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1. Introduction. More than 100 years ago, Hurwitz determined the
number of ways a square can be expressed as a sum of five squares:

THEOREM 1.1 (Hurwitz). Let n be a positive integer with prime factor-
1zation n = prAP. Then the number of solutions in integers of

2 2 2 2 2 2
$1+$2+x3+$4+$5:n

23)\2+3 -1 3Ap+3 _ 1 3p _ 1
10( 25 -1 )H<pp3—1 _ppp3—1 )
p=3
See [6], [11, p. 311] or [12] for more details. The goal of this work is to
state and prove the following three analogues of Hurwitz’s theorem.

is given by

THEOREM 1.2. Let n be a positive integer with prime factorization n =
Hp p*». Then the number of solutions in integers of

x%—i—x%—l—m%%—xi—i—Qw% =n?
s given by
3Ap+3 3\
preTe —1 2\ pr -1
0o I (= () 5
Sz \ P p) p
where
8 if n is odd,
— 23>\2+1 5
c(A2) 24(23_—1F> if n is even,
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and the values of the Legendre symbol (}%) for primes p > 3 are given by

2\ [1 ifp=1or7 (modS8),
<p>_{—1 if p=3 or5 (mod 8).

THEOREM 1.3. Let n be a positive integer with prime factorization n =
pr)‘l’. Then the number of solutions in integers of

x] + 23 + 23 + 23 + 328 = n?

s given by
. 923X2+2 +3 36-33% — 10 H p3>\p+3 -1 B % p3)\p -1
23 1 -1 )P P\p) P—1

where the values of the Legendre symbol (%) for primes p > 5 are given by
3Y [1  difp=1orll (mod 12),
p) -1 if p=5 or7 (mod 12).

THEOREM 1.4. Let n be a positive integer with prime factorization n =
pr)‘P. Then the number of solutions in integers of

x%+w%+x§+2xi+3x§:n2

s given by
23)\2+3 —15 ‘ <33)\3+2 4 4) H <p3)\p+3 -1 (6>p3)\p _ 1>
Y () |
3 _ 3 _ 3 _ 3 _
2 1 3 1 e p 1 p) p 1
where the values of the Legendre symbol (g) for primes p > 5 are given by

(6) B { 1 if p=1, 5, 19 or 23 (mod 24),
p) -1 if p=7,11, 13 or 17 (mod 24).

Theorems (1.2 and [1.3| are analogues of results for n? = 22 + 23 + 223 and
n? = 2% + 23 + 322 that have been studied recently in [10]. Theorems
and were discovered by computer investigation, and an experimental
search for other examples was performed. This yielded 15 additional results.

This work is organized as follows. In Section [2| we define some notation
and list some preliminary results for theta functions. A proof of Theorem
is given in Sections [3] and [4} the primes p = 2 and p = 3 are handled in
Section [3land the remaining primes p > 5 are treated in Section[d The proof
of Theorem is given in Section [p} It is similar to, but simpler than, the
proof of Theorem The proof of Theorem [I.4]is given in Section [6] It is
also similar to the proof of Theorem[1.3] The 15 additional results discovered
by computer search are presented in Section [7] All can be deduced fairly

simply from one of Theorems or

12
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2. Notation and background results. The theta functions ¢(q), ¥ (q)
and X (q) are defined by

[e.o]

@)=Y ¢, v@=> ¢U? and X(g)= > ¢,

j=—00 j=0 j=—00

and for any positive integer k we define oy, ¥ and Xj by

(2.1) or =¢(d"), Yr=v(d") and X; = X(¢").

For positive integers a, b, ¢, d and e and for any nonnegative integer n let
T(ab,c,d,e) () denote the number of solutions in integers of

ax? + bx3 + cx3 + doi + ex? =n.

Clearly,

D rapede(ma™ = o(@)e(@")e(a)e(q)e(6?) = Paprpepape.
m=0

We will need

LEMMA 2.1. Let @i, ¥ and Xy be the theta functions defined by (2.1)).
Then

p11h2 = i
The following dissections into even and odd parts hold:
1 = 4+ 2qys, T = paths + 2qhatls,
PF = 05 + 4907, U1s = petha + gpatdia.
Moreover,
(2:2) P1 = 9 + 29 X3
and
(2.3) Baps X7 = ¢l — ¢5.

Proof. The first result is given in [3, p. 40]. The dissections into even
and odd parts are (i), (ii), (xiii) and (xxxiii), respectively, in [9]. The last
two identities are (v) and (vi) in [9]. =

In addition to the Legendre symbols (%), (%) and (g) given in Theorems
1.4] we shall also need values of Jacobi symbols, defined for any positive
integer m by
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1  ifm=1or3 (mod8),
{1 if m=5or 7 (mod 8),
otherwise,
1 ifm=1(mod 3),
{ —1 if m =2 (mod 3),
0 otherwise,
1 ifm=1(mod4),
{ —1 if m =3 (mod 4),
otherwise,
1 ifp=1,5, 19 or 23 (mod 24),
{ -1 ifp=7, 11, 13 or 17 (mod 24),
otherwise,
1 ifm=1or 1l (mod 12),

(jj) = (;3) (;:1) = ;1 if m =5 or 7 (mod 12),

otherwise.

3. Proof of Theorem [1.3t Part 1. In this section we will establish
the parts of the formula in Theorem that involve the primes 2 and 3.
We begin with the prime 2.

LEMMA 3.1. Fiz an odd integer j. For any nonnegative integer k let

f(k) = 7‘(1,1,1,1,3)(22kj2)~

Then
(3.1) flk+2)=9f(k+1)—8f(k),
(3:2) £(1) = 51(0).
Hence,
3k+2
(33 1= (2= ) o

Proof. By Lemma [2.1] we have

P1es = (pa + 2q¥s) (P12 + 2¢°21).

Expanding, extracting the terms of the form ¢**, and then replacing ¢
with ¢ we deduce

4

o0

(3.4) Z ra11,1,3)(An)q" = @les + 16qpiarse + 16q5 03,

n=0
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An+1

while a similar process applied to the terms of the form ¢ leads to

[e.9]

(3.5) Z T(1,1,1,1,3)(4n + 1)¢" = 8(p3paips + 6qpiY3ag).

n=0

Next, applying Lemma to (3.4) gives

(3.6) Z 7(1,1,1,1,3)(4n)q" = (pa + 2qv8) (@12 + 2¢324)
=0 + 16q(p4 + 2q108)° (91298 + ¢°Pathas)
+ 16q(psths + 2¢*Parb16)* (12 + 2¢°24).

On extracting the terms of the form ¢** and then replacing ¢* with ¢ we
find that

[e.e]

> r11,,3) (16n)g™ = plos+112q0athe+144q5 03+ 32q0T 6 (03 +4q13).

n=0
Similarly, extracting the terms of the form ¢*"*! in (3.6)) and then replacing
¢* with ¢ leads to

o0

> r,,3)(16n + 4)g" = 240303 + 240007516 + 1697 03(03 + 4qv3).

n=0

On applying Lemma the two equations above simplify to

B7) Y raniis (160)q" = wles + 14dgpdiais + 144quips
n=0
and
(3.8) Z r(1,1,1,1,3) (160 + 4)g™ = 40(@Fbaps + 6qpT31e),
n=0

respectively. From (3.4)) and (3.7) we deduce that

o o
Z 7(1,1,1,1,3)(16n)¢" =9 Z r1,1,1,3)(4n)g" — 8¢lps
n=0 n=0

and this implies (3.1)). From (3.5 and (3.8) we deduce that
7(1,1,1,1,3)(16n +4) = 511 1 1.1,3)(4n + 1)

and this implies (3.2)). Finally, (3.3)) follows from (3.1)) and (3.2)). =

In preparation for the result involving the prime 3 we will need:
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LEMMA 3.2. The following identities hold:

o0

(3.9) Z 7(1,1,1,1,3) (3n)q" = 480? - 3901<P§7
=0
oo
(3.10) Z r(1,1,1,1,3)( = 37¢}p3 — 3643,
o0
(3.11) > raa,)(27n)g" = 11207 — 111145,
n=0
o0
(3.12) D 1,3 (81n)g" = 1009¢1 @3 — 100845
n=0
Proof. We utilize the last two parts of Lemman By ([2.2)) we have
o
> raas (g = les = (0o +20X3) s
n=0

On expanding, extracting the terms of the form ¢>” and then replacing ¢*
with g we get

oo

> raa1Bn)0" = 0301 + 32003 X701 = 47 — 3o,

n=0
where (2.3)) was used for the last step. This proves the first result. The others
can be obtained in succession by applying the same procedure; we omit the
details. m

LEMMA 3.3. Fix an integer j that is not divisible by 3. For any nonneg-
ative integer k let

g(k) = 111113 (3%57).

Then
(3.13) g(k +2) = 28¢(k + 1) — 27g(k),
(3.14) g(1) = 37¢(0).
Hence,
.33k _
(3.15) o) = (B )ato)

Proof. From (§3.10) and (3.12) we have

o0

o
Z 7(1,1,1,1,3)(81n)q" = 28 Z 7(1,1,1,1,3)(9n)q" — 27103
n=0 n=0
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and this implies (3.13)). Next, by (3.10) we have

[e.9]

ZT(1,11,13) (9n)q —372 r(1,1,1,1,3)(n)¢" — 3643.
n=0

Equating the coefficients of ¢3”*! on both sides we deduce that
7(1,1,1,1,3)(2Tn +9) = 37r(1 11,13 (3n + 1)

and this implies (3.14)). Finally, (3.15]) follows from (3.13)) and (3.14)). =

From Lemmas [3.1] and [3.3] we immediately deduce:

PROPOSITION 3.4. Let n be a positive integer with prime factorization
n = Hp)"’ =2%3%m  where m = Hp)‘p.
p p>5

Then the number of solutions in integers of

x] + 73 + 23 + a3 + 322 = n?

s given by

oy (2222 43N (3633 — 10 2
7(1,1,1,1,3) (n) = 23 _ 1 3P _1 T(1,1,1,1,3) (m*).

It remains to determine the value of r(1’171’173)(m2) in the case that
ged(m, 6) = 1. This will be done in the next section.

4. Proof of Theorem [1.3} Part 2. In this section we will prove:

PROPOSITION 4.1. Let m be a positive integer that is relatively prime
to 6 and has prime factorization

m =[] ™

p=>5

3Ap+3 3\
9 preTe —1 3\pr -1
r (m*) =8 (—p() .
(171717173) Ig p3 _ 1 p p3 _ 1

Note that Propositions [3.4] and [4.1] immediately imply Theorem [1.3]

In order to prove Proposition we will need some background infor-
mation and several lemmas. Let f1, fo, f3, f4 be the infinite products defined
by

Then
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o0

(1—=¢¥)*(1—¢*)*(1 — ¢¥)(1 — ¢'%)
H (1—¢g7)? ’

_ H (1-¢)*(1 —¢")(1 - ¢¥)*(1 - ¢"¥)

(- P /

o =) (1= ¢¥)(1 = ¢¥)(1 - ¢!¥)?
a H (1—q%)? ’

00 1_] 37 1— 4j21_ 672
U ¢) A —q”)A —g7)"(1 — ¢*)"

(1= ™)

Let their series expansions be given by

(4.1) filg) = i ai(n)q",  faq) = i az(n)q",  fi(q) = i az(n)q"
and - - -

(4.2) falq) = — i as(n)q

where -

a1(0) = az(0) = a3(0) =0 and ay4(0)=—1.

The reason for the negative sign in the definition of a4(n) in (4.2)) is that
Lemma below will hold for this sequence; see also (4.6)).

For j € {1,2,3,4}, define Aj(n) by

ZA )" _<Zaj )

The next three lemmas involve the functions fi, fa, f3, f4 and their series
expansions.

LEMMA 4.2 ([8, Cor. 4.6]). The following identity holds:

©*(q)0(q®) = 6£1(q) — 2f2(q) + 3f3(q) + fa(q).

LeMMA 4.3 ([I, Theorem 3.1] or [8, Theorem 4.1 and Remark 4.2]). Let
n be any positive integer with prime factorization

n=2"3%m  where m= Hp’\P.
p=5
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Then

(4.3) a1 (n) = 2223%a,(m),

(4.4) as(n) = 22 (— 1)} (;j’) a1(m),
(4.5) asg(n) = 3’\3(—1))‘#)‘3 <;;1> ay(m),
(16) aali) = (12 )aa(m)

where

m (12 p —\%
(4.7) ai(m) = Zd(d) = ];[5 p— (2

dm

LEMMA 4.4. For any positive integer k let

Then

(4.8)  6fF —2f3 +3f5 — fi
= 55(Q1 + Q2+ 9Q3 — 32Qu + 9Qs — 288Q12) + Le(q)

where
H (1—¢)*(1 = ¢¥)*(1—¢¥)*(1 — ¢)°
+2q2H 1= )2 (1= ¢")*(1 = ¢¥)*(1 - ¢'%)?
and e(q) is an odd functzon.

Proof. The identity (4.8) follows from the two-variable parameteriza-
tions in [2), Sect. 3]. Since

ﬁ (1—q¢%)3
(L~ )1~ )’

1:18

the identity e(q) + e(—¢) = 0 to be shown is

—

(1—¢")*(1 = ¢7)*(1 = ¢¥)*(1 — ¢¥)?

.:8

1

J
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ﬁ (1 - )31 - g")"
(=@ P =71 = 71— )

+ 44 H 1— g7 (1—¢")*(1—¢¥)*(1—¢"¥)* =0.
j=1
This follows from the two-variable parameterizations in [2, Sect. 3]. m

LEMMA 4.5. Let m be a positive integer relatively prime to 6 with prime

factorization
w0
p=5

Let c¢(m) be the coefficient of ¢*™ in
6ff —2f3 +3f5 — fi.

—82d3—8Hp

dlm p=>5

Then
3Ap+3 _

Proof. This follows immediately from Lemma [£.4] for the only term on
the right hand side of (4.8)) that contains terms of the form ¢'%/%2 or ¢!2/+10

is (Ql + QQ)/?)OO n

LEMMA 4.6. Let j € {1,2,3,4} and let a;(n) be defined by (A.1) and
(4.2), or equivalently, by (4.3)-(4.7). For any nonnegative integer n and
any prime p we have
(4.9) aj(pn) = a;(p)a;(n) — x(p)a;(n/p)
where x is the completely multiplicative function defined on the positive in-
tegers by

(4.10) X(r) = 7~<1T2>

and a;(x) is defined to be 0 if x is not an integer.

Proof. The result follows from (4.3)—(4.7)) on checking each of the four
functions separately, and considering the cases p = 2, p = 3 and p > 5 one
at a time. The details are straightforward and we omit them. =

The next result is due to Hurwitz.

LEMMA 4.7 ([I3], Sect. 2]). Suppose that a(n) is a function, defined for
all nonnegative integers n, that has the property

n

(4.11) a(pn) = a(p)a(n) — x(p)a<p)
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for all primes p, where x is a completely multiplicative function. Then the

coefficient of q”2 m
(0.9}

( > qu) (ia(k)qk)

j=—00 k=0

is equal to
> 4%t

where p is the Mébius function, A(n) is defined by

o0

S A = (3 ak)e")’
n=0

k=0

and A(x) is defined to be 0 if x is not a nonnegative integer.

Proof of Proposition 4.1, Let [¢*]f(q) denote the coefficient of ¢* in the
Taylor expansion of f(g). In this notation,

T(1,1,1,1,3)(m2) = [qmg](soéll%)-
By Lemma and and , this is
rais(m?) = [0 1((@)(6£1(a) - 2f2(q) + 3f3(a) + fa(a))
= 6[g"™] <<P(Q) > al(j)qj) — 2[¢™"] (@(q) > az(j)qj)
j=0 J=0

#3071 (000 Y as(0)e’) ~ 7] ((0) - aa(i)e)
j=0

=0
By Lemmas [4.6] and [£.7] this is equivalent to

Fun (m?) = 6 i A (2 ot -2 2 Ao )t
+3 i As (in) x(r)p(r) — i Ay (2:1> x(r)p(r)
= =

= N1 — 263 + 313 — FIX(r)u(r),
r=1

where x(r) is the completely multiplicative function defined by (4.10])). Since
x(r) = 0 if r is even, the last sum is over odd r only. Moreover, since m is
relatively prime to 6, we may apply Lemma to deduce that
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rnns ) = 3 clm/rxruer) = em) 3 X )
r=1

= e(m) ] (1 ) )

p>5

3Ap+3 3\
PP 12\ p°r —1
(I (T (- () s
p>5 p>5 p/prrt =1
3Ap,+3 3\
poreTe —1 3\pr—1
:8H<31—P<>31 ..
S\ P p) p3—

5. Proof of Theorem In this section we will outline the proof of
Theorem We require four lemmas:

LEMMA 5.1 ([7, Theorem 3.2]). The following identity holds:
P*(0)p(d?) = p(=a)e(=a*)*(—a") + 8a¥* (@) (a*) ¥ (¢").

LEMMA 5.2. The following series expansion holds:

g (@) (e") =D a(i)d
j=1

where
Ap+l (2) Ap+1
P

a() =2 ] "

2
s P (5)
Proof. This follows from [7, Lemma 4.1]. =
LEMMA 5.3 ([B, pp. 36, 40]). The following theta function identities hold:
¥?(q) — ¢ (—q) = 1649°(¢"),
r (1—¢/)? 1 (1—¢%)?
o(—0) =] (Gl D 11 U-a')

— 27’ —qJ
j:llq j:llq

and j =[], p"

LEMMA 5.4. Let j be an odd positive integer with prime factorization
i=1Ir"
p>3
Denote the coefficient of ¢% in q®(q) by c(j). Then

_8Zd3_8Hp3,\p+3

dlj p>3 PP -1

Proof. This follows from the sum of 8 triangular numbers formula; see
e.g. 5, p. 139]. »
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We are now ready for

Proof of Theorem [1.3. Let m be an odd integer. For any nonnegative
integer k let

f(k) = 7“(1,1,1,1,2)(2%7”2)
By the methods in Section [3] we may deduce that
f(k+2)=9f(k+1)—8f(k) fork>1,
f()=9f(0),  f(2) =57f(0),
and it follows that
93k+1 4 5

(5.1) F(k) :3< T )f(o) for k > 1.
It remains to determine f(0), that is, 711112 (m?). By Lemmawe have

r(1,11,1,2)(m?)
= [¢" (" (@)e(d))
= [1" ) (p(@)e(—)p(—a*)p* (")) + 8[a™ ) (ap (@) (@) (a®)v(qh).

The first term on the right hand side is zero because m is odd and because
0(@)p(—q)p(—¢*)p?(—q?) is an even function of g. Therefore,

ran e (m?) =801 (p(@) Y ati)e’)

j=1
where the value of a(j) is given by Lemma By Lemma {4.7| with x(p) =
p(%) we deduce that

(5:2)  raa)m?) =8 [P (@) (¢ (¢*)x(r)u(r).

r=1
Since m is odd and x(r) = 0 for r even, the sum in (5.2) is over odd r only.
Hence, we are only concerned with even powers of q. By Lemma [5.3

8¢°Y (q)¥* (¢*)Y*(q") = 8qv* (9)v*(¢*)(¥*(q) — ¢*(—q))
= q®(q) —q]J(1 - &) (1 = ™)™
j=1

Therefore, from (5.2) we deduce that

o0

raaa(m?) =Y 1@ (@)x(r)ulr) =Y elm/r)x(r)u(r)

r=1 r|m

where the value of ¢(j) is given by Lemma The remainder of the proof
follows the final steps of the proof of Theorem at the end of Section [
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but with (%) in place of (?2) and the final result is

3Ap+3 3\
9 preTe —1 2\ p>r —1
T(1,1,1,1,2 (m*) = <—p<> .
( ) pl:[3 p?—1 p) pP—1

On combining this with (5.1) we complete the proof of Theorem n

6. Proof of Theorem [1.4]} In this section we will outline the proof of
Theorem [1.4] The proof is similar to the proof of Theorem [1.3] The main
difference is that whereas the functions fi, f2, f3, f4 used in Sectlon [] are
single infinite products, the corresponding functions we shall encounter in

this section are sums of four infinite products. We rely on some recent results
of [].
The two lemmas below may be deduced by the methods of Section

LEMMA 6.1. Fiz an odd integer j. For any nonnegative integer k let
f(k) = 7”(1,1,1,2,3)(22kj2)'
Then
f(k+3)=9f(k+2)=8f(k+1), [f(1)=7f(0), [f(2)=T1f(0).

Hence,
23k+3

(6.1) fk) =

]

LEMMA 6.2. Fix an integer j that is not divisible by 3. For any nonneg-
ative integer k let

g(k) = T(1,1,1,2,3)(32kj2)-

Then
g(k+2)=28g(k+1)—27g(k) and g(1)=19¢(0).
Hence,
3k+2
(6:2) o) =25 )a(0),

From Lemmas [6.1] and [6.2] we immediately deduce:

PROPOSITION 6.3. Let n be a positive integer with prime factorization
n= Hp)"’ =2%3%m  where m = Hp/\p
p p>5

Then the number of solutions in integers of

x%+m%+x§+2xi+3x§:n2
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is given by

23/\2+3 —15 33/\3+2 +4 )
23— 1 7 )i (m).

It remains to determine r(; 11 23)(m?) in the case that ged(m,6) = 1.

7(1,1,1,2,3) (”2) =
PROPOSITION 6.4. Let m be a positive integer relatively prime to 6 with
prime factorization
m = H p)‘p.

p>5

3Ap+3 3\
9 perrTe — 1] 6\p’tr—1
T (m°) =6 (—p() .
(1717172»3) I)ré[5 p3 _ 1 p p3 _ 1

Note that Propositions [6.3] and [6.4] immediately imply Theorem [1.4]
To prove Proposition [6.4, we will need some relevant lemmas. Let

Then

£1(a) = 2olpaps + L1306 — Lo10306 — 2200308,
f2(q) = — 5030203 + P10506 + 3P19596 — P2P39E,
f3(q) = — 1010203 + 10190506 + §P19506 — S020308,
f1(q) = 3070203 + P103%6 — 5019306 — 3020305,
where @y, is given by . Let their series expansions be given by

(6.3) file) =Y ai(n)g", falg) =D as(n)g",
n=0 n=0

(6.4) fa(@) =Y _as(n)g"  falg) =Y as(n)q",
n=0 n=0

where

a1(0) = a2(0) =a3(0) =0 and a4(0) = —3.
For j € {1,2,3,4}, define A;(n) by
oo o0 2
> A" = (D as(ma”)
n=0 n=0
LEMMA 6.5 ([4, Th. 4.1 and Section 4]). The following identity holds:
P (@)e(a®)e(@’) = 4f1(q) = F2(a) + 3.f3(0) = 3fala).

LEMMA 6.6 ([4, Section 4]). Let n be any positive integer with prime
factorization

n=223%m  where m= Hp’\p.
P25
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Then

(6.5) a1(n) = 2*23%a;(m),

(6.6 oali) = (-3 (22 Jar ),
(6.7 as(n) = (~1)22 (;f’)<m>
(6.8) as(n) = <§L>a1(m),

where

B T 9 B p)\p—i-l - (g)Ap-‘rl

(6.9) al(m)_dlzm d(d) _}1;[5 p_(%)

LEMMA 6.7. Define
elq) = (4ff = 3+ 513 — 517
— (35Q2 — 35Q1 — 15Q6 + 2Qs + 55Q12 — 2 Qa4),
where Q. is defined in Lemma . Then e(q) is an odd function.

Proof. The equality e(q) + e(—¢q) = 0 follows from the two-variable pa-

rameterizations of ¢(q), ¢(¢*), ¥(¢*), ¥(¢°), ¢(—q), p(—¢*) and Q) for
k€ {2,4,6,8,12,24} in [3|, Lemma 3.1] and [I, Theorems 2.4 and 2.5]. =

LEMMA 6.8. Let m be a positive integer relatively prime to 6, with prime

factorization
m = H p)‘p

Let c(m) be the coefficient of ¢*™ in
i - f+ 505 - 5hE

—6Zd3—6Hp

dm p>5

Then
3Ap+3 _

Proof. This follows immediately from Lemma [6.7] for the only term in
ﬁ@g — 2%Q4 - 4%@6 + %Qg + Q%Qu — %Q% that contains terms of the form
q12j+2 or q12]+10 is Q2/40- -

LEMMA 6.9. Let j € {1,2,3,4} and let a;j(n) be defined by (6.3) and
(6.4), or equivalently, by f. For any nonnegative integer n and
any prime p we have

(6.10) aj(pn) = a;(p)aj(n) — x(p)aj(n/p)
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where x is the completely multiplicative function defined on the positive in-
tegers by

(6.11) () = 7~<6>

r

and aj(x) is defined to be 0 if x is not an integer.

Proof. The result follows from |D on checking each of the four
functions separately, and considering the cases p = 2, p = 3 and p > 5 one
at a time. The details are straightforward and we omit them. m

Proof of Proposition |6.4. Let [¢*]f(q) denote the coefficient of ¢* in the
Taylor expansion of f(g). In this notation,

raanzy (m’) = [0 (Aleaps)-
By Lemma and and , we have
raa28)(m?) = [0 (e (@f1(0) — f2(0) + §53(@) — 3/1(0))

(et L)) - ) (03 i)
= =0
+ 1107 (ol z% o) = 3 (o) Y’
=0

By Lemmas [4.7] and [6.9] this is equlvalent to

[e.9]

() = 4ZA1 (2 )xtrut) - > (2 ) xtryutr
W C S NEEET SN RETE

Z PV AR = S+ 412 = LD (),

where x(r) is the completely multiplicative function defined by (6.11]). Since
x(r) = 0 if r is even, the last sum is over odd r only. Moreover, since m is
relatively prime to 6, we may apply Lemma [6.8 to deduce that

sy (1) = 3 elm/mx ) = em) 3 L ()
r=1

c(m)
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3Ap+3 3A
porrTe —1 6\ p>r—1

(6H pP-1 )(H(l_p<p>p3kp+3—1

P=5 p=5
3Ap+3 3\
porTe —1 6\pr—1
=[] (" () ) -
PS5 pT = p) p°—

7. Further results. In this section we state 15 further results and prove
one as an illustration. Proofs for the others are similar.

THEOREM 7.1. Let a = (a1,az,as3,a4,as). Let n be a positive integer

with prime factorization
n=2"m where m= Hp)"’.
p=3
Then
ra(n®) = ca(A2)r(1,1,1,1,1)(m?)

for the values of a and ca(A2) given in Tablel The value of r(1.11,1,1(m m?)
is given by Hurwitz’s Theorem [L.1].

Table 1
a Ca
(1,1,1,2,2)  1(2272=9)
11114 % if n is odd
(1,1,1,1,4) é(i?"f;?jf%) if n is even
3 . .
2 if n is odd
(1,1,1,4,4) ;3>‘2_1 . .
55— if n is even
L1294 % if n is odd
(1,1,2,2,4) %(73'23222:2*5) if n is even
2 . .
E if n is odd
(1,1,4,4,4)  § Jaaa_y .. .
55 if nis even
a.03XAg+2
(172727272) %(322327,15)
1 . .
= if n is odd
(1,2,2,4,4) < Jwaa_y .. .
551 if nis even
% if n is odd
(1,4,4,4,4) 23xa g .. .
s if nis even

THEOREM 7.2. Let a = (a1,as,as3,aq,as). Let n be a positive integer
with prime factorization

n=2%3%¢0 where (= Hp/\f’.
p=5



Representations of squares 165
Then

Ta(nz) = ca(A2)da(A3) 7“(1,1,1,1,1)(52)

for the values of a, ca(A\2) and da(A3) given in Table |2, while the value of
7“(171’17171)(52) s given by Hurwitz’s Theorem .

Table 2

a Ca da
53\ 93XA3+2_«
(172727373) (6223,214»1) 23333,1 =

2
5
3Xo+3_ a3As
(173735373) %(2 2?3,1 1) 8?:;37314»5

THEOREM 7.3. Let a = (a1,a2,a3,a4,as5). Let n be a positive integer
with prime factorization

n=22m where m= HpAp.
p=>3

Then
ra(n®) = ca(A2)r(1,1,1,1.2)(m?)

for the values of a and ca(A\2) given in Table . The value of (1 1,1,1,2)(m?)
is given by Theorem [1.2]

Table 3
a Ca
% if n is odd
(1,1,2,2,2) { %(2;;i+16) if n is even
1 if n is odd
(1,2,2,2,4) 2 if Ay =1

93X —3 .
13 2232_1 +15 §f N, > 2

THEOREM 7.4. Let a = (a1,az,a3,a4,as). Let n be a positive integer
with prime factorization

n=2"3%0 where (= Hp)‘p.
P25

Then
Ta(nQ) = ca(A2)da(A3) 7(1,1,1,1,2) (52)

for the values of a, ca(X2) and da(\s) given in Table @], while the value of
T(1,1,1,1,2) (€% is given by Theorem .
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Table 4
a Ca da
23X2+3 _ 15 33734244
(171727373) | 23 _1 | 33 _1
1123%2+3 15 53323 18
(173737376) 2 231 331

THEOREM 7.5. Let a = (a1, as,as,aq4,as). Let n be a positive integer
with prime factorization

n=2"3%0 where (= Hpkp.
p>5
Then
Ta(”2) = ca(A2)da(A3) 7(1,1,1,1,3) (52)

for the values of a, ca(A2) and da(A2) given in Table |5, while the value of
T(1,1,1,1,3) (€%) is given by Theorem .

Table 5
a Ca da
3Xg+3 _ 23A3+2
(172,27276) %'2 23 _1 15‘ 3 33,1+4

We shall prove the case a = (1,1, 1,2, 2) of Theorem to illustrate the
technique. The proofs in the other cases are similar.

Proof of Theoremfor a=(1,1,1,2,2). Let n be any positive integer
and write its prime factorization as

n=2"2m where misodd and m = Hp’\P.

p=3
By the techniques of Section [3| we may deduce that
o
(7.1) ZT(1,1,1,1,1)(4.7 + 1)/ = 10¢1¢ + 32995,
j=0
e .
(7.2) T(11,1,2,2) (47 + )¢ = 6112 + 32q15,
§=0
o .
(7.3) > ra,22) (165 +4)¢7 = 58¢iehy + 32qy3,
j=0
o .
(7.4) Z r(1,1,1,2,2) (64 + 16)q7 = 474 ¢ + 3215,
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Moreover,
oo

(7.5) ZT' 1,1,1,22) (49 = @7 + 48qpr1¢3,
w_ .

(7.6) r(1,11,2,2)(165)¢7 = ©f + 464qp13,
j=0
e .

(7.7) > raia22)(649)d7 = @ + 3792q195.

<.
Il
o

For a fixed odd m, let
fk)=ra1,12, 2)(22km2)~
On comparing the coefficients of ¢%/ in and (| we get
%7"(1,1,1,2,2) (8j+1) =g ]¢1¢2 107(1,1,1,1 1)(&7 +1).
It follows that

F0) =ra 1122 (m®) = 2ra1110(m?)
and therefore by Hurwitz’s Theorem [I.1] we deduce that

3p+3 3A
9 p P — 1 p P — 1
(7.8) f(0) =r@ 1122/ (m”) = 6201:[3 < P_1 p P 1 >

Next, on comparing the coefficients of ¢/ in f we get
611,22 (87 + 1) = 55111122 (32 +4) = 777(1,1,1,2,2) (1285 + 16)

and it follows that

(7.9) f(1) =%f(0) and f(2)="T9f(0).

Finally, from f we deduce

2711122) 647)q’ —927“(11122) 165)¢’ —827”(11122 (45)q

and it follows that
(7.10) fk+2)=9f(k+1)—8f(k) fork>1.
The solution of the recurrence relation (7.10) that satisfies the initial con-

dition ([7.9) is given by

.93k _
(.11) 1) =3 (Z5=12) 10
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On combining (|7.8) and (7.11)) we deduce that

1]

2]

3]

26 - 23k _5 p3)\p+3 -1 p3)\p -1
2y _
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