
of weight 2 for the group Γ (N). For any z ∈ H, we have ℘a(z) = ℘b(z) if and
only if a = ±b. Thus (℘a−℘b)/(℘c−℘d) is well-defined and does not vanish
on H. The fact that it belongs to Q(X(N)) is a consequence of results
of Shimura ([19, §4], [20, Chap. 6]). It essentially amounts to expressing
(℘a−℘b)/(℘c−℘d) in terms of the x-coordinates of N -torsion points of the
universal elliptic curve over Y (N). The fact that (9) is a modular unit is
proved in [12, Chap. 2, Thm. 6.1].

Now we express the Weierstrass units in terms of Siegel units. Once again
this is done in [12, Chap. 2, §6].

Proposition 2.2. Let a, b, c, d be four nonzero elements of (Z/NZ)2 sat-
isfying a 6= ±b and c 6= ±d. Then the following identity holds in O∗(Y (N))
⊗Q:

(10)
℘a − ℘b
℘c − ℘d

=
ga+bga−b
g2
ag

2
b

·
g2
cg

2
d

gc+dgc−d
.

Proof. We start with the following classical formula from the theory of
elliptic functions [13, Chap. 18, Thm. 2]:

(11) ℘(z, u)− ℘(z, v) = −σ(z, u+ v)σ(z, u− v)
σ2(z, u)σ2(z, v)

(z ∈ H),

where σ is the Weierstrass sigma function. For any (a1, a2) ∈ Z2, let us
define, in the same way as in (8),

σa1,a2(z) = σ

(
z,
a1z + a2

N

)
(z ∈ H).

We write abusively a = (a1, a2) and b = (b1, b2) for representatives of a and
b in Z2. The formula (11) can then be rewritten as

℘a − ℘b = −σa+bσa−b
σ2
aσ

2
b

.

Using the expression of σ as an infinite q-product [13, Chap. 18, Thm. 4],
we get the following formula (cf. [12, pp. 29 and 51]):

℘a − ℘b = (2iπ)2qb1/Nζb2N
∏
n≥1

(1− qn)4 · γ(q, a+ b)γ(q, a− b)
γ2(q, a)γ2(q, b)

,

where γ is defined by

γ(q, a1, a2) =
∏
n≥0

(1− qnqa1/Nζa2
N ) ·

∏
n≥1

(1− qnq−a1/Nζ−a2
N ).

Using the obvious notation for c and d, this gives

℘a − ℘b
℘c − ℘d

= q(b1−d1)/Nζb2−d2N

γ(q, a+ b)γ(q, a− b)
γ2(q, a)γ2(q, b)

· γ2(q, c)γ2(q, d)
γ(q, c+ d)γ(q, c− d)

.
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Using the expression (2) for Siegel units, we get the equation

℘a − ℘b
℘c − ℘d

= ζb2−d2N

ga+bga−b
g2
ag

2
b

·
g2
cg

2
d

gc+dgc−d
.

It is a priori a relation between q-products, but raising it to an appropriate
power yields an equality in Q(ζN )((q1/N )) and thus in O∗(Y (N)). Therefore
the formula (10) is valid in O∗(Y (N))⊗Q.

3. The three-term relation. Weierstrass units (9) satisfy additive
relations. These have already been used by Kubert and Lang to get dio-
phantine results on modular curves [12, Chap. 8]. In fact, the whole proof
of (7) is based on the following simple identity:

(12)
℘a − ℘b
℘a − ℘c

+
℘b − ℘c
℘a − ℘c

= 1.

The relation (12) also has applications to the S-unit equation and is con-
nected to the arithmetic of Fermat curves (see the nice introduction of [12,
Chap. 8] for precise statements and references).

Since the canonical bilinear map O∗(Y (N)) × O∗(Y (N)) → K2(Y (N))
enjoys Steinberg relations [16, 9.8], the identity (12) implies the following
relation in K2(Y (N)):

(13)
{
℘a − ℘b
℘a − ℘c

,
℘b − ℘c
℘a − ℘c

}
= 0.

Using the expression of Weierstrass units in terms of Siegel units gives linear
dependence relations between the elements %(M) in K2(Y (N)) ⊗ Q. The
main task will be to show that the 3-term relation is a consequence of these
relations.

Let a, b, c be three nonzero elements of (Z/NZ)2 such that a 6= ±b,
b 6= ±c and c 6= ±a. Using (10) and (13) we have the following identity in
K2(Y (N))⊗Q:{

ga+bga−b
g2
ag

2
b

· g2
ag

2
c

ga+cga−c
,
gb+cgb−c
g2
bg

2
c

· g2
ag

2
c

ga+cga−c

}
= 0.

Expanding this and using the relation g−a = ga, we get the more symmetric
identity

(14) {ga+bga−bg2
c , gb+cgb−cg

2
a}+ {gb+cgb−cg2

a, gc+agc−ag
2
b}

+ {gc+agc−ag2
b , ga+bga−bg

2
c} = 0.

We remark that when a = 0 the relation (14) still makes sense and holds.
Similarly, it holds in the cases b = 0, c = 0, a = ±b, b = ±c or c = ±a. Thus
(14) is true for any values of a, b, c ∈ (Z/NZ)2.

We now wish to write (14) as a linear combination of 3-term relations.
Let us define ψ(M) = %(M) + %(τM) + %(τ2M) for any M ∈ M2(Z/NZ).
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Let M = ( s tu v ). An elementary computation yields

(15) ψ(M) = {gs,t, gu,v}+ {gu,v, gs−u,t−v}+ {gs−u,t−v, gs,t}.

For any two elements a and b of (Z/NZ)2, let us write ( ab ) for the 2 by 2
matrix with row vectors a and b. Then (15) can be rewritten as

(16) ψ

(
a

b

)
= %

(
a

b

)
+ %

(
b

a− b

)
+ %

(
a− b
a

)
.

We also have

(17) ψ

(
a

−b

)
= %

(
a

b

)
+ %

(
b

a+ b

)
+ %

(
a+ b

a

)
.

Lemma 3.1. For any a, b, c ∈ (Z/NZ)2, the left hand side of the relation
(14) can be written as

(18) 2ψ
(
a

b

)
+ 2ψ

(
a

−b

)
+ 2ψ

(
b

c

)
+ 2ψ

(
b

−c

)
+ 2ψ

(
c

a

)
+ 2ψ

(
c

−a

)

+ψ

(
b+ a

b+ c

)
+ ψ

(
b+ a

b− c

)
+ ψ

(
b− a
b+ c

)
+ ψ

(
b− a
b− c

)
.

Proof. By expanding (14) completely, we obtain

{ga+b, gb+c}+ {gb+c, gc−a}+ {gc−a, ga+b}(19)

+ {ga+b, gb−c}+ {gb−c, gc+a}+ {gc+a, ga+b}
+ 2{ga+b, ga}+ 4{ga, gb}+ 2{gb, ga+b}
+ {ga−b, gb+c}+ {gb+c, gc+a}+ {gc+a, ga−b}
+ {ga−b, gb−c}+ {gb−c, gc−a}+ {gc−a, ga−b}
+ 2{ga−b, ga}+ 2{gb, ga−b}
+ 2{gc, gb+c}+ 2{gb+c, gb}+ 4{gb, gc}
+ 2{gc, gb−c}+ 2{gb−c, gb}
+ 4{gc, ga}
+ 2{ga, gc+a}+ 2{gc+a, gc}
+ 2{ga, gc−a}+ 2{gc−a, gc} = 0.

In most lines of (19) we recognize an expression of type (16) or (17), but
there are incomplete terms. We can arrange the picture by splitting the
terms with a coefficient 4 and moving them to the right places. This gives
exactly (18).
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We now make use of the relation (14) with a particular choice of a, b
and c. Let us assume that c = a+ b. This gives (for any choice of a and b)

2ψ
(
a

b

)
+ 2ψ

(
a

−b

)
+ 2ψ

(
b

a+ b

)
+ 2ψ

(
b

−a− b

)
(20)

+ 2ψ
(
a+ b

a

)
+ 2ψ

(
a+ b

−a

)
+ ψ

(
a+ b

a+ 2b

)

+ ψ

(
a+ b

−a

)
+ ψ

(
−a+ b

a+ 2b

)
+ ψ

(
−a+ b

−a

)
= 0.

Using the notation M = ( ab ) and letting T (resp. T ′) be the image of ( 1 1
0 1 )

(resp. ( 1 0
1 1 )) in G, we can rewrite (20) as

2ψ(M) + 2ψ(−εM) + 2ψ(−τεM) + 2ψ(−τT 2M) + 2ψ(τ2εM)

+ 3ψ(τ2T ′2M) + ψ(−τ2T 2M) + ψ

((
−1 1
1 2

)
M

)
+ ψ(τ2M) = 0.

Since ψ(M) = ψ(−M) = ψ(τM) for any M , this simplifies to

(21) 3ψ(M) + 6ψ(εM) + 3ψ(T 2M) + 3ψ(T ′2M) + ψ

((
−1 1
1 2

)
M

)
= 0.

Let us consider the formal linear combination of matrices in Z[M2(Z/NZ)],

D(M) = 3[M ] + 6[εM ] + 3[T 2M ] + 3[T ′2M ] +
[(
−1 1
1 2

)
M

]
.

By assumption, we have det
(−1 1

1 2

)
= −3 ∈ (Z/NZ)∗.

Lemma 3.2. The elements D(M) span Q[M2(Z/NZ)] when M runs
through M2(Z/NZ).

Proof. We remark that D(M) is congruent mod 3 to the single matrix(−1 1
1 2

)
M . Therefore the determinant of the vectors D(M) in the canonical

basis of Z[M2(Z/NZ)] is not zero mod 3, and thus a nonzero integer.

Using (21) and Lemma 3.2 gives ψ(M) = 0 for any M ∈ M2(Z/NZ),
which concludes the proof of Theorem 1.4.

4. Varying the modular curve. In this section I study special ele-
ments in the groups K2(X1(N))⊗Q and K2(X0(N))⊗Q, in the case of prime
level. In particular, I make explicit the link between the Beilinson–Kato el-
ements and the elements which come up in my PhD thesis [5].

Let us first recall the definition of particular modular units on X1(N) [4,
(95)]. Let Y1(N) be the modular curve over Q classifying elliptic curves E
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with a point P of order N , and let X1(N) be the smooth compactification
of Y1(N). The set of cusps of X1(N)(C) is identified with Γ1(N)\P1(Q),
and with this convention the cusp [0] is defined over Q. Let WN : X1(N)→
X1(N) be the Atkin–Lehner involution, which is defined over Q(ζN ). For
any λ ∈ (Z/NZ)∗, the Diamond operator 〈λ〉 associated to λ is defined by
(E,P ) 7→ (E, λP ). On the complex points of X1(N) we have 〈λ〉[z] = [mλz],
where mλ ∈ SL2(Z) is any matrix congruent to

(
λ−1 0
0 λ

)
mod N .

Definition 4.1. For any λ ∈ (Z/NZ)∗, let uλ ∈ O∗(Y1(N))⊗Q be the
unique modular unit satisfying

(22) div uλ = 〈λ〉[0]− [0] and uλ ◦WN is normalized.

Note that we use the cusp [0] instead of [∞]. It essentially amounts to the
same thing, because the two definitions are related by WN . In [4, Prop. 6.1]
I show that the element {uλ, uµ} belongs to K2(X1(N))⊗Q for any choice
of λ, µ ∈ (Z/NZ)∗.

From now on, let us suppose that N = p is an odd prime. In [4, §8] I
remark that the Beilinson conjecture should imply some linear dependence
relations between the elements {uλ, uµ}. It turns out that these relations
can be worked out explicitly and even rigorously proved, as follows.

Let B2 : R/Z → R be the 1-periodic function obtained from B2 by
defining B2(t) = B2(t) for any 0 ≤ t ≤ 1. For any u, v ∈ (Z/pZ)∗, let us
define

(23) γ(u, v) =
∑

λ,µ∈(Z/pZ)∗

B2

(
λu

p

)
B2

(
µv

p

)
{uλ, uµ} ∈ K2(X1(p))⊗Q.

By convention, we put γ(u, v) = 0 when u = 0 or v = 0.

Theorem 4.2. The elements γ(u, v) (u, v ∈ Z/pZ) satisfy the following
relations:

γ(u, v) = γ(±u, v) = γ(u,±v),(24)
γ(u, v) + γ(v,−u) = 0,(25)

γ(u, v) + γ(v,−u− v) + γ(−u− v, u) = 0.(26)

Proof. Since B2 is an even function and u−λ = uλ, we have the relations
γ(±u, v) = γ(u,±v) = γ(u, v). The antisymmetry of the Milnor symbol
yields γ(v, u) = −γ(u, v), which proves (25).

In order to prove the 3-term relation (26), we jump to X(p). We have
a finite morphism π : Y (p) → Y1(p) which is defined over Q, given by
(E, e1, e2) 7→ (E, e2).

LetM(p) be the field of meromorphic functions on the compactification
of Γ (p)\H. It is a Galois extension of C(j) with Galois group SL2(Z/pZ)/±1.
We say that a function f ∈ C((q1/n))∗ (for some n ≥ 1) is normalized
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when the leading coefficient of its q-expansion is 1. This definition extends
naturally to C((q1/n))∗⊗Q. Two functions f, g ∈M(p)∗ coincide if and only
if their divisors are equal and f/g is normalized. Since we have an inclusion
O∗(Y (p)) ⊂ M(p)∗, we will apply this principle to check equality between
modular units in O∗(Y (p))⊗Q.

The set of cusps of Γ (p)\H is identified with Γ (p)\P1(Q), and the restric-
tion of π to the cusps is the natural projection Γ (p)\P1(Q)→ Γ1(p)\P1(Q).
The inverse image of a cusp [x] by π is given by

π∗[x] =
p−1∑
k=0

[x+ k] (x ∈ P1(Q)).

The set of cusps Γ (p)\P1(Q) can be identified with the set of nonzero column
vectors of (Z/pZ)2 quotiented by ±1, the bijection being induced by [a/c] ∈
P1(Q) 7→ [ ac ] for any two relatively prime integers a and c. We now consider
π∗uλ ∈ O∗(Y (p))⊗Q ⊂M(p)∗ ⊗Q. Its divisor is given by

(27) div π∗uλ = π∗ div uλ =
p−1∑
k=0

[〈λ〉0 + k]− [k] =
∑

k∈Z/pZ

[
k

λ

]
−
[
k

1

]
.

On the other hand, the order of the Siegel unit gα,β at the cusp [∞] can
be deduced from the q-product (2). Since q1/p is a uniformizing parameter
at [∞], we have

ord[∞] gα,β =
p

2
B2

(
α

p

)
((α, β) 6= (0, 0)).

Using the transformation formula (4), we deduce the order of gα,β at any
cusp:

ord[a/c] gα,β =
p

2
B2

(
αa+ βc

p

)
((α, β) 6= (0, 0)).

A straightforward computation gives

(28) div g0,β =
p

4

∑
λ∈(Z/pZ)∗

k∈Z/pZ

B2

(
βλ

p

)[
k

λ

]
+

p

24

∑
k∈(Z/pZ)∗

[
k

0

]
(β 6= 0).

From (27) and (28), it follows that the divisor

div g0,β −
p

4

∑
λ∈(Z/pZ)∗

B2

(
βλ

p

)
div π∗uλ

does not depend on β ∈ (Z/pZ)∗. Moreover, we have

g0,β

(
− 1
pz

)
= gβ,0(pz) in C∗ ⊗Q (z ∈ H).
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and gβ,0(pz) is a normalized function. Since each uλ ◦Wp is normalized, we
can write

g0,β = h ·
∏

λ∈(Z/pZ)∗

π∗uλ ⊗
(
p

4
B2

(
βλ

p

))
,

where h ∈ O∗(Y (p))⊗Q is well-defined and independent of β. We then have

(29)
{
g0,u
h
,
g0,v
h

}
=
p2

16
π∗γ(u, v) (u, v ∈ (Z/pZ)∗).

We are now ready to prove (26). Since the map π∗ : K2(Y1(p)) ⊗ Q →
K2(Y (p))⊗Q is injective, it suffices to work in the latter vector space. The
cases u = 0, v = 0 and u+ v = 0 are easily treated. In the general case, we
write

(30)
{
g0,u
h
,
g0,v
h

}
= {g0,u, g0,v}+

{
h,
g0,u
g0,v

}
.

Thanks to Theorem 1.4, we already know that (u, v) 7→ {g0,u, g0,v} satisfies
the 3-term relation. Since {h, g0,u/g0,v} is a “boundary element”, we get the
desired result.

Remark 4.3. In general, the relations (24), (25) and (26) between the
elements γ(u, v) do not make up a complete set of relations. This can be seen
by working out the case p = 5 explicitly. In that case, X1(p) is isomorphic
to P1 over Q and K2(X1(p)) ⊗ Q is known to be 0. In the general case
however, if we average over the action of Diamond operators (see below),
we can produce special elements in K2(X0(p)) ⊗ Q together with a full set
of relations.

A theorem of Schappacher and Scholl [18, 1.1.2(iii)] implies that γ(u, v)
belongs to the integral subspace K2(X1(p))Z⊗Q, and we can ask about the
span of the elements γ(u, v). Let

(31) rp : K2(X1(p))Z ⊗Q→ HomQ(Ω1(X1(p)),R)

be the Beilinson regulator map, as defined in [4, §1].

Theorem 4.4. The Beilinson conjecture for L(h1(X1(p)), 2) implies that
K2(X1(p))Z ⊗Q is generated by the elements γ(u, v) with u, v ∈ (Z/pZ)∗.

Proof. Beilinson’s conjecture predicts that rp is injective and that its
image is a Q-structure of the target vector space. We already know that
Beilinson’s conjecture implies that K2(X1(p))Z ⊗Q is generated by the ele-
ments {uλ, uµ} [4, §8]. It is sufficient to show that each {uλ, uµ} is a Q-linear
combination of the elements γ(u, v). Let us consider

θ =
∑

λ∈(Z/pZ)∗

B2

(
λ

p

)
[λ] ∈ Q[(Z/pZ)∗/±1].
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For every even Dirichlet character χ : (Z/pZ)∗ → C∗, we have

(32) χ(θ) =
∑

λ∈(Z/pZ)∗

B2

(
λ

p

)
χ(λ) =


1− p

6p
(χ = 1),

τ(χ)
π2

L(χ, 2) (χ 6= 1),

where τ(χ) =
∑p−1

a=1 χ(a)e2iaπ/p is the Gauß sum of χ. But for any char-
acter χ, we have L(χ, 2) 6= 0, so that θ is invertible in the group algebra
Q[(Z/pZ)∗/±1].

We finally investigate the group K2(X0(p))⊗Q. The natural morphism
X1(p)→ X0(p) identifies K2(X0(p))⊗Q with the fixed part of K2(X1(p))⊗Q
under the Diamond operators.

Definition 4.5. For any x ∈ (Z/pZ)∗, let

(33) γ0(x) =
∑

u∈(Z/pZ)∗

γ(u, ux).

Moreover, we define γ0(0) = γ0(∞) = 0.

Lemma 4.6. For any x ∈ (Z/pZ)∗, we have

γ0(x) ∈ K2(X0(p))⊗Q.

Proof. It suffices to prove that π∗γ0(x) is invariant under any matrix
t =

(
a b
0 d

)
∈ GL2(Z/pZ). Because of (4), we have g0,β|t = g0,dβ. Using (29),

we remark that
p2

16
π∗γ0(x) =

∑
u∈(Z/pZ)∗

{
g0,u
h
,
g0,ux
h

}
=

∑
u∈(Z/pZ)∗

{g0,u, g0,ux}

which is clearly invariant under t.

Remark 4.7. The element γ0(x) ∈ K2(X0(p)) ⊗ Q is defined only im-
plicitly. By this I mean that the actual definition uses Milnor symbols with
functions on X1(p), and not on X0(p), which only contains two cusps. We
can rewrite γ0(x) as follows:

γ0(x) =
∑

u∈(Z/pZ)∗

∑
λ,µ∈(Z/pZ)∗

B2

(
λu

p

)
B2

(
µux

p

)
{uλ, uµ}(34)

=
∑

ν∈(Z/pZ)∗

( ∑
u∈(Z/pZ)∗

B2

(
u

p

)
B2

(
uνx

p

))( ∑
λ∈(Z/pZ)∗

{uλ, uλν}
)
.

In (34), each sum over λ already lies in K2(X0(p)) ⊗ Q. Moreover, we rec-
ognize the sum over u to be a Dedekind sum.
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For any x ∈ P1(Z/pZ), let ξ(x) ∈ H1(X0(p)(C), cusps,Z) be the modular
symbol {gx0, gx∞} where gx =

(
a b
c d

)
∈ SL2(Z) is any matrix satisfying x =

c/d mod p. Let ξ±(x) = 1
2(ξ(x) + ξ(−x)). For any cusp form f ∈ S2(Γ1(p)),

we define ξf (x) =
	
ξ(x) ωf and ξ±f (x) =

	
ξ±(x) ωf where ωf = 2iπf(z)dz.

Theorem 4.8.

(1) For any newform f ∈ S2(Γ0(p)), we have

(35) 〈rp(γ0(x)), f〉 =
8(p− 1)
pπ

L(f, 2)ξ+f (x) (x ∈ (Z/pZ)∗).

(2) For any x ∈ P1(Z/pZ), the following relations hold :

γ0(x) = γ0(−x),

γ0(x) + γ0(−1/x) = 0,(36)

γ0(x) + γ0

(
− 1
x− 1

)
+ γ0

(
1− 1

x

)
= 0.

(3) The equations (36) make up a complete set of relations for the ele-
ments γ0(x).

Proof. Item (1) will be a consequence of the explicit computation of
Beilinson’s regulator for the modular curve X1(p) [4, Thm. 1.1]. Let X be
the set of even nontrivial characters of (Z/pZ)∗. For any χ ∈ X, we define
a modular unit uχ ∈ O∗(Y1(p))⊗ C by

(37) uχ =
∏

λ∈(Z/pZ)∗

uλ ⊗
(
−L(χ, 2)χ(λ)

2π2

)
.

Now let us compute the following element in K2(X1(p))⊗ C:

γx =
∑
χ∈X

χ(x){uχ, uχ} (x ∈ (Z/pZ)∗).

Using (37) gives

(38) γx =
1

4π4

∑
λ,µ∈(Z/pZ)∗

(∑
χ∈X

χ

(
xµ

λ

)
L(χ, 2)L(χ, 2)

)
{uλ, uµ}.

The inner sum can be computed using the formula (32), which gives

(39)
π4(p− 1)

2p

∑
α,β∈(Z/pZ)∗

αxµ=±βλ

B2

(
α

p

)
B2

(
β

p

)
− π4

p

∑
α,β∈(Z/pZ)∗

B2

(
α

p

)
B2

(
β

p

)
.
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The second term of (39) contributes to zero in (38) by antisymmetry of the
Milnor symbol. Finally, we get

γx =
p− 1

4p

∑
α,β,λ,µ∈(Z/pZ)∗

αxµ=βλ

B2

(
α

p

)
B2

(
β

p

)
{uλ, uµ} =

p− 1
4p

γ0(x).

In order to use [4, Thm. 1.1], we have to take care of the Atkin–Lehner
involution Wp. Let w(f) be the Wp-eigenvalue of f . We let temporarily ũχ
(resp. ũλ) be the modular unit defined in [4, (5)] (resp. in [4, (95)]). We have
uλ|Wp = ũλ−1 and for any χ ∈ X,

{uχ, uχ}|Wp =
L(χ, 2)L(χ, 2)

4π4

∑
λ,µ∈(Z/pZ)∗

χ(λ)χ(µ){uλ, uµ}|Wp

=
L(χ, 2)L(χ, 2)

4π4

∑
λ,µ∈(Z/pZ)∗

χ(λ/µ){ũλ, ũµ} = {ũχ, ũχ}

because of [4, Prop. 5.4]. Let f ∈ S2(Γ0(p)) be a newform and w(f) be the
Wp-eigenvalue of f . Using [4, Thm. 1.1], we have

〈rp({uχ, uχ}), f〉 = 〈rp({uχ, uχ}|Wp),Wpf〉
= w(f)〈rp({ũχ, ũχ}), f〉

=
2(p− 1)w(f)
pπτ(χ)

L(f, 2)L(f, χ, 1).

A classical computation [14] yields

L(f, χ, 1) = −w(f)τ(χ)
p

∑
a∈(Z/pZ)∗

χ(a)ξ+f (a) (χ ∈ X).

By taking the sum over characters χ, we obtain

〈rp(γx), f〉 =
2(p− 1)2

p2π
L(f, 2)ξ+f (x).

This proves (35).
The relations (36) are easy consequences of Theorem 4.2 and the defi-

nition (33) of γ0(x). Note that they are consistent with the regulator for-
mula (35).

Finally, for item (3), let γ̃0 be the map

γ̃0 : Q[(Z/pZ)∗]→ K2(X0(p))⊗Q, [x] 7→ γ0(x).

Let R be the kernel of γ̃0. We wish to show that R is generated by the
relations (36). For this we use the theory of Manin symbols. For any x ∈
(Z/pZ)∗, the cycle ξ(x) has trivial boundary. Thus we have a map

ξ+ : Q[(Z/pZ)∗]→ H+
1 (X0(p)(C),Q).
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Manin’s theorem implies that the kernel of ξ+ is generated by the relations
(36), so that ker ξ+ ⊂ R. In order to prove the reverse inclusion, it suffices
to consider the dimensions. Let g(X0(p)) be the genus of X0(p). From (35)
we know that the image of γ̃0 has dimension at least g(X0(p)). Manin’s
theorem implies that the dimension of the image of ξ+ is precisely g(X0(p))
(the element ξ(0) = {0,∞} = −ξ(∞) has nontrivial boundary). We conclude
that dimR ≤ dim ker ξ+, so that R is generated by (36).
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