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Repulsive behavior in an exceptional family
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Introduction. This paper would be called Statistical Deuring–Heil-
bronn phenomenon, but for the fact that that title is already taken [11].
The Deuring–Heilbronn phenomenon is the influence of a Landau–Siegel
zero of a quadratic Dirichlet L-function on both the vertical and horizontal
distribution of the zeros of other L-functions. Deuring, Heilbronn, and later
Stark [7, 8, 25, 26] obtained results by consideration of Epstein zeta func-
tions. Linnik’s Theorem [16, Theorem 5, p. 172] can be proven by Turán’s
power sum method. Pintz [22, 23] obtained results by elementary methods
under very strong hypotheses on the class number. Jutila and Conrey &
Iwaniec [11, 5] used the approximate functional equation.

Modern approaches to the vertical distribution of the zeros of L-functions
are motivated by considerations of Random Matrix Theory. Usually, assum-
ing the Generalized Riemann Hypothesis (GRH), the 1-level density follows
from the Explicit Formula so elegantly as to be an exercise in an undergrad-
uate text [15, Exercise 18.2.11].

Here, we show the Deuring–Heilbronn phenomenon via the Explicit For-
mula, as the 1-level density in a ‘family’ of quadratic twists of a fixed genus
character. The question of the horizontal distribution of zeros is still very
difficult; good results for complex zeros, even in the presence of a Landau–
Siegel zero, would give good lower bounds on the class number [24]. We have
partial results in an Appendix. For the vertical distribution, we have two
goals unrealized in the prior work cited above:

(i) Obtain explicit lower order terms describing the vertical distribution
of the zeros, in the presence of a Landau–Siegel zero.

(ii) Realize the influence of the Landau–Siegel zero as a ‘resonance’ phe-
nomenon; see the remarks on page 123.
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Notation. Suppose −D < 0 is a fundamental discriminant. Let ψ be a
genus character of the class group C(−D), corresponding to a factorization
into fundamental discriminants (with opposite sign) −D = d1 · d2. By the
theorem of Kronecker,

L(s, ψ) = L(s, χd1)L(s, χd2).

Let f be another fundamental discriminant such that (f,−D) = 1. Then
the L-function of ψ twisted by χf is just

(1) L(s, ψ ⊗ χf ) = L(s, χfd1)L(s, χfd2).

Let F(X) denote the fundamental discriminants f with (f,D) = 1 and
X ≤ |f | < 2X, and let X∗ = ]F(X). If L(s, χ−D) has a Landau–Siegel zero
1− δ, we will call the family of L(s, ψ ⊗ χf ) as above exceptional.

We will make use of an even Schwartz test function g such that ĝ has
compact support contained in (−σ, σ) (1). The use of the Burgess bound
for character sums [10, (12.57)] leads to the introduction of a parameter ε.
We denote the trivial character modulo D by 1D; without subscripts, 1 and
χ denote the trivial and non-trivial characters modulo 4, respectively. The
Euler constant is C. The important Sodd(ψ) is defined by (5) below.

Hypothesis H. Following the work of Sarnak and Zaharescu in [24],
we sometimes refer to the following hypothesis on the zeros of the Dedekind
zeta function ζ(s)L(s, χ−D) and the zeros of L(s, ψ ⊗ χf ): Except for a
Landau–Siegel zero of the Dedekind zeta function at β = 1− δ and at δ, all
the others are of the form ρ = 1/2 + iγ with either

(i) ρ on the critical line, i.e. γ ∈ R, or
(ii) ρ real, i.e. iγ ∈ (−1/2, 1/2).

This is Hypothesis H of [24] for ζ(s) and quadratic Dirichlet L-functions
only, written with a notation to single out the Landau–Siegel zero.

Contents. Here is an outline of what is in the subsequent sections:

§1 Review of the Explicit Formula and summary of later sections to
develop the 1-level density, unconditional with respect to both −D
and σ. Theorem 1 gives the first term of an asymptotic expansion of
the 1-level density in powers of the average spacing of the zeros.

§2 Assuming the exponent e of the principal genus is small, Theorem 2
gives results for σ < 2/e and logDX < 1/σe − 1/2. Assuming the
existence of a Landau–Siegel zero, Theorem 3 uses the Burgess bound
on character sums to give results for σ < 4/3 and logDX < 1/4.

(1) This is stronger than what we actually need. We require ĝ to have compact support
as control of σ is the fundamental problem. So g is smooth. But g(y) � 1/(1 + y2) is
sufficient; we do not actually need g to be rapidly decreasing.
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§3 The contribution of the conductors to the Explicit Formula.
§4 The contribution of the Gamma factors.
§5 The contribution of the even powers of primes.
§6 The contribution of the odd powers of primes.
§7 The analogous Explicit Formula for the Dedekind zeta function

ζ(s)L(s, χ−D).
§8 Appendix: Notes towards Hypothesis H.

1. Explicit Formula and 1-level density. We write a generic zero in
the critical strip of L(s, ψ⊗χf ) as ρ = 1/2+iγ. By (1), the Explicit Formula
for L(s, ψ ⊗ χf ) follows from that for quadratic Dirichlet L-functions.

Theorem (Explicit Formula for twisted genus characters). Let g be an
even Schwartz test function such that ĝ has compact support. We have
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√
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The L-functions L(s, ψ ⊗ χf ) have conductor Df2 ≈ DX2, but are not
primitive. Since they factor (1) as the product of two primitive L-functions
of conductor ≈

√
DX, the natural scale for the zeros is log(

√
DX)/2π.

The discriminants fd1 and fd2 have opposite sign, so we get both pos-
sibilities for the Γ ′/Γ term. We analyze the first two lines on the right side
above in §3 and §4.

As for the sum over primes, because all the characters are quadratic, the
analysis splits depending on whether or not k is even. Set

Sodd(ψ) = − 2
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Seven = − 2
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We will see that there is no dependence on ψ for the even powers. In fact,
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for these even powers, we observe

χfd1(p)2 + χfd2(p)2 =

{
χd1(p)2 + χd2(p)2 if (f, p) = 1,

0 if p | f .

We rewrite the 0 as

0 = (χd1(p)2 + χd2(p)2)− (χd1(p)2 + χd2(p)2)

and break Seven into two terms:

(3) Seven;1 = −2
∞∑
l=1

∑
p

(χd1(p)2 + χd2(p)2) log p

pl log(
√
DX)

ĝ

(
log p2l

log(
√
DX)

)
,

where we simplified (
∑

f∈F(X) 1)/X∗ = 1, and

(4) Seven;2 =
4

X∗

∑
f∈F(X)

∞∑
l=1

∑
p|f

log p

pl log(
√
DX)

ĝ

(
log p2l

log(
√
DX)

)
,

where we simplified

χd1(p)2 + χd2(p)2 = 2 if p | f, since (f, d1d2) = 1.

Observe that

(χd1(p)2 + χd2p)
2) log p =

{
2 log p if (p,D) = 1,

log p if p |D.

We deal with the even powers in §5. The calculations are the same as those
in [14]; but we exercise care to avoid making any hypothesis about the
support of ĝ for as long as possible. Constants implied by O( ) statements
should be universal.

The odd powers of primes are more interesting. If p is inert, then χd1d2(p)
= χ−D(p) = −1, so

χd1(p) = −χd2(p),

and consequently, for these primes

χfd1(p) + χfd2(p) = χf (p)(χd1(p) + χd2(p)) = 0.

The contribution to Sodd(ψ) of those p which are inert is 0. For those p
which split, χd1d2(p) = χ−D(p) = 1, so

χd1(p) = χd2(p) =: ψ(Q),

where the form Q(x, y) represents p. Consequently, for these primes

χfd1(p) + χfd2(p) = 2χf (p)ψ(Q).

Similarly, if p |D then p divides exactly one of d1 and d2, and the character
corresponding to the factor prime to p again defines the value of the genus
character ψ so that in this case

χfd1(p) + χfd2(p) = χf (p)ψ(Q).
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Thus we can rewrite

(5) Sodd(ψ) = − 2

X∗

∞∑
l=0

∑
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λ(p)ψ(Q) log p
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√
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√
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) ∑
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χf (p),

where p is represented by the form Q(x, y), and

λ(p) := 1 + χ−D(p) =


2 if p splits,

1 if p |D,

0 if p is inert.

Combining the results of §3–§5 we get the following, unconditionally with
respect to −D and also with respect to σ such that supp ĝ ⊂ (−σ, σ).

Theorem (1-level density for twists of a genus character). Define

ζD(s) =
ζ(s)L(s, 1D)

ζ(s+ 1)2
=
ζ(s)2

∏
q|D(1− q−s)

ζ(s+ 1)2
,

Rem(r) =
∑
p
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(p+ 1)(1− p2r+1)(1− p2r+2)

.

We have
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)
.

Remarks. 1. Bogomolny and Keating [3] were the first to observe that
(ζ ′(s)/ζ(s))′ similarly appears in the pair correlation for the Riemann zeros.
Berry and Keating [2] wrote in that context:

“The appearance of ζ(s) indicates an astonishing resurgence property of
the zeros: in the pair correlation of high Riemann zeros, the low Riemann
zeros appear as resonances.”
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The appearance of ζ ′(s)/ζ(s) in the 1-level density shows a resonance
phenomenon in conductor aspect. This was first noticed by Conrey and
Snaith in [6].

Figure 1 shows a graph (solid) of the real part of (ζ ′D/ζD)(1 + 2it) for
−D = −1411 = −83 · 17 and 0 ≤ t ≤ 10. We know [28, Theorem 9.6(A)]
that

ζ ′(s)

ζ(s)
=

∑
|t−γ|≤1

1

s− ρ
+O(log t),

so up to a small error, the logarithmic derivative at s = 1 + 2it is de-
termined by the nearby zeros ρ, and is positive near such a zero. Unla-
beled but clearly visible in Figure 1 is the contribution of the nearby pole
when 2t = 14.134725 . . . . One can also see in Figure 1 the contribution of
the periodic terms arising from the q |D with periods 2π/log 17 ≈ 2.2 and
2π/log 83 ≈ 1.4.

2. Theorem 2 below shows that in the presence of a Landau–Siegel zero,
we may replace ζD(s) by

ζLS(s) =
ζ(s)L(2s, 1D)

ζ(s+ 1)2L(s, χ−D)

and see the ‘resonance’ of the Landau–Siegel zero. The corresponding for-
mula for the logarithmic derivative shows the contribution of a zero of
L(s, χ−D) is negative.

2 4 6 8 10

-1

1

2

Fig. 1. The real parts of (ζ′D/ζD)(1 + 2it) (solid), and (ζ′LS/ζLS)(1 + 2it) (dotted) for
−D = −1411 and 0 ≤ t ≤ 10.
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Also shown in Figure 1 (dotted) is the graph of the real part of
(ζ ′LS/ζLS)(1 + 2it). Of course we do not have a Landau–Siegel zero, but
this discriminant is notable for having a low-lying zero (relative to the size
of the discriminant), at ρ = 1/2 + i 0.077967 . . . . The points marked on the
horizontal axis correspond to the zeros of L(1/2 + 2it, χ−1411).

3. In comparison the ‘remainder’ term Rem(it) is independent of −D
and should be small; see the remark on page 137 and Figure 2 for a graph.

In the following theorem we have the beginnings of an asymptotic ex-
pansion of the right side of (6) in powers of the mean gap between the zeros.
Still to be accomplished in Theorems 2 and 3 below is a useful estimate of
Sodd(ψ).

Theorem 1. We have

(7)
1

X∗

∑
f∈F(X)

∑
γ

g

(
γ

log(
√
DX)

2π

)
= 2ĝ(0)− g(0)

+

(
2
∑
q|D

log q

q − 1
+ 4

ζ ′(2)

ζ(2)
− log(4π2e2) + 2C

)
ĝ(0)

log(
√
DX)

+ Sodd(ψ) +O

(
1

log(
√
DX)2

)
.

Proof. This follows from Lemma 6 in §4, and Lemmas 8 and 10 in §5.

2. The exceptional discriminant. We saw above that the contribu-
tion to Sodd(ψ) of those primes which are inert is 0. Suppose now that
−D < 0 is a fundamental discriminant which is exceptional, that is, there
is a Landau–Siegel zero β = 1− δ of L(s, χ−D). Then the inert primes will
dominate and the contribution of the split primes to Sodd(ψ) will be small
as long as

δ(
√
DX)σ/2 � 1

is small, where supp ĝ ⊂ (−σ, σ). (See §7.) What we see then in (6) and (7) is
the ‘main term’ 2ĝ(0)−g(0), and some explicit O(1/log(

√
DX)) corrections.

The question is, to paraphrase Iwaniec [9],

“ . . . for what reason can the zeros ρ = 1/2 + iγ of L(s, ψ ⊗ χf ) be so
regularly distributed to generate the functional g 7→ 2ĝ(0)− g(0)?”

Our goal is to choose interesting values of X and σ in terms of D and δ,
in such a way as to get good estimates on Sodd(ψ). The size of σ, and in
particular whether σ > 1 is feasible, is of interest because of this classical
fact about the functional g 7→ 2ĝ(0)− g(0):
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Lemma. If supp ĝ ⊂ (−σ, σ), then

2ĝ(0)− g(0) = 2

∞�

−∞
g(y)

(
1− sin(2πσy)

2πy

)
dy.

Proof. We have

g(0) =

∞�

−∞
ĝ(y) dy =

σ�

−σ
ĝ(y) dy =

∞�

−∞
χ[−σ,σ](y)ĝ(y) dy.

By the Plancherel Formula this equals
∞�

−∞
χ̂[−σ,σ](y)g(y) dy =

∞�

−∞

sin(2πσy)

πy
g(y) dy.

The symplectic random matrix model is conjectured to model the distri-
bution of the zeros of quadratic Dirichlet L-functions. This would give the
1-level density as

∞�

−∞
g(y)

(
1− sin(2πy)

2πy

)
dy

for all σ. Under the assumption of GRH, this is a theorem (up to o(1) error)
as long as σ < 2; see [19, Corollary 2]. Thus having Sodd(ψ) small for σ > 1
tends to repel the low lying γ away from 0, and closer to a periodic spacing
than in the symplectic random matrix model (2).

Algebra. By genus theory, we have an exact sequence for the class
group C(−D):

P(−D) := C(−D)2 ↪→ C(−D) � C(−D)/C(−D)2 ' (Z/2)ω(D)−1.

Let e denote the exponent of the principal genus P(−D).

Theorem 2. Assume the principal genus has odd order. (In this case
the exact sequence above splits.) Rather than use a single genus character ψ,
we instead average (6) or (7) over all such. For any exponent e, and any
σ < 2/e, we take X no larger than

X <
D1/σe−1/2

4
.

Then (6) and (7), averaged over ψ, hold with
∑

ψ Sodd(ψ) = 0. Furthermore,

the term ζ ′D/ζD on the right side of (6) may be replaced by ζ ′LS/ζLS, where

ζLS(s) =
ζ(s)L(2s, 1D)

ζ(s+ 1)2L(s, χ−D)
.

(2) Be careful not to assume that 1−sin(2πσy)/2πy models the histogram of the zeros.
Any given bin in such a histogram may be well approximated by a Schwartz test function
g with very small support. By the Uncertainty Principle, the support of the corresponding
ĝ will be very large, exactly the opposite of our hypothesis.
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Proof. The dependence on ψ on the right side of (6) is only in the term
Sodd(ψ). By orthogonality all primes are annihilated except those repre-
sented by a form in the principal genus, i.e. those p congruent to a square
modulo D.

If p does not divide D and p < (D/4)1/e, then p is not represented by any
form Q(x, y) in the principal genus, because otherwise the principal form Qe

would represent pe. But

pe = x2 +
D

4
y2 or x2 + xy +

D + 1

4
y2

with y > 0 shows pe > D/4. The only primes which contribute to the
Explicit Formula are those for which log(p)/log(

√
DX) < σ. Then with X

as above,

p < (
√
DX)σ ⇒ p < (D/4)1/e

and there are no split primes at all in the principal genus.

The primes q dividing D, on the other hand, are classically known to be
represented by the ambiguous classes (those of order two) which are not in
the principal genus by hypothesis.

We observe that the Euler products for

ζ(s)L(s, 1D) and
ζ(s)L(2s, 1D)

L(s, χ−D)

agree for all primes such that χ−D(p) = −1 or 0, and thus for all primes
p < (

√
DX)σ. The calculations for Lemma 7 below go through unchanged.

Remarks. 1. The most interesting case is of course e = 1 (which is still
an open problem). Then we can take supp ĝ ⊂ (−σ, σ) for any σ < 2. As
long as X < D1/σ−1/2/4, we have the above conclusions.

2. For e > 1, we have a strong restriction on σ, but without assuming
GRH and with very small error, O(X−1/2).

3. This result is actually unconditional as it does not explicitly refer to
the Landau–Siegel zero. Nonetheless Weinberger [29, Theorem 4], and Boyd
and Kisilevsky [4, Theorem 4] show that under GRH, e� log(D)/log log(D).

4. The second part of the theorem does not require that e be odd, as the
Euler products for ζD(s) and ζLS(s) agree for all q |D as well as for all p
with χ−D(p) = −1. The first part may be generalized to the case of even e
as well: for the (relatively rare) small primes q |D, we may use the methods

of Lemmas 11 and 12 below to get a O(X−ε
2
) estimate for their contribution

to Sodd(ψ). For the (extremely rare) large primes q |D, we take instead the
trivial bound on

∑
f∈F(X) χf (q).
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Analysis. To get good bounds via the Burgess estimate on the character
sum ∑

f∈F(X)

χf (p)

appearing in Sodd(ψ), we see in Lemma 12 below that X must not be too
small relative to the the prime p; we will need

(8) Dσ/2 < X4−σ−16ε or
σ

8− 2σ − 32ε
< logDX,

so

(9)
σ

8− 2σ
< logDX

is a clean necessary (but not sufficient!) condition. On the other hand, to
estimate the rest of Sodd(ψ),

(10)
∞∑
l=0

∑
p

λ(p)ψ(Q) log p

p(2l+1)/2 log(
√
DX)

ĝ

(
log p2l+1

log(
√
DX)

)
,

we compare it in §7 to the analogous term in the Explicit Formula for
ζ(s)L(s, χ−D). There we find that we need

(
√
DX)σ/2 · δ � 1.

A theorem due to Page [20] tells us that

δ � 1√
D(logD)2

.

In fact, the Goldfeld–Gross–Zagier lower bound on the class number, and
known asymptotics [13, 21] for δ in terms of L(1, χ−D), tell us that

δ � logD√
D
.

So

(11) (
√
DX)σ/2 <

√
D or logDX < 1/σ − 1/2

is a clean necessary (but not sufficient!) condition for (10) to be small. (Thus
necessarily σ < 2.) Combining (9) and (11) we have

(12)
σ

8− 2σ
< logDX < 1/σ − 1/2.

These inequalities coalesce at σ = 4/3 and X = D1/4, which motivates what
follows.

Theorem 3. For any σ < 4/3, let X < D1/4 such that (12) holds, and
choose ε so that (8) holds. Suppose that g and ĝ are non-negative, and the
only zeros of ζ(s)L(s, χ−D) off the critical line are real (3). Then we may

(3) That is, Hypothesis H for ζ(s)L(s, χ−D) only.
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omit the term Sodd(ψ) on the right side of (6) and (7), at the expense of
multiplying the right side by

(13) 1 +Oε
(
τ(D) log(ω(D))X−ε

2)
,

and including an additional error of

(14) O
(

max ĝ · (
√
DX)σ/2 · δ ·X−ε2

)
.

Remark. As in Theorem 2, we could in Theorem 3 replace the term
ζ ′D/ζD by ζ ′LS/ζLS, at the cost of introducing an additional error term to

account for the (relatively rare) primes p < (
√
DX)σ for which χ−D(p) = 1.

Proof of Theorem 3. We can use the character sum estimate (23) below,
together with (17), to bound Sodd(ψ) as

�ε
τ(D) log(ω(D))

Xε2

∞∑
l=0

∑
p

λ(p) log p

p(2l+1)/2 log(
√
DX)

ĝ

(
log p2l+1

log(
√
DX)

)
.

The double sum is the absolute value of (10), which is less than the left
side of (24). But on the right side of (24) we see the same terms as on the
right side of (6), which requires including the factor (13), as well as the
contribution of the pole and Landau–Siegel zero leading to the error term
(14).

3. The conductors term

Lemma 4. Let f denote a fundamental discriminant with |f | < X. Then

(15)
∑
|f |≤X

1 =
6

π2
X +O(X1/2),

and for fixed p,

(16)
∑
|f |≤X
p|f

1 =
6X

π2(p+ 1)
+O(X/p)1/2.

Proof. This can be shown following the very straightforward approach
given in [14, Appendix B], modified only with the improvement 1/p1/2 in
the O( ).

In (15), replace X with 2X and subtract to deduce that∑
X≤|f |<2X

1 =
6

π2
X +O(X1/2).

Via an inclusion-exclusion argument, we then deduce from (15) that

X∗ = ]F(X) =
6

π2

∏
q|D

(
1− 1

q + 1

)
X +O(X1/2).
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We will later have need of an estimate for 1/X∗ in terms of D, i.e. the size
of
∏
q|D(1− 1/(q + 1))−1. With ω(D) = ]{q |D}, we can estimate

∏
q|D

(1− 1/(q + 1))−1 <

ω(D)∏
i=1

(1− 1/pi)
−1 � log(ω(D))

by Mertens’ Formula. So

(17)
1

X∗
� log(ω(D))

X
.

We are now ready to analyze the first term on the right side of (2),

1

X∗

∑
f∈F(X)

log(Df2/π2)

log(
√
DX)

∞�

−∞
g(τ) dτ.

Of course, the integral
	∞
−∞ g(τ) dτ is just ĝ(0). Certainly we can rewrite

log

(
Df2

π2

)
= log

(
D

π2

)
+ 2 log |f |;

the first term, when summed over f , cancels the 1/X∗, contributing a term
log(D/π2)ĝ(0)/log(

√
DX).

Lemma 5. We have

1

X∗ log(
√
DX)

∑
f∈F(X)

2 log |f | = log(16X2/e2)

log(
√
DX)

+O

(
log(ω(D))

X1/2 log(
√
DX)

)
.

Proof. This is just partial summation as in [1, Thm. 4.2]. We let

A(x) =
∑

X≤|n|<x
n fund., (n,D)=1

1, h(x) = 2 log |x|,

so ∑
f∈F(X)

2 log |f | =
∑
n<2X

h(n)dA(n) = A(2X)h(2X)−
2X�

X

A(t)h′(t) dt

= 2X∗ log(2X)

−
2X�

X

(
6

π2

∏
q|D

(
1− 1

q + 1

)
(t−X) +O(t1/2)

)
2t−1 dt

= 2X∗ log(2X)− 2X∗ + 2X∗ log 2 +O(X1/2).

Dividing by X∗ log(
√
DX) gives the lemma.
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Combining with the easy previous term, we see that the first line on the
right side of (2) is

log(DX2 · 16/π2e2)

log(
√
DX)

ĝ(0) +O

(
ĝ(0) log(ω(D))

X1/2 log(
√
DX)

)
=

(
2 +

log(16/π2e2)

log(
√
DX)

)
ĝ(0) +O

(
ĝ(0) log(ω(D))

X1/2 log(
√
DX)

)
.

4. The Gamma terms. In this section we show that the second line
on the right side of (6), coming from the Gamma factors, simplifies, at the
expense of rewriting in terms of ĝ instead of g. In

(18)
1

log(
√
DX)

∞�

−∞
g(τ) Re

[
Γ ′

Γ

(
1

4
+

iπτ

log(
√
DX)

)
+
Γ ′

Γ

(
3

4
+

iπτ

log(
√
DX)

)]
dτ

we change variables t = τ/log(
√
DX). We will next apply [17, Lemma

12.14], which serves as a sort of substitute for the Plancherel Theorem in
this context. Apply the lemma twice, with b = π and a = 1/4 (resp. 3/4).

Writing Ĵ(t) = g(log(
√
DX)t), the usual Fourier identities give J(y) =

ĝ(y/log(
√
DX))/log(

√
DX). The cited lemma says that (18) is(

Γ ′

Γ
(1/4) +

Γ ′

Γ
(3/4)

)
ĝ(0)

log(
√
DX)

+
1

log(
√
DX)

∞�

0

ĝ(0)− ĝ(y/log(
√
DX))

sinh(y/2)
dy,

after some fiddling with the exponentials and recalling that ĝ is even. For
future reference we note that

Γ ′

Γ
(1/4) +

Γ ′

Γ
(3/4) = −2C − log 64

where C is the Euler constant.

Lemma 6. We have

1

log(
√
DX)

∞�

0

ĝ(0)− ĝ(y/log(
√
DX))

sinh(y/2)
dy � 1

log(
√
DX)2

.

Proof. Since g is Schwartz, ĝ(y) = ĝ(0) + O(y). The lemma follows im-
mediately from the fact that

∞�

0

y

sinh(y/2)
dy = π2.
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5. The sum over even powers of primes. Let

ζ(s)L(s, 1D) = ζ(s)2
∏
q|D

(1− q−s),

ΛD(n) =


2 log p if n = pk, (p,D) = 1,

log q if n = qk, q |D,

0 otherwise,

so

(19)
ζ ′(s)

ζ(s)
+
L′(s, 1D)

L(s, 1D)
= −

∑
n

ΛD(n)n−s.

Lemma 7. Suppose ĝ has finite support. Then

(20) Seven;1 = −g(0) +
2

log(
√
DX)

×
∞�

−∞
g(τ) Re

[
ζ ′

ζ

(
1 +

4πiτ

log(
√
DX)

)
+
L′

L

(
1 +

4πiτ

log(
√
DX)

, 1D

)]
dτ.

Remark. I am not sure of the origin of this key lemma, but I expect it
must be implicit in [18]. The proof given here follows the elegant treatment
of Miller in [14] in all essentials; it is included here merely for completeness.

Proof of Lemma 7. We have

Seven;1 =
−2

log(
√
DX)

∞∑
n=1

ΛD(n)

n
ĝ

(
2

log n

log(
√
DX)

)
.

For any ε > 0 define (4)

I(ε) =
1

2πi

�

Re(z)=1+ε

g

(
(2z − 2) logA

4πi

) ∞∑
n=1

ΛD(n)

nz
dz;

we will later take A = D1/4X1/2.

Miller rewrites I(ε) by shifting contours while avoiding poles. For δ > 0
consider the contour made up of three pieces: (1 − i∞, 1 − iδ], Cδ, and
[1 + iδ, 1 + i∞), where

Cδ = {z = 1 + δeiθ : θ ∈ [−π/2, π/2]}

is the semicircle going counter-clockwise from 1− iδ to 1 + iδ. By Cauchy’s
residue theorem, the contour in I(ε) can be shifted from Re(z) = 1 + ε to

(4) For this lemma we use δ and ε as generic small parameters, not in the global sense
they have in the rest of the paper.
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the three curves above. Recalling (19), I(ε) is equal to

1

2πi

1−iδ�

1−i∞
+

�

Cδ

+

1+i∞�

1+iδ

g

(
(2z − 2) logA

4πi

)(
−ζ
′(z)

ζ(z)
− L′(z, 1D)

L(z, 1D)

)
dz.

The limit as δ → 0 of the integral over Cδ is evaluated as follows. One can
write

g

(
(2z − 2) logA

4πi

)(
−ζ
′(z)

ζ(z)
− L′(z, 1D)

L(z, 1D)

)
= g(0)

2

z − 1
+ holomorphic.

(Recall that ζ(s)2 has a double pole at s = 1, while the factors from q |D
are holomorphic.) The contribution of the pole is g(0), independent of what
δ is, while the holomorphic piece tends to 0 with δ by the usual bound on
integrands and path lengths. Now take the limit as δ → 0 in what remains:

g(0)− I(ε) = lim
δ→0

1

2π

−δ�

−∞
+

∞�

δ

g

(
y logA

2π

)(
ζ ′(1 + iy)

ζ(1 + iy)
+
L′(1 + iy, 1D)

L(1 + iy, 1D)

)
dy.

Miller claims the limit of the integral above is well-defined. For large y this
follows from the decay of g. For small y it follows from the fact that

ζ ′(1 + iy)

ζ(1 + iy)
+
L′(1 + iy, 1D)

L(1 + iy, 1D)
=
−2

iy
+O(1).

The contribution of the pole is an odd function of y, so orthogonal to g
which is even. The imaginary part of (ζ ′/ζ)(1 + iy) + (L′/L)(1 + iy, 1D) is
also an odd function of y, only the real part survives. Take A = D1/4X1/2,
and change variables to τ = y log(A)/2π, which is y log(

√
DX)/4π. Thus

I(ε) = g(0)− 2

log(
√
DX)

×
∞�

−∞
g(τ) Re

[
ζ ′

ζ

(
1 +

4πiτ

log(
√
DX)

)
+
L′

L

(
1 +

4πiτ

log(
√
DX)

, 1D

)]
dτ.

Observe that his beautiful formula is independent of ε!

On the other hand, in the original definition of I(ε) (before the contour
was moved), write z = 1 + ε + iy. We will use Fourier analysis to write
g(x+ iy) in terms of the transform of ĝ(u). Normalize the Fourier transform
so that

ĝ(u) =

∞�

−∞
g(x)e−2πixu dx, g(x) =

∞�

−∞
ĝ(u)e2πixu du,

g(x+ iy) =

∞�

−∞
ĝ(u)e2πi(x+iy)u du.
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Miller has

I(ε) =
∞∑
n=1

ΛD(n)

n1+ε
1

2πi

∞�

−∞
g

(
y logA

2π
− iε logA

2π

)
exp(−iy log n)i dy,

which is equal to

∞∑
n=1

ΛD(n)

n1+ε
1

2π

∞�

−∞
exp(−iy log n)

×
∞�

−∞
ĝ(u) exp(εu logA) exp

(
2πi

y logA

2π
u

)
du dy.

Let hε(u) = ĝ(u) exp(εu logA). Note that
̂̂
hε(w) = hε(−w). Thus

I(ε) =
∞∑
n=1

ΛD(n)

n1+ε
1

2π

∞�

−∞
ĥε

(
−y logA

2π

)
exp(−iy log n) dy

=
∞∑
n=1

ΛD(n)

n1+ε

∞�

−∞
ĥε(y) exp

(
−2πiy

(
− log n

logA

))
dy

logA

=
1

logA

∞∑
n=1

ΛD(n)

n1+ε
̂̂
hε

(
− log n

logA

)

=
1

logA

∞∑
n=1

ΛD(n)

n1+ε
ĝ

(
log n

logA

)
exp(ε log n)=

1

logA

∞∑
n=1

ΛD(n)

n
ĝ

(
log n

logA

)
.

By again taking A = D1/4X1/2 we find

I(ε) =
2

log(
√
DX)

∞∑
n=1

ΛD(n)

n
ĝ

(
2

log n

log(
√
DX)

)
= −Seven;1.

As with the Gamma terms in the previous section, we can estimate the
integral:

Lemma 8. We have

2

log(
√
DX)

×
∞�

−∞
g(τ) Re

[
ζ ′

ζ

(
1 +

4πiτ

log(
√
DX)

)
+
L′

L

(
1 +

4πiτ

log(
√
DX)

, 1D

)]
dτ

= 2

(
2C +

∑
q|D

log(q)

q − 1

)
· ĝ(0)

log(
√
DX)

+O

(
1

log(
√
DX)2

)
.
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Proof. We change variables

t =
τ

log(
√
DX)

, dt =
dτ

log(
√
DX)

, g(τ) = g(log(
√
DX)t).

We have lost the ‘obvious’ 1/log(
√
DX) term, but since g is Schwartz,

g(log(
√
DX)t)� 1

log(
√
DX)2t2

.

From [28, (3.11.9)] we have

ζ ′

ζ
(1 + it)� log t,

while the terms arising from the q |D are periodic and hence O(1). So to
treat the integral on (−∞,−1] ∪ [1,∞), we bound the integral by

� 1

log(
√
DX)2

∞�

1

log t

t2
dt =

1

log(
√
DX)2

.

Meanwhile,

Re

[
2
ζ ′

ζ
(1 + 4πit)

]
= 2C +O(t2), Re

[
log q

q1+it − 1

]
=

log q

q − 1
+O(t2)

(where C is the Euler constant). We treat the constant terms and the
quadratic error separately, computing that

2

1�

−1
g(log(

√
DX)t) dt =

2

log(
√
DX)

log(
√
DX)�

− log(
√
DX)

g(y) dy

=
2ĝ(0)

log(
√
DX)

− 4

log(
√
DX)

∞�

log(
√
DX)

g(y) dy

=
2ĝ(0)

log(
√
DX)

+O

(
1

log(
√
DX)2

)
,

as g(y)� 1/y2. And

1�

−1
g(log(

√
DX)t) · t2 dt =

1

log(
√
DX)3

log(
√
DX)�

− log(
√
DX)

g(y) ·y2 dy � 1

log(
√
DX)2

,

since the integrand is O(1).

Lemma 9. Let

A′(r) =
∑
p

log p

(p+ 1)(p1+2r − 1)
.
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Then

Seven;2 =
4

log(
√
DX)

∞�

−∞
g(τ) Re

[
A′
(

2πiτ

log(
√
DX)

)]
dτ(21)

+O

(
max ĝ · log(ω(D))

X1/2 log(
√
DX)

)
.

Proof. The proof is again that of [14], simplified slightly as the error
bounds in (16) track the dependence on p. Observe that in (4) we have
p | f ≤ 2X, so certainly p ≤ 2X. Thus (4) is

4

X∗

∑
f∈F(X)

∞∑
l=1

∑
p≤2X
p|f

log p

pl log(
√
DX)

ĝ

(
2

log pl

log(
√
DX)

)

=
4

X∗

∞∑
l=1

∑
p≤2X

log p

pl log(
√
DX)

ĝ

(
2

log pl

log(
√
DX)

) ∑
f∈F(X), p|f

1

= 4
∞∑
l=1

∑
p≤2X

log p

pl log(
√
DX)

1

p+ 1
ĝ

(
2

log pl

log(
√
DX)

)

+O

(
max ĝ ·X1/2

X∗ log(
√
DX)

∞∑
l=1

∑
p≤2X

log p
√
p pl

)
.

In the O term, sum the series on l first; each is again � log(p)/p3/2, and
the sum of these converges. This gives

= 4

∞∑
l=1

∑
p≤2X

log p

pl log(
√
DX)

1

p+ 1
ĝ

(
2

log pl

log(
√
DX)

)

+O

(
max ĝ · log(ω(D))

X1/2 log(
√
DX)

)
.

We see the error the lemma allows and rewrite the rest, the terms involving
ĝ(2 log(pl)/log(

√
DX)), by expanding the Fourier transform. This is equal

to

4

log(
√
DX)

∞∑
l=1

∑
p≤2X

log p

(p+ 1)pl

×
∞�

−∞
g(τ) exp(−2πiτ · 2 log(pl)/ log(

√
DX)) dτ

=
4

log(
√
DX)

∑
p≤2X

log p

p+ 1

∞�

−∞
g(τ)

∞∑
l=1

p−l · p−4πiτl/log(
√
DX) dτ.
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Sum the geometric series to get

4

log(
√
DX)

∑
p≤2X

log p

p+ 1

∞�

−∞
g(τ)(p1+4πiτ/log(

√
DX) − 1)−1 dτ.

We claim we can extend the p-sum by putting in the primes p > 2X at a cost
of another error no worse than O(X−0.999). This is because the summands
are O(log(p)/p2) and g is bounded. So we are claiming∑

p>2X

log p

p2
× bounded�

∑
n>2X

log n

n2
� X−0.999,

by the integral test. Since this depends on max g, we should really keep track
of this as well, but the X−0.999 is so small we will just ignore it. The resulting
p-sum is A′(2πiτ/log(

√
DX)). As before, the imaginary part is orthogonal

to g.

Remark. The function A′(r) arises from a derivation of 1-level den-
sity via the L-functions Ratio Conjecture (see [14] where the notation is
A′D(r, r)).

Lemma 10. We have

4

log(
√
DX)

∞�

−∞
g(τ) Re

[
A′
(

2πiτ

log(
√
DX)

)]
dτ

= 4
ζ ′(2)

ζ(2)

ĝ(0)

log(
√
DX)

+O

(
1

log(
√
DX)2

)
.

Proof. The proof is similar to that of Lemma 8, but is in fact easier as
the series A′(r) is absolutely convergent when r is purely imaginary, and
bounded by A′(0), since for |z| = 1,

|pz − 1| ≥ p− 1,

and

A′(0) =
∑
p

log p

p2 − 1
= −ζ

′(2)

ζ(2)
≈ 0.569961 . . . .

We break A′(r) into the sum of two terms:

A′(r) = −ζ
′

ζ
(2 + 2r) +

(
A′(r) +

ζ ′

ζ
(2 + 2r)

)
,

and let Rem(r) denote the term in parenthesis above.

Remark. The sum over primes in Rem(it) converges no slower than∑
p log(p)/p3. Furthermore the term in the sum corresponding to a prime p

is periodic and equal to 0 whenever t log(p)/2π is an integer, so we expect
there is a lot of cancellation in the sum. Figure 2 shows a graph comparing
Re[(ζ ′/ζ)(1 + 2it)], Re[−(ζ ′/ζ)(2 + 2it)] and Re[Rem(it)] for 0 ≤ t ≤ 20.
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5 10 15 20

-0.5

0.5

1.0

1.5

Fig. 2. Re[(ζ′/ζ)(1+2it)] (solid), Re[−(ζ′/ζ)(2+2it)] (dashed), and Re[Rem(it)] (dotted)
for 0 ≤ t ≤ 20.

6. The sum over odd powers of primes. Throughout we let 1 be the
trivial character modulo 4 and χ(n) be the non-trivial character modulo 4:

1(n) =

{
1 if n ≡ 1, 3 mod 4,

0 if n ≡ 0, 2 mod 4,
χ(n) =


1 if n ≡ 1 mod 4,

−1 if n ≡ 3 mod 4,

0 if n ≡ 0, 2 mod 4.

Lemma 11. For an odd prime p,

(22)
∑

odd f∈F(X)

χf (p)�ε τ(D)(X1−ε2 +X1/2p1/8+ε/2),

where τ(D) denotes the number of divisors of D, and the implied constant
depends only on ε.

Proof. First note that by the triangle inequality, it suffices to prove the
bound for 0 < |f | ≤ X rather than f ∈ F(X). Separating the odd positive
and odd negative fundamental discriminants, we have a sum of two terms
(choosing + or − consistently below)∑

0<f≤X
±f odd fund.

(f,D)=1

χ±f (p) =
1

2

∑
0<f≤X
(f,D)=1

f square free

(
±f
p

)
(1(f)± χ(f)).

The possible choices of +, −, 1 and χ lead to four terms all with the same
analysis; we will consider the one involving − and χ. Ignore the constant
(−1/p)/2, and write the characteristic function of square free integers f
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prime to D as ∑
l2|f

µ(l)
∑
t|(f,D)

µ(t).

Observe that the contribution of f is 0 unless f is odd, thus (since t |D) we
may assume t is square free, and writing f = ut we may assume l2 |u, or
u = l2k. Thus we have∑
0<f≤X
(f,D)=1

µ2(f)

(
f

p

)
χ(f) =

∑
t|D

µ(t)

(
t

p

)
χ(t)

×
∑

0<l≤(X/t)1/2
µ(l)

(
l2

p

)
χ(l2)

∑
0<k≤X/tl2

(
k

p

)
χ(k).

To summarize our progress, we can bound our sum with∑
t|D

∑
l<(X/t)1/2

a character sum mod 4p of length
X

tl2
.

Since we need to consider p as large as (
√
DX)σ, and hope for σ > 1, this

is a short character sum. The Burgess bound [10, (12.57)] gives∑
0<k≤X/tl2

(
k

p

)
χ(k)�ε

(
X

tl2

)1−ε2

as long as X/tl2 > p1/4+ε. We proceed by breaking the sum on l at the point
where we must fall back on the trivial bound instead, giving∑

t|D

∑
l<(X/tp1/4+ε)1/2

(
X

tl2

)1−ε2

+
∑
t|D

∑
(X/tp1/4+ε)1/2<l

X

tl2
.

The first double sum above looks like

X1−ε2
∑
t|D

tε
2−1

∑
l<(X/tp1/4+ε)1/2

l2ε
2−2 �ε τ(D)X1−ε2

since the sum on l is O(1). Meanwhile, the second double sum is

�
∑
t|D

X

t

(
tp1/4+ε

X

)1/2

� τ(D)X1/2p1/8+ε/2,

where the first � comes from comparing a sum to an integral.

Lemma 12. Under our hypothesis that supp ĝ ⊂ (−σ, σ), we have p <
(
√
DX)σ. Then as long as

Dσ/2 < X4−σ−16ε
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we have

(23)
∑

f∈F(X)

χf (p)�ε τ(D)X1−ε2 ,

where τ(D) denotes the number of divisors of D, and the implied constant
depends only on ε.

Proof. First, consider odd p and odd f as above. Then

X1/2p1/8+ε/2 < X1−ε2 as long as (
√
DX)σ < X(1/2−ε2)/(1/8+ε/2),

and

(
√
DX)σ < X4−16ε

suffices, by truncating the expansion of (1/2 − ε2)/(1/8 + ε/2) as an alter-
nating series.

Next, consider odd p and arbitrary f . The fundamental discriminants
with |f | < X are either odd fundamental discriminants, or of the form
−4f ′ with odd f ′ and |f ′| < X/4, or of the form ±8f ′ with f ′ odd and
|f ′| < X/8. Break up the sum into four sums accordingly, and factor a term
χ−4(p), χ8(p), χ−8(p) out of the last three. Four applications of (22) and
the above give the lemma.

Finally, consider the case p = 2. Now χf (2) = 0 unless f is odd, in
which case it depends only on f modulo 8. We proceed much as in Lemma
11, with the difference being that we use characters of the multiplicative
group modulo 8 to pick out the congruence classes 1 mod 8 and 5 mod 8.
Everything else is the same, until we reach the inner sum over 0 < k ≤ X/tl2,
where the summand now is one of the characters modulo 8 (depending
on which of the subcases of sign of f and residue class modulo 8 we are
considering). Summing this character over consecutive integers is bounded
(by 1 in fact), so we get in case p = 2 the better bound∑

t|D

∑
l<X1/2

1 = τ(D)X1/2.

7. Explicit Formula for the Dedekind zeta function. For com-
parison purposes, it will be convenient to have at hand the Explicit For-
mula in the case of ζ(s)L(s, χ−D). For consistency we will use the scale
log(
√
DX)/2π for the zeros. (Of course the X is here meaningless; we in-

clude it only to be able to relate results to the previous sections.)

Theorem. Let g be an even Schwartz test function such that ĝ has com-
pact support. We have
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2

∞∑
k=1

∑
p

(1 + χ−D(p)k) log p

pk/2 log(
√
DX)

ĝ

(
log pk

log(
√
DX)

)
+
∑
γ

g

(
γ

log(
√
DX)

2π

)

=
log(D/π2)

log(
√
DX)

∞�

−∞
g(τ) dτ

+ 2g

(
i

2

log(
√
DX)

2π

)
− 2g

(
i(1/2− δ) log(

√
DX)

2π

)

+
1

log(
√
DX)

∞�

−∞
g(τ) Re

[
Γ ′

Γ

(
1

4
+

iπτ

log(
√
DX)

)

+
Γ ′

Γ

(
3

4
+

iπτ

log(
√
DX)

)]
dτ.

The contributions of the pole of ζ(s) at s = 0, 1 and the Landau–Siegel
zero of L(s, χ−D) at s = δ, 1− δ appear on the right side above. The results
of §4 carry over exactly for the Gamma factors. The sum over primes is
again separated into odd and even terms, and the even terms are exactly
(as there is no f contribution) the previously seen

Seven;1 =
−2

log(
√
DX)

∞∑
n=1

ΛD(n)

n
ĝ

(
2

log n

log(
√
DX)

)
.

The corresponding results of §5 carry over exactly. We rearrange to isolate
the sum over odd powers of primes, and the zeros other than the Landau–
Siegel zero. The point here (and the reason we included the X scaling factor)
is that the sum over odd powers of primes is exactly as before, missing only
the sum over twists f . If we assume the only zeros of ζ(s)L(s, χ−D) off the
critical line are real, and that g is positive, we can then estimate the sum
over the odd powers. This gives

(24) 2

∞∑
l=0

∑
p

λ(p) log p

p(2l+1)/2 log(
√
DX)

ĝ

(
log p2l+1

log(
√
DX)

)
+
∑
γ

g

(
γ

log(
√
DX)

2π

)

=
log(D/π2)

log(
√
DX)

ĝ(0)− g(0)

+
1

log(
√
DX)

∞�

−∞
g(τ) Re

[
Γ ′

Γ

(
1

4
+

iπτ

log(
√
DX)

)

+
Γ ′

Γ

(
3

4
+

iπτ

log(
√
DX)

)]
dτ
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+
2

log(
√
DX)

∞�

−∞
g(τ) Re

[
ζ ′

ζ

(
1 +

4πiτ

log(
√
DX)

)
+
L′

L

(
1 +

4πiτ

log(
√
DX)

, 1D

)]
dτ

+ 2g

(
i

2

log(
√
DX)

2π

)
− 2g

(
i(1/2− δ) log(

√
DX)

2π

)
.

Via the results of Lemmas 6–8, the two integrals on the right side above are

2

(
C − log 8 +

∑
q|D

log q

q + 1

)
ĝ(0)

log(
√
DX)

+O

(
1

log(
√
DX)2

)
.

The terms arising from the pole and the Landau–Siegel zero can be expressed
as

2g

(
i

2

log(
√
DX)

2π

)
− 2g

(
i(1/2− δ) log(

√
DX)

2π

)
= 2

σ�

−σ
ĝ(u)(exp(−(1/2) log(

√
DX)u)− exp(−(1/2− δ) log(

√
DX)u)) du.

We bound ĝ(u) by max ĝ, and compute the integral of the exponentials. The
contribution of the endpoint +σ tends to 0 as

√
DX → ∞ and we neglect

it, to get the bound

� max ĝ · (
√
DX)σ/2

log(
√
DX)

(
1− exp(−δ log(

√
DX)σ)

1− 2δ

)
= max ĝ · (

√
DX)σ/2

log(
√
DX)

· ((σ log(
√
DX)− 2)δ +O(δ2))

∼ σmax ĝ · (
√
DX)σ/2 · δ.

To summarize, (24) looks like

log(D/π2)

log(
√
DX)

· ĝ(0)− g(0) +O(σmax ĝ · (
√
DX)σ/2 · δ)

+ 2

(
C − log 8 +

∑
q|D

log q

q + 1

)
ĝ(0)

log(
√
DX)

+O

(
1

log(
√
DX)2

)
.

Note that
log(D/π2)

log(
√
DX)

=
1 + logD π

2

1/2 + logDX
= 2 +O(logDX).

8. Appendix: Notes towards Hypothesis H. In this appendix we
adapt some ideas of Yoshida [30] to indicate how a Landau–Siegel zero of
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L(s, χ−D) (or equivalently, the lacunarity of the sequence λ(p) = 1+χ−D(p))
would tend to push low-lying complex zeros of L(s, ψ ⊗ χf ) towards the
critical line.

For our test function pair g, ĝ we can also define

M(ĝ)(s) =

∞�

−∞
ĝ(u) exp((s− 1/2)2πu) du,

so that
g(t) =M(ĝ)(1/2 + it)

is the inverse Fourier transform. To ease notation, it will be convenient to
think of ĝ = h as the original function, g = ĥ as the transform. For generic h,
Yoshida denotes ȟ(x) = h(−x), and h̃(x) = h(−x). Convolution as usual is
defined by

h1 ∗ h2(x) =

∞�

−∞
h1(x− y)h2(y) dy.

For ρ in C, let hρ(x) denote h(x) exp(−2πρx). One easily verifies that

M(ȟ)(s) =M(h)(1− s),
M(h̃)(s) =M(h)(1− s),

M(h1 ∗ h2)(s) =M(h1)(s)M(h2)(s),(25)

M(hρ)(s) =M(h)(s− ρ).(26)

Suppose now that ρ0 is a complex zero of L(s, ψ ⊗ χf ) which is off the
critical line. Thus

ρ0, 1− ρ0, ρ0, 1− ρ0
are all distinct. Choose test functions h0 and h′0 so that

M(h0)(ρ0) =M(h0)(1− ρ0) =M(h0)(1− ρ0) = 0,

M(h′0)(ρ0) =M(h′0)(1− ρ0) =M(h′0)(1− ρ0) = 0,

M(h0)(1/2) = 0 =M(h′0)(1/2).

(We can take any choice of test function with a zero at some point, and use
(26) to shift that zero to an arbitrary point. A quadruple convolution and
(25) will then force four zeros.) Normalize h0 and h′0 so that

M(h0)(ρ0) = 1 =M(h′0)(ρ0).

(We would like to choose ‘bump functions’ M(h0) and M(h′0) with their
mass concentrated at ρ0 and ρ0; more on this later.) Define

h = h0 − h′0 + ȟ0 − ȟ′0,
so h is even. Our test function will be h ∗ h̃, which is also even. Define

Φ(s) =M(h ∗ h̃)(s) = M(h)(s) ·M(h)(1− s),
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by (25). Thus

Φ(ρ0) = (1− 0 + 0− 0) · (0− 0 + 0− 1) = −1,

and similarly Φ = −1 at ρ0, at 1 − ρ0, and at 1 − ρ0. (On the other hand,
for any ρ on the critical line, 1 − ρ = ρ and thus Φ(ρ) = |M(h)(ρ)|2 ≥ 0.
But if Φ is a ‘concentrated’ enough bump, these will not contribute much.)

Observe that

h ∗ h̃(0) =

∞�

−∞
h(−y)h̃(y) dy =

∞�

−∞
|h(y)|2 dy > 0,

as h is even. We see that

h ∗ h̃(x) =

∞�

−∞
h(y − x/2)h(y + x/2) dy = o(1) for x� 0,

since h has rapid decay, and thus the large primes contribute little. On the
other hand, by the lacunarity of λ(p), the small primes should not contribute
much either. The explicit formula looks like

−4 + small error from zeros on critical line

= (h ∗ h̃(0) > 0) + small error from primes,

a contradiction.

Remark. Where do we use that ρ0 is ‘low-lying’? The point is that the
support of the original test function α0 is compact, but the more convolu-
tions we form, the more the support is spread out. The number of convolu-
tions M(ρ0) depends on the density of zeros near ρ0, which in turn depends
on the height Im(ρ0) of ρ0. But if the support of α becomes too large, the
lacunary nature of λ(p) disappears.

Remark. This is not quite the right test function. Since α is 1 at ρ0 and
small elsewhere, its L2 norm is small, and so is the L2 norm of the transform
by Plancherel. Thus we end up with ‘small negative = small positive, thus
(small) contradiction.’ It would be better to renormalize so that, perhaps,
the L2 norm is 1.
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