On additive bases II

by
Weidong Gao (Tianjin), Dongchun Han (Tianjin), Guoyou Qian (Chengdu), Yongke Qu (Luoyang) and Hanbin Zhang (Tianjin)

1. Introduction. Let G be a finite abelian group, p be the smallest prime dividing $|G|$, and let $\mathrm{r}(G)$ denote the rank of G. Let S be a sequence over G. We say that S is an additive basis of G if every element of G can be expressed as the sum over a nonempty subsequence of S.

Let $\mathrm{c}(G)$ denote the smallest integer t such that every subset of G of cardinality at least t is an additive basis of G. In 1964, Erdôs and Heilbronn [1] proposed the problem of determining $\mathrm{c}(G)$, and it was completely determined by 2009 through many authors' effort (see [5], [2] and the references therein).

For every subgroup H of G, let S_{H} denote the subsequence of S consisting of all terms of S contained in H. We say that S is a regular sequence over G if $\left|S_{H}\right| \leq|H|-1$ for every subgroup $H \subsetneq G$. Let $\mathrm{c}_{0}(G)$ denote the smallest integer t such that every regular sequence over G of length at least t is an additive basis of G. The problem of determining $\mathrm{c}_{0}(G)$ was first proposed by Olson and then studied by Peng [12], [13] in 1987, who determined $\mathrm{c}_{0}(G)$ for all the elementary abelian groups.

Let

$$
m(G)= \begin{cases}|G| & \text { if } G \text { is cyclic, } \\ |G| / p+p-1 & \text { if } G=C_{p} \oplus C_{|G| / p} \text { and } p \||G| / p, \\ |G| / p+p-2 & \text { otherwise }\end{cases}
$$

In this paper we determine $\mathrm{c}_{0}(G)$ for more groups, and our main result is the following.

Theorem 1.1. Let G be a finite abelian group, and let p be the smallest prime dividing $|G|$. Then $\mathrm{c}_{0}(G)=m(G)$ if one of the following conditions holds:

[^0](1) G is cyclic;
(2) $|G|$ is even;
(3) $\mathrm{r}(G) \geq 5$;
(4) $\mathrm{r}(G) \in\{3,4\}$ and $p \geq 17$;
(5) $\mathrm{r}(G) \geq 2$ and G is a p-group except $G=C_{p} \oplus C_{p^{n}}$ with $n \geq 2$.
2. Preliminaries. Let G be an additive finite abelian group. A sequence S over G will be written in the form
$$
S=g_{1} \cdot \ldots \cdot g_{\ell}=\prod_{g \in G} g^{\vee_{g}(S)} \quad \text { with } \mathrm{v}_{g}(S) \in \mathbb{N}_{0} \text { for all } g \in G
$$

We call $|S|=\ell \in \mathbb{N}_{0}$ the length and

$$
\sigma(S)=\sum_{i=1}^{\ell} g_{i}=\sum_{g \in G} \mathrm{v}_{g}(S) g \in G
$$

the sum of S. Let $\operatorname{supp}(S)=\left\{g \in G: \mathrm{v}_{g}(S)>0\right\}$. Define

$$
\Sigma(S)=\{\sigma(T): 1 \neq T \mid S\}
$$

where $T \mid S$ means T is a subsequence of S, and 1 denotes the empty sequence.
We say that S is a zero-sum sequence if $\sigma(S)=0$.
We say that a subset $A \subset G \backslash\{0\}$ is a 2 -zero-sum free set if A contains no two distinct elements with sum zero.

Let $A \subset \operatorname{supp}(S)$ be a subset of maximal cardinality such that A is 2-zero-sum free. Define

$$
\left|\operatorname{supp}^{+}(S)\right|=|A|
$$

Let $\mathrm{D}(G)$ denote the Davenport constant of G, which is defined as the smallest integer t such that every sequence S over G of length $|S| \geq t$ contains a nonempty zero-sum subsequence.

For every subset A of G, denote by $\langle A\rangle$ the subgroup generated by A. Let $\operatorname{st}(A)=\{g \in G: g+A=A\}$. Then $\operatorname{st}(A)$ is the maximal subgroup H of G with $H+A=A$. We need the following well known Kneser theorem. For the detailed proofs, the readers can refer to [6, 8, 9].

Lemma 2.1 (Kneser). Let A_{1}, \ldots, A_{r} be finite nonempty subsets of an abelian group, and let $H=\operatorname{st}\left(A_{1}+\cdots+A_{r}\right)$. Then

$$
\left|A_{1}+\cdots+A_{r}\right| \geq\left|A_{1}+H\right|+\cdots+\left|A_{r}+H\right|-(r-1)|H|
$$

Lemma 2.2. $\mathrm{c}_{0}(G) \geq m(G)$ for every finite abelian group G.
Proof. If G is cyclic then $m(G)=|G|$ by the definition. Let g be a generating element of G and $S=g^{|G|-1}$. Then S is regular and $0 \notin \Sigma(S)$. Therefore, $\mathrm{c}_{0}(G) \geq|S|+1=m(G)$.

If $G=C_{p} \oplus C_{|G| / p}$ with $p||G| / p$, where p is the smallest prime dividing $|G|$, then $m(G)=|G| / p+p-1$. Let $G=\left\langle e_{1}\right\rangle \oplus\left\langle e_{2}\right\rangle$ with $\operatorname{ord}\left(e_{1}\right)=p$ and
$\operatorname{ord}\left(e_{2}\right)=|G| / p$. Let $S=e_{1}^{p-1} e_{2}^{|G| / p-1}$. Then S is regular and $0 \notin \Sigma(S)$. Therefore, $\mathrm{c}_{0}(G) \geq|S|+1=m(G)$.

For all the other cases we have $m(G)=|G| / p+p-2$. Let H be a subgroup of G with $|H|=|G| / p$, and let $g \in G \backslash H$. Take any $p-2$ distinct elements h_{1}, \ldots, h_{p-2} from H. Let $S=(H \backslash\{0\}) \cup\left\{g+h_{1}, \ldots, g+h_{p-2}\right\}$. Then S is a subset of G and so a regular sequence over G. But $(-g+H) \cap \Sigma(S)=\emptyset$. Therefore, $\mathrm{c}_{0}(G) \geq|S|+1=m(G)$.

The following result is crucial in the proof of Theorem 1.1.
Lemma 2.3. Let G be a finite abelian group, and let p be the smallest prime dividing $|G|$. Let S be a regular sequence over G of length $|S| \geq$ $\max \{|G| / p+p-2, \mathrm{D}(G)\}$. If $\Sigma(S) \neq G$ then
(1) $\operatorname{st}(\Sigma(S))=\{0\}$,
(2) $\operatorname{st}(\{0\} \cup \Sigma(T))=\{0\}$ and $|\{0\} \cup \Sigma(T)| \geq|T|+1$ for every nonempty subsequence T of S.
Proof. Write $S=g_{1} \ldots \cdot g_{\ell}$. Since S is regular, $g_{i} \neq 0$ for all $1 \leq i \leq \ell$. Let $A_{i}=\left\{0, g_{i}\right\}$ for every $i \in[1, \ell]$. From $|S| \geq \max \{|G| / p+p-2, \mathrm{D}(G)\} \geq \mathrm{D}(G)$, we know that $0 \in \Sigma(S)$. It follows that

$$
\Sigma(S)=A_{1}+\cdots+A_{\ell}
$$

Let $H=\operatorname{st}(\Sigma(S))$. From $\Sigma(S) \neq G$, we know that $H \neq G$. Suppose that $H \neq\{0\}$. Then by Lemma 2.1 and the fact that $\left|S_{H}\right| \leq|H|-1$, we have

$$
\begin{aligned}
|\Sigma(S)| & \geq\left|A_{1}+H\right|+\cdots+\left|A_{\ell}+H\right|-(\ell-1)|H| \\
& \geq(\ell+2-|H|)|H| \geq(|G| / p+p-|H|)|H| \\
& \geq \min \{(|G| / p+p-p) p,(|G| / p+p-|G| / p)|G| / p\}=|G|
\end{aligned}
$$

a contradiction. This proves that $\operatorname{st}(\Sigma(S))=\{0\}$.
By renumbering if necessary we assume that $T=g_{1} \cdot \ldots \cdot g_{t}$ where $t=$ $|T| \in[1, \ell]$. Let

$$
B=A_{1}+\cdots+A_{t} \quad \text { and } \quad C=\left(A_{t+1}+\cdots+A_{\ell}\right) \cup\{0\}
$$

Then $B=\{0\} \cup \Sigma(T)$ and $\Sigma(S)=B+C$. It follows that $\operatorname{st}(B) \subset \operatorname{st}(\Sigma(S))$. Therefore, $\operatorname{st}(B)=\{0\}$.

Again by Lemma 2.1, we have $|\{0\} \cup \Sigma(T)|=\left|A_{1}+\cdots+A_{t}\right| \geq\left|A_{1}\right|+$ $\cdots+\left|A_{t}\right|-(t-1)=|T|+1$.

Lemma 2.4. $\mathrm{c}_{0}(G) \leq|G|$ for every finite abelian group G.
Proof. Let S be an arbitrary regular sequence over G of length $|S|=|G|$. It follows from Lemma 2.3 that $\Sigma(S)=G$. Hence, $\mathrm{c}_{0}(G) \leq|G|$. -

Lemma 2.5 ([11]). Let H and K be two finite abelian groups with $1<$ $|H|||K|$, and let $G=H \oplus K$. Then $\mathrm{D}(G) \leq|H|+|K|-1$.

We need the following well known results on the Davenport constant.

Lemma 2.6 ([11). Let p be a prime. Then:
(1) $\mathrm{D}\left(C_{p} \oplus C_{p} \oplus C_{p}\right)=3 p-2$.
(2) $\mathrm{D}\left(C_{n}\right)=n$.
(3) If $G=C_{n_{1}} \oplus C_{n_{2}}$ with $1<n_{1} \mid n_{2}$ then $D(G)=n_{1}+n_{2}-1$.

Lemma 2.7. If G is a finite abelian group then $\mathrm{D}(G) \leq m(G)$.
Proof. Let $G=C_{n_{1}} \oplus \cdots \oplus C_{n_{r}}$ with $1<n_{1}|\cdots| n_{r}$. Let p be the smallest prime dividing $|G|$.

If $r=1$ then $\mathrm{D}(G)=|G|=m(G)$ by Lemma 2.6.
If $r=2$ then $\mathrm{D}(G)=n_{1}+n_{2}-1=|G| / n_{1}+n_{1}-1$ by Lemma 2.6. Since p is the smallest prime dividing $|G|$, we have $m(G) \leq|G| / p+p-1 \leq$ $|G| / n_{1}+n_{1}-1=\mathrm{D}(G)$.

If $r \geq 4$ then Lemma 2.5 yields $\mathrm{D}(G) \leq|G| /\left(n_{1} n_{2}\right)+n_{1} n_{2}-1$ (take $H=C_{n_{1}} \oplus C_{n_{2}}$ and $K=C_{n_{3}} \oplus \cdots \oplus C_{n_{r}}$). Therefore, $m(G)=|G| / p+p-2<$ $|G| /\left(n_{1} n_{2}\right)+n_{1} n_{2}-1 \leq \mathrm{D}(G)$.

It remains to check the case $r=3$. If $p \neq n_{2}$ then $n_{2}>p$. Taking $H=C_{n_{2}}$ and $K=C_{n_{1}} \oplus C_{n_{3}}$ in Lemma 2.5, we obtain $D(G) \leq|G| / n_{2}+n_{2}-1 \leq$ $|G| / p+p-2=m(G)$. So, we may assume that

$$
n_{1}=n_{2}=p .
$$

Write $n_{3}=p u$. We want to prove that

$$
\mathrm{D}(G) \leq(3 p-2) u
$$

If this holds then

$$
\mathrm{D}(G) \leq(3 p-2) u \leq p^{2} u<p^{2} u+p-2=m(G) .
$$

Let S be a sequence over G of length $|S|=(3 p-2) u$. We need to show that S contains a nonempty zero-sum subsequence.

Let $\varphi: G=C_{p} \oplus C_{p} \oplus C_{p u} \rightarrow C_{u}$ be the natural homomorphism with $\operatorname{ker}(\varphi)=C_{p} \oplus C_{p} \oplus C_{p}$ (up to isomorphism). Applying $\mathrm{D}(\varphi(G))=\mathrm{D}\left(C_{u}\right)=u$ to $\varphi(S)$ repeatedly, we can get a decomposition $S=S_{1} \cdot \ldots \cdot S_{3 p-2} S^{\prime \prime}$ with

$$
\left|S_{i}\right| \in[1, u], \quad \sigma\left(S_{i}\right) \in \operatorname{ker}(\varphi) \quad \text { for every } i \in[1,3 p-2] .
$$

Applying $\mathrm{D}(\operatorname{ker}(\varphi))=\mathrm{D}\left(C_{p} \oplus C_{p} \oplus C_{p}\right)=3 p-2$ to $\sigma\left(S_{1}\right) \cdot \ldots \cdot \sigma\left(S_{3 p-2}\right)$ we find that there is a nonempty subset $I \subset[1,3 p-2]$ such that $\sum_{i \in I} \sigma\left(S_{i}\right)=0$. Now $\prod_{i \in I} S_{i}$ is a nonempty zero-sum subsequence of S proving that $\mathrm{D}(G) \leq$ $(3 p-2) u$.

3. Proof of Theorem 1.1(1) and (2)

Proof of Theorem 1.1(1). The result follows from Lemmas 2.2 and 2.4 .
To prove conclusion (2) of Theorem 1.1 we need the following technical result.

Lemma 3.1. Let $A \subset G \backslash\{0\}$ be a 2-zero-sum free 3-set. Then either $|\Sigma(A) \backslash\{0\}| \geq 6$ or A contains some element of order two.

Proof. Let $A=\{a, b, c\}$. If $a+b+c \neq 0$ then the result has been proved in [6, Proposition 5.3.2]. So we may assume that

$$
a+b+c=0
$$

Clearly, $a+b, a+c$, and $b+c$ are pairwise distinct nonzero elements.
If

$$
\{a, b, c\} \cap\{a+b, a+c, b+c\}=\emptyset
$$

then $|\Sigma(A) \backslash\{0\}| \geq 6$. Suppose that the above intersection is nonempty. We show that there is an element of order two in A. By renumbering we may assume that $a \in\{a+b, a+c, b+c\}$, which forces $a=b+c$. This together with $a+b+c=0$ gives $2 a=0$.

Proof of Theorem 1.1(2). Let $n=|G|$. From conclusion (1) of the theorem we may assume that

$$
\mathrm{r}(G) \geq 2
$$

By Lemma 2.2, it suffices to prove $\mathrm{c}_{0}(G) \leq m(G)$. Let S be a regular sequence over G of length $|S|=m(G)$. We need to show that

$$
\Sigma(S)=G
$$

Assume to the contrary that $\Sigma(S) \neq G$. By Lemma 2.3 we then have $\operatorname{st}(\Sigma(S))=\{0\}$. If there is some $g \in \operatorname{supp}(S)$ such that $2 g=0$, then since $\Sigma(S)=\{0, g\}+\left(\Sigma\left(S g^{-1}\right) \cup\{0\}\right)$ and $g+\{0, g\}=\{0, g\}$, we obtain $0 \neq g \in \operatorname{st}(\Sigma(S))=\{0\}$, a contradiction. So, $2 g \neq 0$ for all $g \in \operatorname{supp}(S)$.

Now we distinguish several cases.
CASE 1: $\max \left\{\mathrm{v}_{g}(S)+\mathrm{v}_{-g}(S): g \in G\right\} \leq n / 6$. Let $t \geq 0$ be the maximal integer such that S has a factorization

$$
S=A_{1} \cdot \ldots \cdot A_{t} T
$$

where A_{i} is a 2 -zero-sum free 3 -subset of G for every $i \in[1, t]$.
We fix a factorization of S above with $\left|\operatorname{supp}^{+}(T)\right|$ maximal possible. Clearly,

$$
\left|\operatorname{supp}^{+}(T)\right| \leq 2
$$

We claim that

$$
\mathrm{v}_{g}(T)+\mathrm{v}_{-g}(T) \leq 1 \quad \text { for every } g \in G
$$

Assume to the contrary that $\mathrm{v}_{h}(T)+\mathrm{v}_{-h}(T) \geq 2$ for some $h \in G$. We may assume that $\mathrm{v}_{h}(T) \geq 1$. Since A_{1} is a 2 -zero-sum free 3 -set and $\left|\operatorname{supp}^{+}(T)\right|$ ≤ 2, we can choose some $x \in A_{1}$ such that neither x nor $-x$ occurs in T. We assert that

$$
A_{1} \cap\{h,-h\} \neq \emptyset
$$

Indeed, otherwise we let $A_{1}^{\prime}=\left(A_{1} \backslash\{x\}\right) \cup\{h\}$ and $T^{\prime}=T x h^{-1}$. Then

$$
S=A_{1}^{\prime} A_{2} \cdot \ldots \cdot A_{t} T^{\prime}
$$

where $A_{1}^{\prime}, A_{2}, \ldots, A_{t}$ are all 2-zero-sum free 3 -subsets of G but \mid supp $^{+}\left(T^{\prime}\right) \mid>$ \mid supp ${ }^{+}(T) \mid$, a contradiction. Therefore, $A_{1} \cap\{h,-h\} \neq \emptyset$. Similarly, we have $A_{i} \cap\{h,-h\} \neq \emptyset$ for every $i \in[2, t]$. It follows that

$$
\max \left\{\mathrm{v}_{g}(S)+\mathrm{v}_{-g}(S): g \in G\right\} \geq t+\frac{|T|}{\left|\operatorname{supp}^{+}(T)\right|} \geq t+\frac{|T|}{2}
$$

Note that $3 t+|T|=|S| \geq n / 2$. Therefore, $t+|T| / 3 \geq n / 6$. Hence, $\max \left\{\mathrm{v}_{g}(S)+\mathrm{v}_{-g}(S): g \in G\right\} \geq t+|T| / 2>t+|T| / 3 \geq n / 6$, a contradiction. This proves the claim.

It follows that $T \subset G$ and

$$
|T|=|\operatorname{supp}(T)|=\left|\operatorname{supp}^{+}(T)\right| \leq 2
$$

Let $B_{i}=\{0\} \cup \Sigma\left(A_{i}\right)$ for every $i \in[1, t]$, and let $B=\{0\} \cup \Sigma(T)$. Then

$$
B_{1}+\cdots+B_{t}+B=\Sigma(S) .
$$

From Lemma 3.1 we get $\left|B_{i}\right| \geq 7$ for every $i \in[1, t]$. Since st $(\Sigma(S))=\{0\}$, Lemma 2.1 yields

$$
\left|B_{1}+\cdots+B_{t}+B\right| \geq\left|B_{1}\right|+\cdots+\left|B_{t}\right|+|B|-t \geq 6 t+|B| .
$$

Since $|T|=|\operatorname{supp}(T)| \leq 2, T$ is a subset of G. It is easy to see that $|B| \geq 2|T|$. Note that $\Sigma(S) \neq G$. So we have

$$
\begin{aligned}
n-1 & \geq|\Sigma(S)|=\left|B_{1}+\cdots+B_{t}+B\right| \geq\left|B_{1}\right|+\cdots+\left|B_{t}\right|+|B|-t \\
& \geq 6 t+|B| \geq 6 t+2|T|=2|S| \geq n,
\end{aligned}
$$

a contradiction.
CASE 2: $\max \left\{\mathrm{v}_{g}(S)+\mathrm{v}_{-g}(S): g \in G\right\}>n / 6$. We first assume that

$$
n \in[2,11] .
$$

Since $\mathrm{r}(G) \geq 2$, we have

$$
n \in\{4,8\} .
$$

If $n=8$ then $G \in\left\{C_{2}^{3}, C_{2} \oplus C_{4}\right\}$. Since S contains no element of order two, it follows that $G=C_{2} \oplus C_{4}$. Now $|S|=m(G)=5$. Let $x_{1},-x_{1}, x_{2},-x_{2}$ be the only four elements of order four in G. Then $\mathrm{v}_{g}(S)+\mathrm{v}_{-g}(S) \geq 3$ for some g in $\left\{x_{1}, x_{2}\right\}$. Let $K=\langle g\rangle$. By Lemma $2.3,\left|\{0\} \cup \Sigma\left(S_{K}\right)\right| \geq\left|S_{K}\right|+1 \geq 4=|K|$. Therefore, $\{0\} \cup \Sigma\left(S_{K}\right)=K$ and $K=\operatorname{st}\left(\{0\} \cup \Sigma\left(S_{K}\right)\right) \subseteq \operatorname{st}(\Sigma(S))=\{0\}$, a contradiction.

If $n=4$ then $G=C_{2} \oplus C_{2}$. Hence every term of S is of order two, a contradiction.

From now on we suppose that

$$
\begin{equation*}
|G|=n \geq 12 \tag{3.1}
\end{equation*}
$$

Choose $h \in G$ such that $\left|S_{\langle h\rangle}\right|$ attains the maximal possible value. Then

$$
\left|S_{\langle h\rangle}\right| \geq \max \left\{\mathrm{v}_{g}(S)+\mathrm{v}_{-g}(S): g \in G\right\} \geq \frac{n+1}{6}
$$

Let $H=\langle h\rangle$. It follows that $\left|S_{H}\right| \geq 3$. Let $\bar{g}=g+H$ for every $g \in G$. We distinguish two subcases:

Subcase 2a: For any two terms g_{1}, g_{2} of S such that $g_{1} g_{2} \mid S$ we have $\left|\{\overline{0}\} \cup \Sigma\left(\overline{g_{1}} \overline{g_{2}}\right)\right| \leq 2$. Then, for any two terms g_{1}, g_{2} of $S S_{H}^{-1}$ we have $\overline{g_{1}}=\overline{g_{2}}$ and $2 \overline{g_{1}}=\overline{0}$. Therefore, for any term g_{0} of $S S_{H}^{-1}$,

$$
\langle\operatorname{supp}(S)\rangle=\left\langle h, g_{0}\right\rangle
$$

Since S is regular, $|\langle\operatorname{supp}(S)\rangle| \geq|S|+1>n / 2$. Therefore,

$$
G=\langle\operatorname{supp}(S)\rangle=\left\langle h, g_{0}\right\rangle
$$

Since $2 g_{0} \in H=\langle h\rangle$, we infer that $|G|=2|H|$ and $G=C_{2} \oplus C_{n / 2}$. Hence we have

$$
|S|=m(G)=n / 2+1
$$

Let

$$
T=g_{0} S_{H}
$$

Let $t \geq 0$ be the maximal integer such that $S T^{-1}$ has a factorization

$$
S T^{-1}=A_{1} \cdot \ldots \cdot A_{t} W
$$

with A_{i} a 2-zero-sum free 3 -subset of G for every $i \in[1, t]$.
We fix a factorization of $S T^{-1}$ as above with $\left|\operatorname{supp}^{+}(W)\right|$ maximal possible. Clearly,

$$
\left|\operatorname{supp}^{+}(W)\right| \leq 2
$$

Then S has a factorization

$$
S=A_{1} \cdot \ldots \cdot A_{t} W T
$$

where $t \geq 0, A_{i}$ is a 2 -zero-sum free 3 -subset of G, and W is a subsequence of S which contains no 2 -zero-sum free 3 -subset of G. It follows that

$$
3 t+|W|+|T|=|S| \geq n / 2
$$

and

$$
W \mid x_{1}^{\mathbf{v}_{x_{1}}(S)}\left(-x_{1}\right)^{\mathrm{v}_{-x_{1}}(S)} x_{2}^{\mathrm{v}_{x_{2}}(S)}\left(-x_{2}\right)^{\mathrm{v}_{-x_{2}}(S)}
$$

for some distinct $x_{1}, x_{2} \in G$.
Let $B_{i}=\{0\} \cup \Sigma\left(A_{i}\right)$ for every $i \in[1, t]$, let $C=\{0\} \cup \Sigma(W)$, and let $D=\{0\} \cup \Sigma(T)$. From Lemma 3.1 we get $\left|B_{i}\right| \geq 7$. Then Lemmas 2.1
and 2.3 yield

$$
\begin{aligned}
n-1 & \geq|\Sigma(S)| \geq\left|B_{1}\right|+\cdots+\left|B_{t}\right|+|C|+|D|-t-1 \\
& \geq 7 t+|W|+1+2|T|-t-1=6 t+2|W|+2|T|-|W| \\
& =2|S|-|W|=n+2-|W|
\end{aligned}
$$

This gives

$$
|W| \geq 3
$$

Write $W=W_{1} W_{2}$ with $W_{1} \mid x_{1}^{\mathrm{v}_{x_{1}}(S)}\left(-x_{1}\right)^{\mathrm{v}_{-x_{1}}(S)}$ and $W_{2} \mid x_{2}^{\mathrm{v}_{x_{2}}(S)}\left(-x_{2}\right)^{\mathrm{v}_{-x_{2}}(S)}$. Without loss of generality we may assume that

$$
\left|W_{1}\right| \geq\left|W_{2}\right| \geq 0
$$

Since $\left|W_{1}\right| \geq|W| / 2 \geq 3 / 2$, by the maximality of S_{H}, there is some $y \mid S_{H}$ such that $y \notin\left\langle x_{1}\right\rangle$. Letting $U=W_{1} y$ and $T^{\prime}=T y^{-1}$, we obtain a factorization

$$
S=A_{1} \cdot \ldots \cdot A_{t} U W_{2} T^{\prime}
$$

Let $C_{1}=\{0\} \cup \Sigma(U), C_{2}=\{0\} \cup \Sigma\left(W_{2}\right)$, and $D^{\prime}=\{0\} \cup \Sigma\left(T^{\prime}\right)$. Similarly to the above we obtain

$$
\begin{aligned}
n-1 & \geq|\Sigma(S)| \geq\left|A_{1}\right|+\cdots+\left|A_{t}\right|+\left|C_{1}\right|+\left|C_{2}\right|+\left|D^{\prime}\right|-t-2 \\
& \geq 7 t+2|U|+\left|W_{2}\right|+1+2\left|T^{\prime}\right|-t-2 \\
& =2\left(3 t+|U|+\left|W_{2}\right|+\left|T^{\prime}\right|\right)-1-\left|W_{2}\right| \\
& =2|S|-1-\left|W_{2}\right|=n+1-\left|W_{2}\right|
\end{aligned}
$$

This gives

$$
\left|W_{2}\right| \geq 2
$$

By the maximality of S_{H} and $\left|S_{H}\right| \geq 3$, there is $z \mid S_{H} y^{-1}$ such that $z \notin\left\langle x_{2}\right\rangle$. Letting $V=z W_{2}$ and $T^{\prime \prime}=T^{\prime} z^{-1}=T(y z)^{-1}$ gives a factorization

$$
S=A_{1} \cdot \ldots \cdot A_{t} U V T^{\prime \prime}
$$

Let $C_{2}^{\prime}=\{0\} \cup \Sigma(V)$ and $D^{\prime \prime}=\{0\} \cup \Sigma\left(T^{\prime \prime}\right)$. Similarly to the above we have

$$
\begin{aligned}
n-1 & \geq|\Sigma(S)| \geq\left|A_{1}\right|+\cdots+\left|A_{t}\right|+\left|C_{1}\right|+\left|C_{2}^{\prime}\right|+\left|D^{\prime \prime}\right|-t-2 \\
& \geq 7 t+2|U|+2|V|+2\left|T^{\prime \prime}\right|-t-2=2|S|-2=n
\end{aligned}
$$

a contradiction.
Subcase 2b: There are two terms g_{1}, g_{2} of S such that $g_{1} g_{2} \mid S$ and $\left|\{\overline{0}\} \cup \Sigma\left(\overline{g_{1}} \overline{g_{2}}\right)\right| \geq 3$. Let $T=g_{1} g_{2} S_{H}$. Now S has a factorization

$$
S=A_{1} \cdot \ldots \cdot A_{t} W T
$$

where $t \geq 0, A_{i}$ is a 2 -zero-sum free 3 -subset of G, and W is a subsequence of S which contains no 2 -zero-sum free 3 -subset of G. It follows that

$$
3 t+|W|+|T|=|S| \geq n / 2
$$

and

$$
W \mid x_{1}^{\mathrm{v}_{x_{1}}(S)}\left(-x_{1}\right)^{\mathrm{v}_{-x_{1}}(S)} x_{2}^{\mathrm{v}_{x_{2}}(S)}\left(-x_{2}\right)^{\mathrm{v}_{-x_{2}}(S)}
$$

for some distinct $x_{1}, x_{2} \in G$. Let $B_{i}=\{0\} \cup \Sigma\left(A_{i}\right)$ for every $i \in[1, t]$, let $C=\{0\} \cup \Sigma(W)$, and let $D=\{0\} \cup \Sigma(T)$. Then $B_{1}+\cdots+B_{t}+C+D=\Sigma(S)$.
Since $\operatorname{st}(\Sigma(S))=\{0\}$, by Kneser's theorem we obtain

$$
\begin{aligned}
n-1 & \geq|\Sigma(S)| \geq\left|B_{1}\right|+\cdots+\left|B_{t}\right|+|C|+|D|-t-1 \\
& \geq 7 t+|W|+1+3|T|-3-t-1 \\
& =6 t+2|W|+2|T|+|T|-3-|W|=2|S|+|T|-3-|W| \\
& \geq n+|T|-3-|W|
\end{aligned}
$$

This gives

$$
|W| \geq|T|-2 \geq 3
$$

Write $W=W_{1} W_{2}$ with $W_{1} \mid x_{1}^{\mathrm{v}_{x_{1}}(S)}\left(-x_{1}\right)^{\mathrm{v}_{-x_{1}}(S)}$ and $W_{2} \mid x_{2}^{\mathrm{v}_{x_{2}}(S)}\left(-x_{2}\right)^{\mathrm{v}_{-x_{2}}(S)}$. Without loss of generality we may assume that $\left|W_{1}\right| \geq\left|W_{2}\right| \geq 0$. Since $\left|W_{1}\right| \geq|W| / 2 \geq 3 / 2$, by the maximality of S_{H}, there is some $y \mid S_{H}$ such that $y \notin\left\langle x_{1}\right\rangle$. Letting $U=W_{1} y$ and $T^{\prime}=T y^{-1}$, we obtain

$$
S=A_{1} \cdot \ldots \cdot A_{t} U W_{2} T^{\prime}
$$

Let $C_{1}=\{0\} \cup \Sigma(U), C_{2}=\{0\} \cup \Sigma\left(W_{2}\right)$, and $D^{\prime}=\{0\} \cup \Sigma\left(T^{\prime}\right)$. Similarly to the above we obtain

$$
\begin{aligned}
n-1 & \geq|\Sigma(S)| \geq\left|B_{1}\right|+\cdots+\left|B_{t}\right|+\left|C_{1}\right|+\left|C_{2}\right|+\left|D^{\prime}\right|-t-2 \\
& \geq 7 t+2|U|+\left|W_{2}\right|+1+3\left|T^{\prime}\right|-3-t-2 \\
& =6 t+2\left|W_{1}\right|+\left|W_{2}\right|+3|T|-5=6 t+2|W|+2|T|+|T|-5-\left|W_{2}\right| \\
& \geq n+|T|-5-\left|W_{2}\right| .
\end{aligned}
$$

This gives

$$
\left|W_{2}\right| \geq|T|-4 \geq 1
$$

Therefore

$$
\left|W_{1}\right| \geq 2, \quad\left|W_{2}\right| \geq 1
$$

By the maximality of S_{H}, there is some $y \mid S_{H}$ such that $y \notin\left\langle x_{2}\right\rangle$. Let $U=W_{2} y$ and $T^{\prime}=T y^{-1}$. Again by the maximality of S_{H} and by $\left|S_{H}\right| \geq 3$, there is $z \mid S_{H} y^{-1}$ such that $z \notin\left\langle x_{1}\right\rangle$. Letting $V=z W_{1}$ and $T^{\prime \prime}=T^{\prime} z^{-1}=$ $T(y z)^{-1}$ gives

$$
S=A_{1} \cdot \ldots \cdot A_{t} U V T^{\prime \prime}
$$

Let $C_{1}^{\prime}=\{0\} \cup \Sigma(U), C_{2}^{\prime}=\{0\} \cup \Sigma(V)$, and $D^{\prime \prime}=\{0\} \cup \Sigma\left(T^{\prime \prime}\right)$. Similarly to the above we have

$$
\begin{aligned}
n-1 & \geq|\Sigma(S)| \geq\left|B_{1}\right|+\cdots+\left|B_{t}\right|+\left|C_{1}\right|+\left|C_{2}^{\prime}\right|+\left|D^{\prime \prime}\right|-t-2 \\
& \geq 7 t+2|U|+2|V|+3\left|T^{\prime \prime}\right|-3-t-2 \\
& =6 t+2|W|+2|T|+|T|-7=2|S|+|T|-7 \geq 2 m(G)+|T|-7
\end{aligned}
$$

This gives $|T| \leq n+6-2 m(G)$. Therefore,

$$
\begin{equation*}
\frac{n+1}{6} \leq\left|S_{H}\right| \leq n+4-2 m(G) \tag{3.2}
\end{equation*}
$$

If $m(G) \geq n / 2+1$ then $n \leq 11$ follows from (3.2), contradicting (3.1). Therefore,

$$
\begin{equation*}
m(G)=n / 2 \tag{3.3}
\end{equation*}
$$

It follows from 3 that $n \leq 23$. Since n is even, we have

$$
\begin{equation*}
n \leq 22 \tag{3.4}
\end{equation*}
$$

By (3.1), (3.3), and (3.4), to complete the proof of this subcase it remains to consider

$$
\begin{equation*}
n \in[12,22] \quad \text { and } \quad m(G)=n / 2 \tag{3.5}
\end{equation*}
$$

Since $r(G) \geq 2$, we have $n \notin\{14,22\}$. So, it remains to check

$$
n \in\{12,16,18,20\}
$$

If $n \in\{12,20\}$ then $G=C_{2} \oplus C_{t}$ with $t=6$ or 10 . Hence $m(G)=n / 2+1$. This is not any case listed in 3.5.

If $n=18$ then $G=C_{3} \oplus C_{6}$. Now $|S| \geq m(G)=9,\left|S_{H}\right| \geq 4$, and there are two terms g_{1}, g_{2} of S such that $g_{1} g_{2} \mid S S_{H}^{-1}$ and $\left|\{\overline{0}\} \cup \Sigma\left(\overline{g_{1}} \overline{g_{2}}\right)\right| \geq 3$. Let $T=g_{1} g_{2} S_{H}$. Then $|T| \geq 6$ and $\left|S T^{-1}\right| \leq 3$. Let $A=S T^{-1}$. Then

$$
S=A T
$$

Let $B=\{0\} \cup \Sigma(A)$ and $D=\{0\} \cup \Sigma(T)$. Then $B+D=\Sigma(S)$. So by Lemmas 2.1 and 2.3, we have

$$
|\Sigma(S)| \geq|B|+|D|-1 \geq|A|+1+(3|T|-3)-1=|S|+2|T|-3 \geq 18
$$

Therefore $\Sigma(S)=G$, a contradiction.
If $n=16$ then $G \in\left\{C_{2}^{4}, C_{2}^{2} \oplus C_{4}, C_{4}^{2}, C_{2} \oplus C_{8}\right\}$. Since $m(G)=n / 2$, we may assume that $G \neq C_{2} \oplus C_{8}$. Therefore, $G \in\left\{C_{2}^{4}, C_{2}^{2} \oplus C_{4}, C_{4}^{2}\right\}$. If $G=C_{2}^{4}$ then every term of S is of order two, a contradiction. So, $G=C_{2}^{2} \oplus C_{4}$ or $G=C_{4}^{2}$. Since $\max \left\{\mathrm{v}_{g}(S)+\mathrm{v}_{-g}(S): g \in G\right\} \geq \frac{n+1}{6}=\frac{16+1}{6}$, we see that $\mathrm{v}_{g}(S)+\mathrm{v}_{-g}(S) \geq 3$ for some g of order 4 . Let $K=\langle g\rangle$. By Lemma 2.3, $\left|\{0\} \cup \Sigma\left(S_{K}\right)\right| \geq\left|S_{K}\right|+1 \geq 4=|K|$. Therefore, $\{0\} \cup \Sigma\left(S_{K}\right)=K$, and hence $K=\operatorname{st}\left(\{0\} \cup \Sigma\left(S_{K}\right)\right) \subseteq \operatorname{st}(\Sigma(S))=\{0\}$, a contradiction. This completes the proof of Theorem 1.1(2).
4. Proof of Theorem $1.1(3)$, (4). In this section we shall be employing group algebras as a tool.

Let $G=\bigoplus_{i=1}^{r} C_{n_{i}}$ with $1<n_{1}|\cdots| n_{r}$, and let K be a field. The group algebra $K[G]$ is a vector space over K with K-basis $\left\{X^{g}: g \in G\right\}$ (built with
a symbol X), where multiplication is defined by

$$
\left(\sum_{g \in G} a_{g} X^{g}\right)\left(\sum_{g \in G} b_{g} X^{g}\right)=\sum_{g \in G}\left(\sum_{h \in G} a_{h} b_{g-h}\right) X^{g} .
$$

More precisely, $K[G]$ consists of all formal expressions of the form $f=$ $\sum_{g \in G} c_{g} X^{g}$ with $c_{g} \in K$. For more detailed background information, we refer the readers to [6, 7, 8].

Choose a prime q so that $q \equiv 1\left(\bmod n_{r}\right)$. Consider the group algebra $\mathbb{F}_{q}[G]$. For any $\alpha \in \mathbb{F}_{q}[G]$, denote by L_{α} the set of elements $g \in G$ such that $\alpha\left(a-X^{g}\right)=0$ for some $a \in \mathbb{F}_{q}$.

Lemma 4.1.

(1) For any $\alpha \in \mathbb{F}_{q}[G], L_{\alpha}$ is a subgroup of G.
(2) If $\alpha \neq 0$ and $L_{\alpha}=G$, then $\alpha=\sum_{g \in G} a_{g} X^{g}$ with $0 \neq a_{g} \in \mathbb{F}_{q}$ for all $g \in G$.
(3) Let $S=g_{1} \cdot \ldots \cdot g_{l}$ be a sequence over G. If there exist $a_{1}, \ldots, a_{t} \in \mathbb{F}_{q}^{*}$ such that $\alpha=\prod_{i=1}^{l}\left(a_{i}-X^{g_{i}}\right) \neq 0$ and $L_{\alpha}=G$, then $G \backslash\{0\} \subset \Sigma(S)$.

Proof. Conclusions (1) and (2) have been proved in [4, Lemma 3.1]. Here we only give a proof of (3). Let $0 \neq \alpha=\prod_{i=1}^{l}\left(a_{i}-X^{g_{i}}\right)=\sum_{g \in G} a_{g} X^{g}$. By (2), $a_{g} \neq 0$ for all $g \in G$. This implies $g \in \Sigma(S)$ for all $g \in G \backslash\{0\}$. Therefore, $G \backslash\{0\} \subset \Sigma(S)$.

Lemma 4.2 (4). Let S be a sequence of elements in G of length $l \geq$ $n_{r}\left(1+\log n_{1} \cdots n_{r-1}\right)$. Suppose that S contains at least one nonzero term. Then one can find a subsequence $T=g_{1} \cdot \ldots \cdot g_{t}$ of S of length $t \leq$ $n_{r}\left(1+\log n_{1} \cdots n_{r-1}\right)-1$ and $a_{1}, \ldots, a_{t} \in \mathbb{F}_{q}^{*}$ such that

$$
\alpha=\left(a_{1}-X^{g_{1}}\right) \cdots\left(a_{t}-X^{g_{t}}\right) \neq 0
$$

and all terms of $S T^{-1}$ are in L_{α}.
Proof. This has been proved in [4, Lemma 3.2]. There is a typo there: $\log n / \log m$ has to be replaced by $\log (n / m)$.

Let $a \neq 0$ be a real number, and let $r \geq 3$ be an integer. Define a function of r variables y_{1}, \ldots, y_{r} by

$$
f_{a}\left(y_{1}, \ldots, y_{r}\right):=\frac{y_{1} \cdots y_{r}}{a}+a-2-2 y_{r}\left(1+\log y_{1} \cdots y_{r-1}\right)-\frac{y_{1} \cdots y_{r}}{a^{2}} .
$$

Lemma 4.3. If $y_{i} \geq a \geq 3$ for all $i \in[1, r]$, then $f_{a}\left(y_{1}, \ldots, y_{r}\right) \geq 0$ provided that one of the following conditions holds:
(1) $r \geq 5$;
(2) $r \in\{3,4\}$ and $a \geq 17$.

Proof. First we compute the partial derivatives of $f_{a}\left(y_{1}, \ldots, y_{r}\right)$: $\mathbb{R}_{\geq 1}^{r} \rightarrow \mathbb{R}$. We obtain

$$
\begin{aligned}
\frac{\partial f_{a}}{\partial y_{i}} & =\frac{y_{1} \cdots y_{r}}{a^{2} y_{i}}(a-1)-2 \frac{y_{r}}{y_{i}} \geq \frac{y_{r}}{y_{i}}\left(\frac{y_{1} \cdots y_{r-1}}{a^{2}}(a-1)-2\right) \\
& \geq \frac{y_{r}}{y_{i}}(a-3) \geq 0
\end{aligned}
$$

for $1 \leq i \leq r-1$, and

$$
\frac{\partial f_{a}}{\partial y_{r}}=\frac{y_{1} \cdots y_{r-1}}{a^{2}}(a-1)-2-2 \log y_{1} \cdots y_{r-1}
$$

It is easy to see that $g(x)=\frac{x}{a^{2}}(a-1)-2-2 \log x$ is increasing when $x \geq a^{2}$.
(1) If $r \geq 5$ then

$$
\begin{aligned}
\frac{\partial f_{a}}{\partial y_{r}} & =\frac{y_{1} \cdots y_{r-1}}{a^{2}}(a-1)-2-2 \log y_{1} \cdots y_{r-1} \\
& \geq a^{r-3}(a-1)-2-2(r-1) \log a \geq a^{2}(a-1)-2-8 \log a>0
\end{aligned}
$$

So we have

$$
\begin{aligned}
f_{a}\left(y_{1}, \ldots, y_{r}\right) & \geq f_{a}(a, \ldots, a)=a^{r-2}(a-1)+a-2-2 a\left(1+\log a^{r-1}\right) \\
& \geq a^{3}(a-1)+a-2-2 a-8 a \log a \\
& =a\left(a^{2}(a-1)-2-8 \log a\right)+a-2 \geq a-2 \geq 1
\end{aligned}
$$

(2) If $a \geq 17$ and $r \in\{3,4\}$ then

$$
\begin{align*}
\frac{\partial f_{a}}{\partial y_{r}} & =\frac{y_{1} \cdots y_{r-1}}{a^{2}}(a-1)-2-2 \log y_{1} \cdots y_{r-1} \tag{4.1}\\
& \geq a-3-4 \log a>0
\end{align*}
$$

since $f(x)=x-3-4 \log x$ is an increasing function of $x \geq 17$. We get

$$
\begin{aligned}
f_{a}\left(y_{1}, \ldots, y_{r}\right) & \geq f_{a}(a, \ldots, a)=a^{r-2}(a-1)+a-2-2 a\left(1+\log a^{r-1}\right) \\
& \geq a(a-1)+a-2-2 a-4 a \log a
\end{aligned}
$$

since $f_{a}(a, \ldots, a)=a^{r-2}(a-1)+a-2-2 a\left(1+\log a^{r-1}\right)$ is an increasing function of $r \geq 3$. By (4.1), we obtain

$$
f_{a}\left(y_{1}, \ldots, y_{r}\right) \geq f_{a}(a, a, a)=a(a-3-4 \log a)+a-2 \geq a-2 \geq 15
$$

as desired.
Proof of Theorem 1.1(3), (4). Suppose that $G=C_{n_{1}} \oplus \cdots \oplus C_{n_{r}}$ where $1<n_{1}|\cdots| n_{r}$. By Lemma 2.2 and Theorem 1.1(2), it suffices to prove that $\mathrm{c}_{0}(G) \leq m(G)=|G| / p+p-2$ for $p \geq 3$. To do so, let S be a regular sequence over G of length $|S|=|G| / p+p-2$. We need to prove that $\Sigma(S)=G$.

Assume that $\Sigma(S) \neq G$. By Lemma 4.3, we can deduce that $|S| \geq$ $n_{r}\left(1+\log n_{1} \cdots n_{r-1}\right)$. Then by Lemma 4.2, one can find a subsequence
$T=g_{1} \cdot \ldots \cdot g_{t}$ of S with $t \leq n_{r}\left(1+\log n_{1} \cdots n_{r-1}\right)-1$ and $a_{1}, \ldots, a_{t} \in \mathbb{F}_{q}^{*}$ such that

$$
\alpha=\left(a_{1}-X^{g_{1}}\right) \cdots\left(a_{t}-X^{g_{t}}\right) \neq 0
$$

and all terms of $S T^{-1}$ are in L_{α}.
Since S is regular, again by Lemma 4.3 we have

$$
\begin{aligned}
\left|L_{\alpha}\right|-1 & \geq\left|S_{L_{\alpha}}\right| \geq\left|S T^{-1}\right| \\
& \geq \frac{n_{1} \cdots n_{r}}{p}+p-2-2 n_{r}\left(1+\log n_{1} \cdots n_{r-1}\right) \geq \frac{n_{1} \cdots n_{r}}{p^{2}}
\end{aligned}
$$

Together with Lemma 4.1, this shows that $\left|L_{\alpha}\right|=|G| / p_{1}$ for some prime divisor p_{1} of $|G|$ with $p \leq p_{1}<p^{2}$. It follows that L_{α} as a subgroup of G must be isomorphic to the group of the form

$$
\bigoplus_{i=1, i \neq i_{0}}^{r} C_{n_{i}} \oplus C_{n_{i_{0}} / p_{1}}
$$

where $1 \leq i_{0} \leq r$.
Let $L_{\alpha}=\bigoplus_{j=1}^{s} C_{m_{j}}$ with $1<m_{1}|\cdots| m_{s}$. We claim that

$$
m_{s}\left(1+\log m_{1} \cdots m_{s-1}\right) \leq n_{r}\left(1+\log n_{1} \cdots n_{r-1}\right)
$$

If $1 \leq i_{0} \leq r-1$ then
$m_{s}\left(1+\log m_{1} \cdots m_{s-1}\right)=n_{r}\left(1+\log \frac{n_{1} \cdots n_{r-1}}{p_{1}}\right) \leq n_{r}\left(1+\log n_{1} \cdots n_{r-1}\right)$.
If $i_{0}=r$ then
$m_{s}\left(1+\log m_{1} \cdots m_{s-1}\right) \leq m_{s}\left(1+\log n_{1} \cdots n_{r-1}\right) \leq n_{r}\left(1+\log n_{1} \cdots n_{r-1}\right)$.
This proves the claim.
By Lemma 4.3. $\left|S T^{-1}\right| \geq n_{r}\left(1+\log n_{1} \cdots n_{r-1}\right) \geq m_{s}\left(1+\log m_{1} \cdots m_{s-1}\right)$. Since $S T^{-1}$ is a sequence over L_{α}, by Lemma 4.2 we can find a subsequence $S_{1}=h_{1} \cdot \ldots \cdot h_{u}$ of $S T^{-1}$ with $u \leq m_{s}\left(1+\log m_{1} \cdots m_{s-1}\right)-1$ and $b_{1}, \ldots, b_{u} \in$ \mathbb{F}_{q}^{*} such that

$$
\beta=\left(b_{1}-X^{h_{1}}\right) \cdots\left(b_{u}-X^{h_{u}}\right) \neq 0
$$

and all terms of $S T^{-1} S_{1}^{-1}$ are in L_{β}, where L_{β} denotes the set of elements $g \in L_{\alpha}$ such that $\beta\left(a-X^{g}\right)=0$ for some $a \in \mathbb{F}_{q}^{*}$.

Since S is regular, by Lemma 4.3 we have

$$
\begin{aligned}
\left|L_{\beta}\right|-1 \geq & \left|\left(S T^{-1}\right)_{L_{\beta}}\right| \geq\left|S T^{-1} S_{1}^{-1}\right| \\
\geq & \frac{n_{1} \cdots n_{r}}{p}+p-2-n_{r}\left(1+\log n_{1} \cdots n_{r-1}\right) \\
& -m_{s}\left(1+\log m_{1} \cdots m_{s-1}\right) \\
\geq & \frac{n_{1} \cdots n_{r}}{p^{2}}
\end{aligned}
$$

This implies $\left|L_{\beta}\right|=|G| / p_{1}=\left|L_{\alpha}\right|$. Hence $L_{\beta}=L_{\alpha}$. As $\beta=\prod_{i=1}^{u}\left(b_{i}-X^{h_{i}}\right)$, we deduce from Lemma 4.1 that $\{0\} \cup \Sigma\left(S_{1}\right)=L_{\beta}=L_{\alpha}$. Therefore, $L_{\alpha}=$ $L_{\beta}=\operatorname{st}\left(\{0\} \cup \Sigma\left(S_{1}\right)\right)$, contrary to Lemma 2.3. This completes the proof of Theorem 1.1(3), (4).
5. Proof of Theorem $1.1(5)$. Let p be a prime. In this section we shall be using group algebras as in Section 4.

Let $G=\bigoplus_{i=1}^{r} C_{p^{n_{i}}}=\bigoplus_{i=1}^{r}\left\langle e_{i}\right\rangle$, where $C_{p^{n_{i}}}=\left\langle e_{i}\right\rangle$ for $1 \leq i \leq r$ and $1 \leq n_{1} \leq \cdots \leq n_{r}$.

Consider the group algebra $\mathbb{F}_{p}[G]$ over \mathbb{F}_{p}. As a vector space over \mathbb{F}_{p}, $\mathbb{F}_{p}[G]$ has a basis

$$
\left\{\prod_{i=1}^{r}\left(1-X^{e_{i}}\right)^{k_{i}}: k_{i} \in\left[0, p^{n_{i}}-1\right] \text { for all } i \in[1, r]\right\}
$$

(see for example [6]). So any $\alpha \in \mathbb{F}_{p}[G]$ can be uniqely written in the form $\alpha=\sum \sigma_{k_{1}, \ldots, k_{r}}\left(1-X^{e_{1}}\right)^{k_{1}} \cdots\left(1-X^{e_{r}}\right)^{k_{r}}$ with $\sigma_{k_{1}, \ldots, k_{r}} \in \mathbb{F}_{p}$.

For any sequence $S=g_{1} \cdot \ldots \cdot g_{l}$ over G, let

$$
\prod(S)=\prod_{i=1}^{l}\left(1-X^{g_{i}}\right)
$$

Let $g \in G$ and $a \in \mathbb{F}_{p}$. Since 1 is the only $\exp (G)$ th root in \mathbb{F}_{p}, the element $a-X^{g}$ is invertible in $\mathbb{F}_{p}[G]$ if and only if $a \neq 1$. Thus

$$
\begin{aligned}
L_{\alpha} & =\left\{g \in G: \text { there is an } a \in \mathbb{F}_{p} \text { such that } \alpha\left(a-X^{g}\right)=0\right\} \\
& =\left\{g \in G: \alpha\left(1-X^{g}\right)=0\right\}
\end{aligned}
$$

Lemma 5.1 ([13]). Let S be a sequence over G. Then $L_{\prod(S)}=G$ if and only if $\prod(S)=\sigma \prod_{i=1}^{r}\left(1-X^{e_{i}}\right)^{p^{n_{i}}-1}$ for some $\sigma \in \mathbb{F}_{p}$. In particular, if $|S|=\sum_{i=1}^{r}\left(p^{n_{i}}-1\right)$ then $\prod(S)=\sigma \prod_{i=1}^{r}\left(1-X^{e_{i}}\right)^{p^{n_{i}}-1}$. Furthermore, if $\sigma \neq 0$ then $G \backslash\{0\} \subseteq \Sigma(S)$.

Lemma 5.2 ([6, Proposition 5.5.8], [10]). Let S be a sequence over G of length $|S| \geq \sum_{i=1}^{r}\left(p^{n_{i}}-1\right)+1$. Then

$$
\prod(S)=0
$$

Let a be a real number, and let $r \geq 2$ be an integer. Define

$$
\begin{aligned}
f_{a}\left(y_{1}, \ldots, y_{r}\right):= & a^{-1+\sum_{i=1}^{r} y_{i}}+a-2-\sum_{i=1}^{r}\left(a^{y_{i}}-1\right) \\
& -\sum_{i=2}^{r}\left(a^{y_{i}}-1\right)-\left(a^{y_{1}-1}-1\right)-a^{-2+\sum_{i=1}^{r} y_{i}}+3
\end{aligned}
$$

where y_{1}, \ldots, y_{r} are real variables.

Lemma 5.3. Let $p \geq 3$ be a prime, and let $r \geq 2$ be an integer. Let n_{1}, \ldots, n_{r} be positive integers.
(1) If $r \geq 3$ then $f_{p}\left(n_{1}, \ldots, n_{r}\right) \geq 0$.
(2) If $r=2$ and $n_{2} \geq n_{1} \geq 2$ then $f_{p}\left(n_{1}, n_{2}\right)>0$ except when $p=3$ and $n_{1}=2$, in which case $f_{p}\left(n_{1}, n_{2}\right)=-4<0$.

Proof. First we compute the partial derivatives of $f_{p}\left(y_{1}, \ldots, y_{r}\right)$: $\mathbb{R}_{\geq 1}^{r} \rightarrow \mathbb{R}$. We obtain

$$
\frac{\partial f_{p}}{\partial y_{1}}=p^{y_{1}-1} \log p\left(p^{-1+\sum_{i=2}^{r} y_{i}}(p-1)-p-1\right) \geq p(p-2)-1>0
$$

for all $\left(y_{1}, \ldots, y_{r}\right) \in \mathbb{R}_{\geq 1}^{r}$ when $r \geq 3$, and for all $\left(y_{1}, y_{2}\right) \in \mathbb{R}_{\geq 2}^{r}$ when $r=2$. For all $2 \leq i \leq r$, we get

$$
\frac{\partial f_{p}}{\partial y_{i}}=p^{y_{i}-1} \log p\left(p^{-1+\sum_{j=1, j \neq i}^{r} y_{j}}(p-1)-2 p\right) \geq p(p-3) \geq 0
$$

for all $\left(y_{1}, \ldots, y_{r}\right) \in \mathbb{R}_{\geq 1}^{r}$ when $r \geq 3$, and for all $\left(y_{1}, y_{2}\right) \in \mathbb{R}_{\geq 2}^{r}$ when $r=2$.
(1) If $r \geq 3$ then $f_{p}\left(n_{1}, \ldots, n_{r}\right) \geq f_{p}(1, \ldots, 1)$. Thus it remains to prove that $f_{p}(1, \ldots, 1) \geq 0$. It is easy to see that $g(r):=f_{p}(1, \ldots, 1)=$ $p^{r-2}(p-1)-(2 r-2) p+2 r$ is an increasing function of r, since $g^{\prime}(r)=$ $(p-1)\left(p^{r-2} \log p-2\right)>0$ when $p \geq 3$ and $r \geq 3$. Hence $f_{p}(1, \ldots, 1) \geq$ $g(3)=(p-2)(p-3) \geq 0$, as desired.
(2) If $r=2$ then

$$
f_{p}\left(n_{1}, n_{2}\right)=p^{n_{1}+n_{2}-2}(p-1)-2 p^{n_{2}}-p^{n_{1}}-p^{n_{1}-1}+p+5
$$

So, if $p \geq 5$ then $f_{p}\left(n_{1}, n_{2}\right) \geq p+5>0$. If $p=3$, we have $f_{3}\left(2, n_{2}\right)=-4$ for all $n_{2} \geq 2$, and $f_{3}\left(n_{1}, n_{2}\right) \geq f_{3}(3,3)=80>0$ for any integers n_{1}, n_{2} with $n_{2} \geq n_{1} \geq 3$.

Lemma 5.4. Let p be a prime, and n_{1}, \ldots, n_{r} be positive integers. Let $G=\bigoplus_{i=1}^{r} C_{p^{n_{i}}}$. If either $r \geq 3$, or $r=2, n_{2} \geq n_{1} \geq 2$, and $\left(p, n_{1}\right) \neq(3,2)$, then

$$
\mathrm{c}_{0}(G)=|G| / p+p-2
$$

Proof. By Lemma 2.2, it suffices to prove $\mathrm{c}_{0}(G) \leq m(G)=|G| / p+p-2$. To do so, let S be a regular sequence over G of length $|S|=|G| / p+p-2$. We need to show that $\Sigma(S)=G$. Since $|S| \geq \mathrm{D}(G)$, by Lemma 2.7 we have

$$
0 \in \Sigma(S)
$$

Assume $\Sigma(S) \neq G$. Then by Lemma 2.3, we have $\operatorname{st}(\Sigma(S))=\{0\}$. Let S_{0} be the maximal subsequence of S such that $\prod\left(S_{0}\right) \neq 0$. By Lemma 5.2 , we see that $\left|S_{0}\right| \leq \sum_{i=1}^{r}\left(p^{n_{i}}-1\right)$. If $\left|S_{0}\right|=\sum_{i=1}^{r} s^{r}\left(p^{n_{i}}-1\right)$ then by Lemma 5.1 we have $G \backslash\{0\} \subset \Sigma\left(S_{0}\right)$. It follows from $0 \in \Sigma(S)$ that
$\Sigma(S)=G$, a contradiction. Therefore,

$$
\left|S_{0}\right| \leq \sum_{i=1}^{r}\left(p^{n_{i}}-1\right)-1 .
$$

Let $H=L_{\Pi\left(S_{0}\right)}$ and $T=S S_{0}^{-1}$. By the maximality of S_{0}, we know that every term of T belongs to H, and T is a regular sequence over the subgroup H of G. By Lemma 5.3 we find that

$$
|H|-1 \geq\left|S_{H}\right| \geq\left|S-S_{0}\right| \geq \frac{|G|}{p}+p-2-\sum_{i=1}^{r}\left(p^{n_{i}}-1\right) \geq \frac{|G|}{p^{2}}
$$

Taking into account Lemma 5.1, we deduce $|H|=|G| / p$. Since H is a subgroup of G with $|H|=|G| / p, H$ must be isomorphic to a group of the form

$$
\bigoplus_{i=1, i \neq i_{0}}^{r} C_{p^{n_{i}}} \oplus C_{p^{n_{i_{0}}-1}}
$$

where $1 \leq i_{0} \leq r$.
Since $n_{1} \leq \cdots \leq n_{r}$, we can easily deduce that

$$
\begin{align*}
\mathrm{D}(H)-1 & =\sum_{i=1, i \neq i_{0}}^{r}\left(p^{n_{i}}-1\right)+\left(p^{n_{i_{0}}-1}-1\right) \tag{5.1}\\
& \leq \sum_{i=2}^{r}\left(p^{n_{i}}-1\right)+p^{n_{1}-1}-1 .
\end{align*}
$$

Let S_{1} be the maximal subsequence of T such that $\Pi\left(S_{1}\right) \neq 0$. By Lemma 5.2 , we have $\left|S_{1}\right| \leq \mathrm{D}(H)-1$. If $\left|S_{1}\right|=\mathrm{D}(H)-1$ then by Lemma 5.1 we get $\{0\} \cup \Sigma\left(S_{1}\right)=H$. Therefore, $H=\operatorname{st}\left(\{0\} \cup \Sigma\left(S_{1}\right)\right)$. But $|H|=|G| / p \geq p^{2}$, contrary to Lemma 2.3. Therefore,

$$
\left|S_{1}\right| \leq \mathrm{D}(H)-2
$$

Let $T_{1}=T S_{1}^{-1}=S\left(S_{0} S_{1}\right)^{-1}$, and let $N=L_{\Pi\left(S_{1}\right)}$. By the maximality of S_{1} we see that T_{1} is a sequence over N. By (5.1) and Lemma 5.3 we obtain $\left|T_{1}\right| \geq|G| / p^{2}-1$. If $N=H$ then by Lemma 5.1 we have $\{0\} \cup \overline{\Sigma\left(S_{1}\right)=H=}$ $\operatorname{st}\left(\{0\} \cup \Sigma\left(S_{1}\right)\right)$, again contradicting Lemma 2.3. Therefore,

$$
N \neq H .
$$

But $|N|-1 \geq|T|-\left|S_{1}\right|=\left|T_{1}\right| \geq|G| / p^{2}-1$. This forces $|N|=|G| / p^{2}$. On the other hand, using Lemma 2.3, we have $\left|\{0\} \cup \Sigma\left(T_{1}\right)\right| \geq\left|T_{1}\right|+1 \geq|G| / p^{2}$ $=|N|$. Hence $\{0\} \cup \Sigma\left(T_{1}\right)=N$, which implies that $N=\operatorname{st}\left(\{0\} \cup \Sigma\left(T_{1}\right)\right)$. But $|N|=|G| / p^{2}>1$, contradicting Lemma 2.3. -

In what follows, by using group algebras and the method from Section 3 we determine $\mathrm{c}_{0}(G)$ for $G=C_{3^{2}} \oplus C_{3^{n}}$ with $n \geq 2$.

Lemma 5.5. Let $G=C_{3^{2}} \oplus C_{3^{n}}$ with $n \geq 2$. Then

$$
\mathrm{c}_{0}(G)=3^{n+1}+1
$$

Proof. Let S be a regular sequence over G of length $|S|=m(G)=$ $3^{n+1}+1$. We need to show $\Sigma(S)=G$. Assume to the contrary that $\Sigma(S) \neq G$. Note that $|S| \geq \mathrm{D}(G)$. So we have

$$
\begin{equation*}
0 \in \Sigma(S) \tag{5.2}
\end{equation*}
$$

Let S_{1} be the maximal subsequence of S such that $\prod\left(S_{1}\right) \neq 0$. Clearly, $\left|S_{1}\right| \leq \mathrm{D}(G)-1=9-1+3^{n}-1=3^{n}+7$. If $\left|S_{1}\right|=3^{n}+7$ then $G \backslash\{0\} \subset \Sigma\left(S_{1}\right)$ by Lemma 5.1. It follows from 5.2 that $\Sigma(S)=G$, a contradiction. So

$$
\left|S_{1}\right| \leq 3^{n}+6
$$

Let $H=L_{\Pi\left(S_{1}\right)}$. Since S_{1} is maximal, every term of $S S_{1}^{-1}$ is in H. Note that S is regular. We have

$$
|H|-1 \geq\left|S_{H}\right| \geq\left|S S_{1}^{-1}\right| \geq 3^{n+1}+1-\left(3^{n}+6\right)=2 \times 3^{n}-5
$$

Hence

$$
3^{n+1} \geq|H|>2 \times 3^{n}-5
$$

It follows from $n \geq 2$ that

$$
|H|=3^{n+1}
$$

This implies that

$$
H=C_{3} \oplus C_{3^{n}} \quad \text { or } \quad C_{3^{2}} \oplus C_{3^{n-1}}
$$

Therefore,

$$
\mathrm{D}(H) \leq 3^{n}+2
$$

We next show that

$$
\begin{equation*}
c_{0}(H) \leq 2 \times 3^{n}-5 \tag{5.3}
\end{equation*}
$$

which implies $\Sigma\left(S_{H}\right)=H$, contrary to Lemma 2.3. Thus it follows from Lemma 2.2 that $c_{0}(G)=3^{n+1}+1$, completing the proof.

To prove (5.3), let S^{\prime} be a regular sequence over H of length $\left|S^{\prime}\right|=$ $2 \times 3^{n}-5$. We need to show that $\Sigma\left(S^{\prime}\right)=H$. Assume to the contrary that

$$
\Sigma\left(S^{\prime}\right) \neq H
$$

Since $\left|S^{\prime}\right|=2 \times 3^{n}-5 \geq m(H)$, by Lemmas 2.3 and 2.7 we obtain

$$
\operatorname{st}\left(\Sigma\left(S^{\prime}\right)\right)=\{0\} \quad \text { and } \quad 0 \in \Sigma\left(S^{\prime}\right)
$$

Let S_{2} be the maximal subsequence of S^{\prime} such that $\prod\left(S_{2}\right) \neq 0$. Similarly to the above we derive that $\left|S_{2}\right| \leq \mathrm{D}(H)-2 \leq 3^{n}$.

Let $H_{1}=L_{\Pi\left(S_{2}\right)}$. Similarly to the above, we have

$$
\left|H_{1}\right|-1 \geq\left|S_{H_{1}}^{\prime}\right| \geq\left|S^{\prime} S_{2}^{-1}\right| \geq 2 \times 3^{n}-5-3^{n}=3^{n}-5
$$

This implies that

$$
\left|H_{1}\right|=3^{n} .
$$

Choose a subgroup K of H with $|K|=3^{n}$ such that $\left|S_{K}^{\prime}\right|$ is maximal. Since S^{\prime} is regular, we have $\left|S_{K}^{\prime}\right| \leq|K|-1 \leq 3^{n}-1$. By the maximality of $\left|S_{K}^{\prime}\right|$, we have $3^{n}-5 \leq\left|S_{H_{1}}^{\prime}\right| \leq\left|S_{K}^{\prime}\right|$. Therefore,

$$
3^{n}-5 \leq\left|S_{K}^{\prime}\right| \leq 3^{n}-1 .
$$

Let $\bar{g}=g+K$ for every $g \in H$.
Since $|H|=3^{n+1}$, we can always choose two terms g_{1}, g_{2} of S^{\prime} not in K such that $g_{1} g_{2} \mid S^{\prime}$ and $\left|\{\overline{0}\} \cup \Sigma\left(\overline{g_{1}} \overline{g_{2}}\right)\right| \geq 3$. We distinguish two cases.

CASE 1: $3^{n}-1 \geq\left|S_{K}^{\prime}\right| \geq 3^{n}-3$. Take a subsequence $W_{1} \mid S_{K}^{\prime}$ with $\left|W_{1}\right|=3^{n}-3$. Let $T=g_{1} g_{2} W_{1}$ and $T_{1}=S^{\prime} T^{-1}$. Then

$$
|T|=3^{n}-1
$$

and

$$
\left|T_{1}\right|=\left|S^{\prime} T^{-1}\right|=2 \times 3^{n}-5-3^{n}+1=3^{n}-4 \geq 5 \text {. }
$$

Subcase 1a: $\mathrm{v}_{g}\left(T_{1}\right)+\mathrm{v}_{-g}\left(T_{1}\right) \leq 2$ for all $g \in H$. Since $\left|T_{1}\right| \geq 5$, T_{1} contains a 2 -zero-sum free 3 -subset A of H. Let

$$
W=S^{\prime} T^{-1} A^{-1} .
$$

Then $|W| \geq 2$. Now S^{\prime} has a factorization

$$
S^{\prime}=A W T .
$$

Let $B=\{0\} \cup \Sigma(A), C=\{0\} \cup \Sigma(W)$, and let $D=\{0\} \cup \Sigma(T)$. Then $B+C+D=\Sigma\left(S^{\prime}\right)$. Since st $\left(\Sigma\left(S^{\prime}\right)\right)=\{0\}$ and S^{\prime} is regular, by Kneser's theorem we obtain

$$
\begin{aligned}
|H|-1 & \geq\left|\Sigma\left(S^{\prime}\right)\right| \\
& \geq|B|+|C|+|D|-2 \\
& \geq 7+|W|+1+3|T|-3-2 \\
& \geq 7+3+3^{n+1}-6-2 \geq 3^{n+1}=|H|,
\end{aligned}
$$

a contradiction.
Subcase 1b: $\mathrm{v}_{g}\left(T_{1}\right)+\mathrm{v}_{-g}\left(T_{1}\right) \geq 3$ for some $g \in H$. Since S^{\prime} is regular over H, there is some term y of W_{1} such that $y \notin\langle g\rangle$, as otherwise $\left|S_{\langle g\rangle}^{\prime}\right| \geq$ $3^{n} \geq|\langle g\rangle|$, which is a contradiction. Let $T_{2}=T y^{-1}$. Then

$$
\left|T_{2}\right|=3^{n}-2 \quad \text { and } \quad\left|S^{\prime} T_{2}^{-1}\right|=2 \times 3^{n}-5-3^{n}+2=3^{n}-3
$$

Since $\mathrm{v}_{g}\left(T_{1}\right)+\mathrm{v}_{-g}\left(T_{1}\right) \geq 3$, there is a subsequence $A_{1}=g^{a}(-g)^{b}$ of T_{1} with $a+b=3$. Let

$$
A^{\prime}=A_{1} y \quad \text { and } \quad W^{\prime}=S^{\prime} T_{2}^{-1} A^{\prime-1}
$$

Then $\left|W^{\prime}\right| \geq 2$. Now S^{\prime} has a factorization

$$
S^{\prime}=A^{\prime} W^{\prime} T_{2}
$$

Let $B=\{0\} \cup \Sigma\left(A^{\prime}\right), C=\{0\} \cup \Sigma\left(W^{\prime}\right)$, and let $D=\{0\} \cup \Sigma\left(T_{2}\right)$. Then $B+C+D=\Sigma\left(S^{\prime}\right)$. Since $\operatorname{st}\left(\Sigma\left(S^{\prime}\right)\right)=\{0\}$ and S^{\prime} is regular, by Kneser's theorem we obtain

$$
\begin{aligned}
|H|-1 & \geq\left|\Sigma\left(S^{\prime}\right)\right| \\
& \geq|B|+|C|+|D|-2 \\
& \geq 2\left(\left|A_{1}\right|+1\right)+\left|W^{\prime}\right|+1+3\left|T_{2}\right|-3-2 \\
& \geq 8+3+3^{n+1}-9-2=3^{n+1}=|H|
\end{aligned}
$$

a contradiction.
CASE 2: $3^{n}-5 \leq\left|S_{K}^{\prime}\right| \leq 3^{n}-4$. Take a subsequence $W_{1} \mid S_{K}^{\prime}$ with $\left|W_{1}\right|=3^{n}-5$. Let $T=g_{1} g_{2} W_{1}$ and $T_{1}=S^{\prime} T^{-1}$. Then

$$
|T|=3^{n}-3 \quad \text { and } \quad\left|T_{1}\right|=\left|S^{\prime} T^{-1}\right|=2 \times 3^{n}-5-3^{n}+3=3^{n}-2 \geq 7
$$

Subcase 2a: $\mathrm{v}_{g}\left(T_{1}\right)+\mathrm{v}_{-g}\left(T_{1}\right) \leq 2$ for all $g \in H$. Since $\left|T_{1}\right| \geq 7$, there are two 2 -zero-sum free 3 -sets A_{1} and A_{2} of H such that $A_{1} A_{2} \mid T_{1}$. Let $W=S^{\prime} T^{-1} A_{1}^{-1} A_{2}^{-1}$. Then $|W| \geq 1$. Now S^{\prime} has a factorization

$$
S^{\prime}=A_{1} A_{2} W T
$$

Let $B_{i}=\{0\} \cup \Sigma\left(A_{i}\right)$ for $i \in\{1,2\}, C=\{0\} \cup \Sigma(W)$, and $D=\{0\} \cup \Sigma(T)$. Then $B_{1}+B_{2}+C+D=\Sigma\left(S^{\prime}\right)$. Since $\operatorname{st}\left(\Sigma\left(S^{\prime}\right)\right)=\{0\}$ and S^{\prime} is regular, by Kneser's theorem we obtain

$$
\begin{aligned}
|H|-1 & \geq\left|\Sigma\left(S^{\prime}\right)\right| \\
& \geq\left|B_{1}\right|+\left|B_{2}\right|+|C|+|D|-3 \\
& \geq 7+7+|W|+1+3|T|-3-3 \\
& \geq 7+7+2+3^{n+1}-12-3 \geq 3^{n+1}=|H|
\end{aligned}
$$

a contradiction.
SUBCASE 2b: $\mathrm{v}_{g}\left(T_{1}\right)+\mathrm{v}_{-g}\left(T_{1}\right) \geq 3$ for some $g \in H$. Since $\left|T_{1}\right|=3^{n}-2$, there are two elements $y_{1}, y_{2} \notin\langle g\rangle$ such that $y_{1} y_{2} \mid T_{1}$, as otherwise, $\left|S_{\langle g\rangle}^{\prime}\right| \geq$ $\left|T_{1}\right|-1=3^{n}-3>\left|S_{K}^{\prime}\right|$, which contradicts the maximality of S_{K}^{\prime}.

Since $\mathrm{v}_{g}\left(T_{1}\right)+\mathrm{v}_{-g}\left(T_{1}\right) \geq 3$, there is a subsequence $A_{1}=g^{a}(-g)^{b}$ of T_{1} with $a+b=3$ and $a, b \geq 0$. Let

$$
A^{\prime}=A_{1} y_{1} y_{2} \quad \text { and } \quad W^{\prime}=S^{\prime} T^{-1} A^{\prime-1}
$$

Then $\left|W^{\prime}\right| \geq 2$. Now S^{\prime} has a factorization

$$
S^{\prime}=A^{\prime} W^{\prime} T
$$

Let $B=\{0\} \cup \Sigma\left(A^{\prime}\right), C=\{0\} \cup \Sigma\left(W^{\prime}\right)$, and let $D=\{0\} \cup \Sigma(T)$. Then $B+C+D=\Sigma\left(S^{\prime}\right)$. Since $\operatorname{st}\left(\Sigma\left(S^{\prime}\right)\right)=\{0\}$ and S^{\prime} is regular, by Kneser's
theorem we obtain

$$
\begin{aligned}
|H|-1 & \geq\left|\Sigma\left(S^{\prime}\right)\right| \geq|B|+|C|+|D|-2 \\
& \geq 3\left(\left|A_{1}\right|+1\right)+\left|W^{\prime}\right|+1+3|T|-3-2 \\
& \geq 12+3+3^{n+1}-12-2>3^{n+1}=|H|
\end{aligned}
$$

a contradiction.
Proof of Theorem 1.1(5). If $G=C_{p} \oplus C_{p}$ then $\mathrm{c}_{0}(G)=m(G)=2 p-1$ by a result of Peng [12]. For the other cases, the result follows from Lemmas 5.4 and 5.5.

We end this section with the following
Conjecture 5.6. $\mathrm{c}_{0}(G)=m(G)$ for all finite abelian groups.
Acknowledgements. We would like to thank the referee for a careful reading and for suggesting several improvements to the manuscript.

This work was supported in part by the 973 Program of China (Grant No. 2013CB834204), the PCSIRT Project of the Ministry of Education, and the National Science Foundation of China.

References

[1] P. Erdős and H. Heilbronn, On the addition of residue classes mod p, Acta Arith. 9 (1964), 149-159.
[2] M. Freeze, W. Gao and A. Geroldinger, The critical number of finite abelian groups, J. Number Theory 129 (2009), 2766-2777.
[3] W. Gao, Addition theorems for finite Abelian groups, J. Number Theory 53 (1995), 241-246.
[4] W. Gao, Addition theorems and group rings, J. Combin. Theory Ser. A 77 (1997), 98-109.
[5] W. Gao and Y. O. Hamidoune, On additive bases, Acta Arith. 88 (1999), 233-237.
[6] A. Geroldinger and F. Halter-Koch, Non-Unique Factorizations. Algebraic, Combinatorial and Analytic Theory, Pure Appl. Math. 278, Chapman\&Hall/CRC, 2006.
[7] A. Geroldinger and I. Z. Ruzsa, Combinatorial Number Theory and Additive Group Theory, Adv. Courses Math. CRM Barcelona, Birkhäuser, 2009.
[8] D. J. Grynkiewicz, Structural Additive Theory, Dev. Math. 30, Springer, 2013.
[9] M. B. Nathanson, Additive Number Theory: Inverse Problems and the Geometry of Sumsets, Springer, 1996.
[10] J. E. Olson, A combinatorial problem on finite Abelian groups I, J. Number Theory 1 (1969), 8-10.
[11] J. E. Olson, A combinatorial problem on finite Abelian groups II, J. Number Theory 1 (1969), 195-199.
[12] C. Peng, Addition theorems in elementary abelian groups I, J. Number Theory 27 (1987), 46-57.
[13] C. Peng, Addition theorems in elementary abelian groups II, J. Number Theory 27 (1987), 58-62.

Weidong Gao, Dongchun Han, Hanbin Zhang
Center for Combinatorics
Nankai University
Tianjin 300071, P.R. China
E-mail: wdgao1963@aliyun.com
han-qingfeng@163.com
nkuzhanghanbin@163.com
Yongke Qu
Department of Mathematics
Luoyang Normal University
Luoyang 471022, P.R. China
E-mail: 214145351@qq.com

Guoyou Qian
Mathematical College
Sichuan University
Chengdu 610064, P.R. China

Received on 22.6.2014 and in revised form on 3.11.2014

[^0]: 2010 Mathematics Subject Classification: 11P70, 11B50, 11B75.
 Key words and phrases: additive basis, regular sequence, 2-zero-sum free set.

