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1. Introduction. More than 100 years ago, Hurwitz determined the
number of ways a square can be expressed as a sum of five squares:

Theorem 1.1 (Hurwitz). Let n be a positive integer with prime factor-
ization n =

∏
p p

λp. Then the number of solutions in integers of

x21 + x22 + x23 + x24 + x25 = n2

is given by

10

(
23λ2+3 − 1

23 − 1

)∏
p≥3

(
p3λp+3 − 1

p3 − 1
− p p

3λp − 1

p3 − 1

)
.

See [6], [11, p. 311] or [12] for more details. The goal of this work is to
state and prove the following three analogues of Hurwitz’s theorem.

Theorem 1.2. Let n be a positive integer with prime factorization n =∏
p p

λp. Then the number of solutions in integers of

x21 + x22 + x23 + x24 + 2x25 = n2

is given by

c(λ2)
∏
p≥3

(
p3λp+3 − 1

p3 − 1
− p
(

2

p

)
p3λp − 1

p3 − 1

)
where

c(λ2) =


8 if n is odd,

24

(
23λ2+1 + 5

23 − 1

)
if n is even,

2010 Mathematics Subject Classification: Primary 11E25; Secondary 11F11.
Key words and phrases: sum of five squares, theta function.

DOI: 10.4064/aa157-2-3 [147] c© Instytut Matematyczny PAN, 2013



148 S. Cooper et al.

and the values of the Legendre symbol
(
2
p

)
for primes p ≥ 3 are given by(

2

p

)
=

{
1 if p ≡ 1 or 7 (mod 8),

−1 if p ≡ 3 or 5 (mod 8).

Theorem 1.3. Let n be a positive integer with prime factorization n =∏
p p

λp. Then the number of solutions in integers of

x21 + x22 + x23 + x24 + 3x25 = n2

is given by

8

(
23λ2+2 + 3

23 − 1

)(
36 · 33λ3 − 10

33 − 1

)∏
p≥5

(
p3λp+3 − 1

p3 − 1
− p
(

3

p

)
p3λp − 1

p3 − 1

)
where the values of the Legendre symbol

(
3
p

)
for primes p ≥ 5 are given by(

3

p

)
=

{
1 if p ≡ 1 or 11 (mod 12),

−1 if p ≡ 5 or 7 (mod 12).

Theorem 1.4. Let n be a positive integer with prime factorization n =∏
p p

λp. Then the number of solutions in integers of

x21 + x22 + x23 + 2x24 + 3x25 = n2

is given by

12

∣∣∣∣23λ2+3 − 15

23 − 1

∣∣∣∣(33λ3+2 + 4

33 − 1

)∏
p≥5

(
p3λp+3 − 1

p3 − 1
− p
(

6

p

)
p3λp − 1

p3 − 1

)
where the values of the Legendre symbol

(
6
p

)
for primes p ≥ 5 are given by(

6

p

)
=

{
1 if p ≡ 1, 5, 19 or 23 (mod 24),

−1 if p ≡ 7, 11, 13 or 17 (mod 24).

Theorems 1.2 and 1.3 are analogues of results for n2 = x21 +x22 +2x23 and
n2 = x21 + x22 + 3x23 that have been studied recently in [10]. Theorems 1.2,
1.3 and 1.4 were discovered by computer investigation, and an experimental
search for other examples was performed. This yielded 15 additional results.

This work is organized as follows. In Section 2 we define some notation
and list some preliminary results for theta functions. A proof of Theorem
1.3 is given in Sections 3 and 4: the primes p = 2 and p = 3 are handled in
Section 3 and the remaining primes p ≥ 5 are treated in Section 4. The proof
of Theorem 1.2 is given in Section 5. It is similar to, but simpler than, the
proof of Theorem 1.3. The proof of Theorem 1.4 is given in Section 6. It is
also similar to the proof of Theorem 1.3. The 15 additional results discovered
by computer search are presented in Section 7. All can be deduced fairly
simply from one of Theorems 1.1, 1.2 or 1.3.
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2. Notation and background results. The theta functions ϕ(q), ψ(q)
and X(q) are defined by

ϕ(q) =
∞∑

j=−∞
qj

2
, ψ(q) =

∞∑
j=0

qj(j+1)/2 and X(q) =
∞∑

j=−∞
q3j

2+2j ,

and for any positive integer k we define ϕk, ψk and Xk by

(2.1) ϕk = ϕ(qk), ψk = ψ(qk) and Xk = X(qk).

For positive integers a, b, c, d and e and for any nonnegative integer n let
r(a,b,c,d,e)(n) denote the number of solutions in integers of

ax21 + bx22 + cx23 + dx24 + ex25 = n.

Clearly,

∞∑
m=0

r(a,b,c,d,e)(m)qm = ϕ(qa)ϕ(qb)ϕ(qc)ϕ(qd)ϕ(qe) = ϕaϕbϕcϕdϕe.

We will need

Lemma 2.1. Let ϕk, ψk and Xk be the theta functions defined by (2.1).
Then

ϕ1ψ2 = ψ2
1.

The following dissections into even and odd parts hold:

ϕ1 = ϕ4 + 2qψ8, ψ2
1 = ϕ4ψ2 + 2qψ2ψ8,

ϕ2
1 = ϕ2

2 + 4qψ2
4, ψ1ψ3 = ϕ6ψ4 + qϕ2ψ12.

Moreover,

(2.2) ϕ1 = ϕ9 + 2qX3

and

(2.3) 8qϕ3X
3
1 = ϕ4

1 − ϕ4
3.

Proof. The first result is given in [5, p. 40]. The dissections into even
and odd parts are (i), (ii), (xiii) and (xxxiii), respectively, in [9]. The last
two identities are (v) and (vi) in [9].

In addition to the Legendre symbols
(
2
p

)
,
(
3
p

)
and

(
6
p

)
given in Theorems

1.2–1.4, we shall also need values of Jacobi symbols, defined for any positive
integer m by
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(
−2

m

)
=


1 if m ≡ 1 or 3 (mod 8),

−1 if m ≡ 5 or 7 (mod 8),

0 otherwise,(
−3

m

)
=


1 if m ≡ 1 (mod 3),

−1 if m ≡ 2 (mod 3),

0 otherwise,(
−4

m

)
=


1 if m ≡ 1 (mod 4),

−1 if m ≡ 3 (mod 4),

0 otherwise,(
6

m

)
=

(
−2

m

)(
−3

m

)
=


1 if p ≡ 1, 5, 19 or 23 (mod 24),

−1 if p ≡ 7, 11, 13 or 17 (mod 24),

0 otherwise,(
12

m

)
=

(
−3

m

)(
−4

m

)
=


1 if m ≡ 1 or 11 (mod 12),

−1 if m ≡ 5 or 7 (mod 12),

0 otherwise.

3. Proof of Theorem 1.3: Part 1. In this section we will establish
the parts of the formula in Theorem 1.3 that involve the primes 2 and 3.
We begin with the prime 2.

Lemma 3.1. Fix an odd integer j. For any nonnegative integer k let

f(k) = r(1,1,1,1,3)(2
2kj2).

Then

f(k + 2) = 9f(k + 1)− 8f(k),(3.1)

f(1) = 5f(0).(3.2)

Hence,

(3.3) f(k) =

(
23k+2 + 3

23 − 1

)
f(0).

Proof. By Lemma 2.1 we have

ϕ4
1ϕ3 = (ϕ4 + 2qψ8)

4(ϕ12 + 2q3ψ24).

Expanding, extracting the terms of the form q4n, and then replacing q4

with q we deduce

(3.4)
∞∑
n=0

r(1,1,1,1,3)(4n)qn = ϕ4
1ϕ3 + 16qϕ3

1ψ2ψ6 + 16qψ4
2ϕ3,
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while a similar process applied to the terms of the form q4n+1 leads to

(3.5)
∞∑
n=0

r(1,1,1,1,3)(4n+ 1)qn = 8(ϕ3
1ψ2ϕ3 + 6qϕ2

1ψ
2
2ψ6).

Next, applying Lemma 2.1 to (3.4) gives

∞∑
n=0

r(1,1,1,1,3)(4n)qn = (ϕ4 + 2qψ8)
4(ϕ12 + 2q3ψ24)(3.6)

+ 16q(ϕ4 + 2qψ8)
3(ϕ12ψ8 + q2ϕ4ψ24)

+ 16q(ϕ8ψ4 + 2q2ψ4ψ16)
2(ϕ12 + 2q3ψ24).

On extracting the terms of the form q4n and then replacing q4 with q we
find that
∞∑
n=0

r(1,1,1,1,3)(16n)qn=ϕ4
1ϕ3+112qϕ3

1ψ2ψ6+144qψ4
2ϕ3+32qψ2

1ψ6(ϕ
2
2+4qψ2

4).

Similarly, extracting the terms of the form q4n+1 in (3.6) and then replacing
q4 with q leads to

∞∑
n=0

r(1,1,1,1,3)(16n+ 4)qn = 24ϕ3
1ψ2ϕ3 + 240qϕ2

1ψ
2
2ψ6 + 16ψ2

1ϕ3(ϕ
2
2 + 4qψ2

4).

On applying Lemma 2.1, the two equations above simplify to

(3.7)
∞∑
n=0

r(1,1,1,1,3)(16n)qn = ϕ4
1ϕ3 + 144qϕ3

1ψ2ψ6 + 144qψ4
2ϕ3

and

(3.8)

∞∑
n=0

r(1,1,1,1,3)(16n+ 4)qn = 40(ϕ3
1ψ2ϕ3 + 6qϕ2

1ψ
2
2ψ6),

respectively. From (3.4) and (3.7) we deduce that

∞∑
n=0

r(1,1,1,1,3)(16n)qn = 9

∞∑
n=0

r(1,1,1,1,3)(4n)qn − 8ϕ4
1ϕ3

and this implies (3.1). From (3.5) and (3.8) we deduce that

r(1,1,1,1,3)(16n+ 4) = 5r(1,1,1,1,3)(4n+ 1)

and this implies (3.2). Finally, (3.3) follows from (3.1) and (3.2).

In preparation for the result involving the prime 3 we will need:
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Lemma 3.2. The following identities hold:

∞∑
n=0

r(1,1,1,1,3)(3n)qn = 4ϕ5
1 − 3ϕ1ϕ

4
3,(3.9)

∞∑
n=0

r(1,1,1,1,3)(9n)qn = 37ϕ4
1ϕ3 − 36ϕ5

3,(3.10)

∞∑
n=0

r(1,1,1,1,3)(27n)qn = 112ϕ5
1 − 111ϕ1ϕ

4
3,(3.11)

∞∑
n=0

r(1,1,1,1,3)(81n)qn = 1009ϕ4
1ϕ3 − 1008ϕ5

3.(3.12)

Proof. We utilize the last two parts of Lemma 2.1. By (2.2) we have

∞∑
n=0

r(1,1,1,1,3)(n)qn = ϕ4
1ϕ3 = (ϕ9 + 2qX3)

4ϕ3.

On expanding, extracting the terms of the form q3n and then replacing q3

with q we get

∞∑
n=0

r(1,1,1,1,3)(3n)qn = ϕ4
3ϕ1 + 32qϕ3X

3
1ϕ1 = 4ϕ5

1 − 3ϕ1ϕ
4
3,

where (2.3) was used for the last step. This proves the first result. The others
can be obtained in succession by applying the same procedure; we omit the
details.

Lemma 3.3. Fix an integer j that is not divisible by 3. For any nonneg-
ative integer k let

g(k) = r(1,1,1,1,3)(3
2kj2).

Then

g(k + 2) = 28g(k + 1)− 27g(k),(3.13)

g(1) = 37g(0).(3.14)

Hence,

(3.15) g(k) =

(
36 · 33k − 10

33 − 1

)
g(0).

Proof. From (3.10) and (3.12) we have

∞∑
n=0

r(1,1,1,1,3)(81n)qn = 28
∞∑
n=0

r(1,1,1,1,3)(9n)qn − 27ϕ4
1ϕ3
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and this implies (3.13). Next, by (3.10) we have

∞∑
n=0

r(1,1,1,1,3)(9n)qn = 37
∞∑
n=0

r(1,1,1,1,3)(n)qn − 36ϕ5
3.

Equating the coefficients of q3n+1 on both sides we deduce that

r(1,1,1,1,3)(27n+ 9) = 37r(1,1,1,1,3)(3n+ 1)

and this implies (3.14). Finally, (3.15) follows from (3.13) and (3.14).

From Lemmas 3.1 and 3.3 we immediately deduce:

Proposition 3.4. Let n be a positive integer with prime factorization

n =
∏
p

pλp = 2λ23λ3m where m =
∏
p≥5

pλp .

Then the number of solutions in integers of

x21 + x22 + x23 + x24 + 3x25 = n2

is given by

r(1,1,1,1,3)(n
2) =

(
23λ2+2 + 3

23 − 1

)(
36 · 33λ3 − 10

33 − 1

)
r(1,1,1,1,3)(m

2).

It remains to determine the value of r(1,1,1,1,3)(m
2) in the case that

gcd(m, 6) = 1. This will be done in the next section.

4. Proof of Theorem 1.3: Part 2. In this section we will prove:

Proposition 4.1. Let m be a positive integer that is relatively prime
to 6 and has prime factorization

m =
∏
p≥5

pλp .

Then

r(1,1,1,1,3)(m
2) = 8

∏
p≥5

(
p3λp+3 − 1

p3 − 1
− p
(

3

p

)
p3λp − 1

p3 − 1

)
.

Note that Propositions 3.4 and 4.1 immediately imply Theorem 1.3.

In order to prove Proposition 4.1 we will need some background infor-
mation and several lemmas. Let f1, f2, f3, f4 be the infinite products defined
by



154 S. Cooper et al.

f1(q) = q

∞∏
j=1

(1− q2j)2(1− q3j)2(1− q4j)(1− q12j)
(1− qj)2

,

f2(q) = q
∞∏
j=1

(1− qj)2(1− q4j)(1− q6j)2(1− q12j)
(1− q3j)2

,

f3(q) = q
∞∏
j=1

(1− qj)(1− q2j)2(1− q3j)(1− q12j)2

(1− q4j)2
,

f4(q) =
∞∏
j=1

(1− qj)(1− q3j)(1− q4j)2(1− q6j)2

(1− q12j)2
.

Let their series expansions be given by

(4.1) f1(q) =

∞∑
n=0

a1(n)qn, f2(q) =

∞∑
n=0

a2(n)qn, f3(q) =

∞∑
n=0

a3(n)qn

and

(4.2) f4(q) = −
∞∑
n=0

a4(n)qn,

where

a1(0) = a2(0) = a3(0) = 0 and a4(0) = −1.

The reason for the negative sign in the definition of a4(n) in (4.2) is that
Lemma 4.6 below will hold for this sequence; see also (4.6).

For j ∈ {1, 2, 3, 4}, define Aj(n) by

∞∑
n=0

Aj(n)qn =

( ∞∑
n=0

aj(n)qn
)2

.

The next three lemmas involve the functions f1, f2, f3, f4 and their series
expansions.

Lemma 4.2 ([8, Cor. 4.6]). The following identity holds:

ϕ3(q)ϕ(q3) = 6f1(q)− 2f2(q) + 3f3(q) + f4(q).

Lemma 4.3 ([1, Theorem 3.1] or [8, Theorem 4.1 and Remark 4.2]). Let
n be any positive integer with prime factorization

n = 2λ23λ3m where m =
∏
p≥5

pλp .
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Then

a1(n) = 2λ23λ3a1(m),(4.3)

a2(n) = 2λ2(−1)λ2+λ3
(
−3

m

)
a1(m),(4.4)

a3(n) = 3λ3(−1)λ2+λ3
(
−4

m

)
a1(m),(4.5)

a4(n) =

(
12

m

)
a1(m),(4.6)

where

(4.7) a1(m) =
∑
d|m

m

d

(
12

d

)
=
∏
p≥5

pλp+1 −
(
12
p

)λp+1

p−
(
12
p

) .

Lemma 4.4. For any positive integer k let

Qk = 1 + 240

∞∑
j=1

j3qjk

1− qjk
.

Then

(4.8) 6f21 − 2f22 + 3f23 − f24
= 1

300(Q1 +Q2 + 9Q3 − 32Q4 + 9Q6 − 288Q12) + 6
5e(q)

where

e(q) = q

∞∏
j=1

(1− qj)2(1− q2j)2(1− q3j)2(1− q6j)2

+ 2q2
∞∏
j=1

(1− q2j)2(1− q4j)2(1− q6j)2(1− q12j)2

and e(q) is an odd function.

Proof. The identity (4.8) follows from the two-variable parameteriza-
tions in [2, Sect. 3]. Since

∞∏
j=1

(1− (−q)j) =

∞∏
j=1

(1− q2j)3

(1− qj)(1− q4j)
,

the identity e(q) + e(−q) = 0 to be shown is

q

∞∏
j=1

(1− qj)2(1− q2j)2(1− q3j)2(1− q6j)2
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− q
∞∏
j=1

(1− q2j)8(1− q6j)8

(1− qj)2(1− q3j)2(1− q4j)2(1− q12j)2

+ 4q2
∞∏
j=1

(1− q2j)2(1− q4j)2(1− q6j)2(1− q12j)2 = 0.

This follows from the two-variable parameterizations in [2, Sect. 3].

Lemma 4.5. Let m be a positive integer relatively prime to 6 with prime
factorization

m =
∏
p≥5

pλp .

Let c(m) be the coefficient of q2m in

6f21 − 2f22 + 3f23 − f24 .
Then

c(m) = 8
∑
d|m

d3 = 8
∏
p≥5

p3λp+3 − 1

p3 − 1
.

Proof. This follows immediately from Lemma 4.4, for the only term on
the right hand side of (4.8) that contains terms of the form q12j+2 or q12j+10

is (Q1 +Q2)/300.

Lemma 4.6. Let j ∈ {1, 2, 3, 4} and let aj(n) be defined by (4.1) and
(4.2), or equivalently, by (4.3)–(4.7). For any nonnegative integer n and
any prime p we have

(4.9) aj(pn) = aj(p)aj(n)− χ(p)aj(n/p)

where χ is the completely multiplicative function defined on the positive in-
tegers by

(4.10) χ(r) = r

(
12

r

)
and aj(x) is defined to be 0 if x is not an integer.

Proof. The result follows from (4.3)–(4.7) on checking each of the four
functions separately, and considering the cases p = 2, p = 3 and p ≥ 5 one
at a time. The details are straightforward and we omit them.

The next result is due to Hurwitz.

Lemma 4.7 ([13, Sect. 2]). Suppose that a(n) is a function, defined for
all nonnegative integers n, that has the property

(4.11) a(pn) = a(p)a(n)− χ(p)a

(
n

p

)
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for all primes p, where χ is a completely multiplicative function. Then the

coefficient of qn
2

in ( ∞∑
j=−∞

qj
2
)( ∞∑

k=0

a(k)qk
)

is equal to
∞∑
r=1

A

(
2n

r

)
χ(r)µ(r)

where µ is the Möbius function, A(n) is defined by

∞∑
n=0

A(n)qn =
( ∞∑
k=0

a(k)qk
)2

and A(x) is defined to be 0 if x is not a nonnegative integer.

Proof of Proposition 4.1. Let [qk]f(q) denote the coefficient of qk in the
Taylor expansion of f(q). In this notation,

r(1,1,1,1,3)(m
2) = [qm

2
](ϕ4

1ϕ3).

By Lemma 4.2 and (4.1) and (4.2), this is

r(1,1,1,1,3)(m
2) = [qm

2
]
(
ϕ(q)(6f1(q)− 2f2(q) + 3f3(q) + f4(q))

)
= 6[qm

2
]
(
ϕ(q)

∞∑
j=0

a1(j)q
j
)
− 2[qm

2
]
(
ϕ(q)

∞∑
j=0

a2(j)q
j
)

+ 3[qm
2
]
(
ϕ(q)

∞∑
j=0

a3(j)q
j
)
− [qm

2
]
(
ϕ(q)

∞∑
j=0

a4(j)q
j
)
.

By Lemmas 4.6 and 4.7 this is equivalent to

r(1,1,1,1,3)(m
2) = 6

∞∑
r=1

A1

(
2m

r

)
χ(r)µ(r)− 2

∞∑
r=1

A2

(
2m

r

)
χ(r)µ(r)

+ 3

∞∑
r=1

A3

(
2m

r

)
χ(r)µ(r)−

∞∑
r=1

A4

(
2m

r

)
χ(r)µ(r)

=
∞∑
r=1

[q2m/r](6f21 − 2f22 + 3f23 − f24 )χ(r)µ(r),

where χ(r) is the completely multiplicative function defined by (4.10). Since
χ(r) = 0 if r is even, the last sum is over odd r only. Moreover, since m is
relatively prime to 6, we may apply Lemma 4.5 to deduce that
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r(1,1,1,1,3)(m
2) =

∞∑
r=1

c(m/r)χ(r)µ(r) = c(m)
∑
r|m

c(m/r)

c(m)
χ(r)µ(r)

= c(m)
∏
p≥5

(
1− χ(p)

c(m/p)

c(m)

)

=

(
8
∏
p≥5

p3λp+3 − 1

p3 − 1

)(∏
p≥5

(
1− p

(
12

p

)
p3λp − 1

p3λp+3 − 1

))

= 8
∏
p≥5

(
p3λp+3 − 1

p3 − 1
− p
(

3

p

)
p3λp − 1

p3 − 1

)
.

5. Proof of Theorem 1.2. In this section we will outline the proof of
Theorem 1.2. We require four lemmas:

Lemma 5.1 ([7, Theorem 3.2]). The following identity holds:

ϕ3(q)ϕ(q2) = ϕ(−q)ϕ(−q2)ϕ2(−q4) + 8qψ2(q)ψ(q2)ψ(q4).

Lemma 5.2. The following series expansion holds:

qψ2(q)ψ(q2)ψ(q4) =
∞∑
j=1

a(j)qj

where

a(j) = 2λ2
∏
p≥3

pλp+1 −
(
2
p

)λp+1

p−
(
2
p

) and j =
∏
p p

λp.

Proof. This follows from [7, Lemma 4.1].

Lemma 5.3 ([5, pp. 36, 40]). The following theta function identities hold:

ϕ2(q)− ϕ2(−q) = 16qψ2(q4),

ϕ(−q) =
∞∏
j=1

(1− qj)2

1− q2j
, ψ(q) =

∞∏
j=1

(1− q2j)2

1− qj
.

Lemma 5.4. Let j be an odd positive integer with prime factorization

j =
∏
p≥3

pλp .

Denote the coefficient of q2j in qψ8(q) by c(j). Then

c(j) = 8
∑
d|j

d3 = 8
∏
p≥3

p3λp+3 − 1

p3 − 1
.

Proof. This follows from the sum of 8 triangular numbers formula; see
e.g. [5, p. 139].
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We are now ready for

Proof of Theorem 1.2. Let m be an odd integer. For any nonnegative
integer k let

f(k) = r(1,1,1,1,2)(2
2km2).

By the methods in Section 3 we may deduce that

f(k + 2) = 9f(k + 1)− 8f(k) for k ≥ 1,

f(1) = 9f(0), f(2) = 57f(0),

and it follows that

(5.1) f(k) = 3

(
23k+1 + 5

23 − 1

)
f(0) for k ≥ 1.

It remains to determine f(0), that is, r(1,1,1,1,2)(m
2). By Lemma 5.1 we have

r(1,1,1,1,2)(m
2)

= [qm
2
](ϕ4(q)ϕ(q2))

= [qm
2
]
(
ϕ(q)ϕ(−q)ϕ(−q2)ϕ2(−q4)

)
+ 8[qm

2
]
(
qϕ(q)ψ2(q)ψ(q2)ψ(q4)

)
.

The first term on the right hand side is zero because m is odd and because
ϕ(q)ϕ(−q)ϕ(−q2)ϕ2(−q4) is an even function of q. Therefore,

r(1,1,1,1,2)(m
2) = 8[qm

2
]
(
ϕ(q)

∞∑
j=1

a(j)qj
)

where the value of a(j) is given by Lemma 5.2. By Lemma 4.7 with χ(p) =
p
(
2
p

)
we deduce that

(5.2) r(1,1,1,1,2)(m
2) = 8

∞∑
r=1

[q2m/r](q2ψ4(q)ψ2(q2)ψ2(q4))χ(r)µ(r).

Since m is odd and χ(r) = 0 for r even, the sum in (5.2) is over odd r only.
Hence, we are only concerned with even powers of q. By Lemma 5.3,

8q2ψ4(q)ψ2(q2)ψ2(q4) = 8qψ4(q)ψ2(q2)(ϕ2(q)− ϕ2(−q))

= qψ8(q)− q
∞∏
j=1

(1− qj)4(1− q2j)4.

Therefore, from (5.2) we deduce that

r(1,1,1,1,2)(m
2) =

∞∑
r=1

[q2m/r](qψ8(q))χ(r)µ(r) =
∑
r|m

c(m/r)χ(r)µ(r)

where the value of c(j) is given by Lemma 5.4. The remainder of the proof
follows the final steps of the proof of Theorem 1.3 at the end of Section 4,
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but with
(
2
p

)
in place of

(
12
p

)
, and the final result is

r(1,1,1,1,2)(m
2) =

∏
p≥3

(
p3λp+3 − 1

p3 − 1
− p
(

2

p

)
p3λp − 1

p3 − 1

)
.

On combining this with (5.1) we complete the proof of Theorem 1.2.

6. Proof of Theorem 1.4. In this section we will outline the proof of
Theorem 1.4. The proof is similar to the proof of Theorem 1.3. The main
difference is that whereas the functions f1, f2, f3, f4 used in Section 4 are
single infinite products, the corresponding functions we shall encounter in
this section are sums of four infinite products. We rely on some recent results
of [4].

The two lemmas below may be deduced by the methods of Section 3.

Lemma 6.1. Fix an odd integer j. For any nonnegative integer k let

f(k) = r(1,1,1,2,3)(2
2kj2).

Then

f(k + 3) = 9f(k + 2)− 8f(k + 1), f(1) = 7f(0), f(2) = 71f(0).

Hence,

(6.1) f(k) =

∣∣∣∣23k+3 − 15

23 − 1

∣∣∣∣f(0).

Lemma 6.2. Fix an integer j that is not divisible by 3. For any nonneg-
ative integer k let

g(k) = r(1,1,1,2,3)(3
2kj2).

Then

g(k + 2) = 28g(k + 1)− 27g(k) and g(1) = 19g(0).

Hence,

(6.2) g(k) = 2

(
33k+2 + 4

33 − 1

)
g(0).

From Lemmas 6.1 and 6.2 we immediately deduce:

Proposition 6.3. Let n be a positive integer with prime factorization

n =
∏
p

pλp = 2λ23λ3m where m =
∏
p≥5

pλp .

Then the number of solutions in integers of

x21 + x22 + x23 + 2x24 + 3x25 = n2
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is given by

r(1,1,1,2,3)(n
2) = 2

∣∣∣∣23λ2+3 − 15

23 − 1

∣∣∣∣(33λ3+2 + 4

33 − 1

)
r(1,1,1,2,3)(m

2).

It remains to determine r(1,1,1,2,3)(m
2) in the case that gcd(m, 6) = 1.

Proposition 6.4. Let m be a positive integer relatively prime to 6 with
prime factorization

m =
∏
p≥5

pλp .

Then

r(1,1,1,2,3)(m
2) = 6

∏
p≥5

(
p3λp+3 − 1

p3 − 1
− p
(

6

p

)
p3λp − 1

p3 − 1

)
.

Note that Propositions 6.3 and 6.4 immediately imply Theorem 1.4.

To prove Proposition 6.4, we will need some relevant lemmas. Let

f1(q) = 1
4ϕ

2
1ϕ2ϕ3 + 1

4ϕ1ϕ
2
2ϕ6 − 1

4ϕ1ϕ
2
3ϕ6 − 1

4ϕ2ϕ3ϕ
2
6,

f2(q) = −1
2ϕ

2
1ϕ2ϕ3 + ϕ1ϕ

2
2ϕ6 + 1

2ϕ1ϕ
2
3ϕ6 − ϕ2ϕ3ϕ

2
6,

f3(q) = −1
4ϕ

2
1ϕ2ϕ3 + 1

4ϕ1ϕ
2
2ϕ6 + 3

4ϕ1ϕ
2
3ϕ6 − 3

4ϕ2ϕ3ϕ
2
6,

f4(q) = 1
2ϕ

2
1ϕ2ϕ3 + ϕ1ϕ

2
2ϕ6 − 3

2ϕ1ϕ
2
3ϕ6 − 3ϕ2ϕ3ϕ

2
6,

where ϕk is given by (2.1). Let their series expansions be given by

f1(q) =

∞∑
n=0

a1(n)qn, f2(q) =

∞∑
n=0

a2(n)qn,(6.3)

f3(q) =
∞∑
n=0

a3(n)qn f4(q) =

∞∑
n=0

a4(n)qn,(6.4)

where

a1(0) = a2(0) = a3(0) = 0 and a4(0) = −3.

For j ∈ {1, 2, 3, 4}, define Aj(n) by

∞∑
n=0

Aj(n)qn =
( ∞∑
n=0

aj(n)qn
)2
.

Lemma 6.5 ([4, Th. 4.1 and Section 4]). The following identity holds:

ϕ2(q)ϕ(q2)ϕ(q3) = 4f1(q)− f2(q) + 4
3f3(q)−

1
3f4(q).

Lemma 6.6 ([4, Section 4]). Let n be any positive integer with prime
factorization

n = 2λ23λ3m where m =
∏
p≥5

pλp .
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Then

a1(n) = 2λ23λ3a1(m),(6.5)

a2(n) = (−1)λ23λ3
(
−2

m

)
a1(m),(6.6)

a3(n) = (−1)λ22λ2
(
−3

m

)
a1(m),(6.7)

a4(n) =

(
6

m

)
a1(m),(6.8)

where

(6.9) a1(m) =
∑
d|m

m

d

(
6

d

)
=
∏
p≥5

pλp+1 −
(
6
p

)λp+1

p−
(
6
p

) .

Lemma 6.7. Define

e(q) = (4f21 − f22 + 4
3f

2
3 − 1

3f
2
4 )

−
(

1
40Q2 − 1

20Q4 − 9
40Q6 + 2

5Q8 + 9
20Q12 − 18

5 Q24

)
,

where Qk is defined in Lemma 4.4. Then e(q) is an odd function.

Proof. The equality e(q) + e(−q) = 0 follows from the two-variable pa-
rameterizations of ϕ(q), ϕ(q2), ϕ(q3), ϕ(q6), ϕ(−q), ϕ(−q3) and Qk for
k ∈ {2, 4, 6, 8, 12, 24} in [3, Lemma 3.1] and [1, Theorems 2.4 and 2.5].

Lemma 6.8. Let m be a positive integer relatively prime to 6, with prime
factorization

m =
∏
p≥5

pλp .

Let c(m) be the coefficient of q2m in

4f21 − f22 + 4
3f

2
3 − 1

3f
2
4 .

Then

c(m) = 6
∑
d|m

d3 = 6
∏
p≥5

p3λp+3 − 1

p3 − 1
.

Proof. This follows immediately from Lemma 6.7, for the only term in
1
40Q2− 1

20Q4− 9
40Q6 + 2

5Q8 + 9
20Q12− 18

5 Q24 that contains terms of the form

q12j+2 or q12j+10 is Q2/40.

Lemma 6.9. Let j ∈ {1, 2, 3, 4} and let aj(n) be defined by (6.3) and
(6.4), or equivalently, by (6.5)–(6.9). For any nonnegative integer n and
any prime p we have

(6.10) aj(pn) = aj(p)aj(n)− χ(p)aj(n/p)
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where χ is the completely multiplicative function defined on the positive in-
tegers by

(6.11) χ(r) = r

(
6

r

)
and aj(x) is defined to be 0 if x is not an integer.

Proof. The result follows from (6.5)–(6.9) on checking each of the four
functions separately, and considering the cases p = 2, p = 3 and p ≥ 5 one
at a time. The details are straightforward and we omit them.

Proof of Proposition 6.4. Let [qk]f(q) denote the coefficient of qk in the
Taylor expansion of f(q). In this notation,

r(1,1,1,2,3)(m
2) = [qm

2
](ϕ3

1ϕ2ϕ3).

By Lemma 6.5 and (6.3) and (6.4), we have

r(1,1,1,2,3)(m
2) = [qm

2
](ϕ(q)(4f1(q)− f2(q) + 4

3f3(q)−
1
3f4(q)))

= 4[qm
2
]
(
ϕ(q)

∞∑
j=0

a1(j)q
j
)
− [qm

2
]
(
ϕ(q)

∞∑
j=0

a2(j)q
j
)

+ 4
3 [qm

2
]
(
ϕ(q)

∞∑
j=0

a3(j)q
j
)
− 1

3 [qm
2
]
(
ϕ(q)

∞∑
j=0

a4(j)q
j
)
.

By Lemmas 4.7 and 6.9 this is equivalent to

r(1,1,1,2,3)(m
2) = 4

∞∑
r=1

A1

(
2m

r

)
χ(r)µ(r)−

∞∑
r=1

A2

(
2m

r

)
χ(r)µ(r)

+
4

3

∞∑
r=1

A3

(
2m

r

)
χ(r)µ(r)− 1

3

∞∑
r=1

A4

(
2m

r

)
χ(r)µ(r)

=
∞∑
r=1

[q2m/r](4f21 − f22 + 4
3f

2
3 − 1

3f
2
4 )χ(r)µ(r),

where χ(r) is the completely multiplicative function defined by (6.11). Since
χ(r) = 0 if r is even, the last sum is over odd r only. Moreover, since m is
relatively prime to 6, we may apply Lemma 6.8 to deduce that

r(1,1,1,2,3)(m
2) =

∞∑
r=1

c(m/r)χ(r)µ(r) = c(m)
∑
r|m

c(m/r)

c(m)
χ(r)µ(r)

= c(m)
∏
p≥5

(
1− χ(p)

c(m/p)

c(m)

)
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=

(
6
∏
p≥5

p3λp+3 − 1

p3 − 1

)(∏
p≥5

(
1− p

(
6

p

)
p3λp − 1

p3λp+3 − 1

))

= 6
∏
p≥5

(
p3λp+3 − 1

p3 − 1
− p
(

6

p

)
p3λp − 1

p3 − 1

)
.

7. Further results. In this section we state 15 further results and prove
one as an illustration. Proofs for the others are similar.

Theorem 7.1. Let a = (a1, a2, a3, a4, a5). Let n be a positive integer
with prime factorization

n = 2λ2m where m =
∏
p≥3

pλp .

Then
ra(n2) = ca(λ2)r(1,1,1,1,1)(m

2)

for the values of a and ca(λ2) given in Table 1. The value of r(1,1,1,1,1)(m
2)

is given by Hurwitz’s Theorem 1.1.

Table 1

a ca

(1, 1, 1, 2, 2) 1
5
( 26·23λ2−5

23−1
)

(1, 1, 1, 1, 4)

{
4
5

if n is odd
1
5
( 3·23λ2+2−5

23−1
) if n is even

(1, 1, 1, 4, 4)

{
3
5

if n is odd
23λ2−1
23−1

if n is even

(1, 1, 2, 2, 4)

{
2
5

if n is odd
1
5
( 3·23λ2+2−5

23−1
) if n is even

(1, 1, 4, 4, 4)

{
2
5

if n is odd
23λ2−1
23−1

if n is even

(1, 2, 2, 2, 2) 1
5
( 3·23λ2+2−5

23−1
)

(1, 2, 2, 4, 4)

{
1
5

if n is odd
23λ2−1
23−1

if n is even

(1, 4, 4, 4, 4)

{
1
5

if n is odd
23λ2−1
23−1

if n is even

Theorem 7.2. Let a = (a1, a2, a3, a4, a5). Let n be a positive integer
with prime factorization

n = 2λ23λ3` where ` =
∏
p≥5

pλp .
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Then

ra(n2) = ca(λ2)da(λ3) r(1,1,1,1,1)(`
2)

for the values of a, ca(λ2) and da(λ3) given in Table 2, while the value of
r(1,1,1,1,1)(`

2) is given by Hurwitz’s Theorem 1.1.

Table 2

a ca da

(1, 2, 2, 3, 3) 2
5
( 6·23λ2+1

23−1
) 2·33λ3+2−5

33−1

(1, 3, 3, 3, 3) 2
5
( 23λ2+3−1

23−1
) 8·33λ3+5

33−1

Theorem 7.3. Let a = (a1, a2, a3, a4, a5). Let n be a positive integer
with prime factorization

n = 2λ2m where m =
∏
p≥3

pλp .

Then

ra(n2) = ca(λ2)r(1,1,1,1,2)(m
2)

for the values of a and ca(λ2) given in Table 3. The value of r(1,1,1,1,2)(m
2)

is given by Theorem 1.2.

Table 3

a ca

(1, 1, 2, 2, 2)

{
1
2

if n is odd
5
2
( 23λ2+6

23−1
) if n is even

(1, 2, 2, 2, 4)


1
4

if n is odd

2 if λ2 = 1
13·23λ2−3+15

23−1
if λ2 ≥ 2

Theorem 7.4. Let a = (a1, a2, a3, a4, a5). Let n be a positive integer
with prime factorization

n = 2λ23λ3` where ` =
∏
p≥5

pλp .

Then

ra(n2) = ca(λ2)da(λ3) r(1,1,1,1,2)(`
2)

for the values of a, ca(λ2) and da(λ3) given in Table 4, while the value of
r(1,1,1,1,2)(`

2) is given by Theorem 1.2.
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Table 4

a ca da

(1, 1, 2, 3, 3) | 2
3λ2+3−15

23−1
| 33λ3+2+4

33−1

(1, 3, 3, 3, 6) 1
2
| 2

3λ2+3−15
23−1

| 5·33λ3+8
33−1

Theorem 7.5. Let a = (a1, a2, a3, a4, a5). Let n be a positive integer
with prime factorization

n = 2λ23λ3` where ` =
∏
p≥5

pλp .

Then

ra(n2) = ca(λ2)da(λ3) r(1,1,1,1,3)(`
2)

for the values of a, ca(λ2) and da(λ2) given in Table 5, while the value of
r(1,1,1,1,3)(`

2) is given by Theorem 1.3.

Table 5

a ca da

(1, 2, 2, 2, 6) 1
2
| 2

3λ2+3−15
23−1

| 33λ3+2+4
33−1

We shall prove the case a = (1, 1, 1, 2, 2) of Theorem 7.1 to illustrate the
technique. The proofs in the other cases are similar.

Proof of Theorem 7.1 for a = (1, 1, 1, 2, 2). Let n be any positive integer
and write its prime factorization as

n = 2λ2m where m is odd and m =
∏
p≥3

pλp .

By the techniques of Section 3 we may deduce that

∞∑
j=0

r(1,1,1,1,1)(4j + 1)qj = 10ϕ4
1ψ2 + 32qψ5

2,(7.1)

∞∑
j=0

r(1,1,1,2,2)(4j + 1)qj = 6ϕ4
1ψ2 + 32qψ5

2,(7.2)

∞∑
j=0

r(1,1,1,2,2)(16j + 4)qj = 58ϕ4
1ψ2 + 32qψ5

2,(7.3)

∞∑
j=0

r(1,1,1,2,2)(64j + 16)qj = 474ϕ4
1ψ2 + 32qψ5

2.(7.4)
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Moreover,

∞∑
j=0

r(1,1,1,2,2)(4j)q
j = ϕ5

1 + 48qϕ1ψ
4
2,(7.5)

∞∑
j=0

r(1,1,1,2,2)(16j)qj = ϕ5
1 + 464qϕ1ψ

4
2,(7.6)

∞∑
j=0

r(1,1,1,2,2)(64j)qj = ϕ5
1 + 3792qϕ1ψ

4
2.(7.7)

For a fixed odd m, let

f(k) = r(1,1,1,2,2)(2
2km2).

On comparing the coefficients of q2j in (7.1) and (7.2) we get

1
6r(1,1,1,2,2)(8j + 1) = [q2j ]ϕ4

1ψ2 = 1
10r(1,1,1,1,1)(8j + 1).

It follows that

f(0) = r(1,1,1,2,2)(m
2) = 3

5r(1,1,1,1,1)(m
2)

and therefore by Hurwitz’s Theorem 1.1 we deduce that

(7.8) f(0) = r(1,1,1,2,2)(m
2) = 6

∏
p≥3

(
p3λp+3 − 1

p3 − 1
− p p

3λp − 1

p3 − 1

)
.

Next, on comparing the coefficients of q2j in (7.2)–(7.4) we get

1
6r(1,1,1,2,2)(8j + 1) = 1

58r(1,1,1,2,2)(32j + 4) = 1
474r(1,1,1,2,2)(128j + 16)

and it follows that

(7.9) f(1) = 29
3 f(0) and f(2) = 79f(0).

Finally, from (7.5)–(7.7) we deduce

∞∑
j=0

r(1,1,1,2,2)(64j)qj = 9

∞∑
j=0

r(1,1,1,2,2)(16j)qj − 8

∞∑
j=0

r(1,1,1,2,2)(4j)q
j

and it follows that

(7.10) f(k + 2) = 9f(k + 1)− 8f(k) for k ≥ 1.

The solution of the recurrence relation (7.10) that satisfies the initial con-
dition (7.9) is given by

(7.11) f(k) =
1

3

(
26 · 23k − 5

23 − 1

)
f(0).
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On combining (7.8) and (7.11) we deduce that

r(1,1,1,2,2)(n
2) = 2

(
26 · 23k − 5

23 − 1

)∏
p≥3

(
p3λp+3 − 1

p3 − 1
− p p

3λp − 1

p3 − 1

)
.
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